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Summary

Hepatocellular carcinoma (HCC) is an aggressive malignancy with its global incidence and 

mortality rate continuing to rise, although early detection and surveillance are suboptimal. We 

performed serological profiling of the viral infection history in 899 individuals from an NCI-UMD 

case-control study using a synthetic human virome, VirScan. We developed a viral exposure 

signature and validated the results in a longitudinal cohort with 173 at-risk patients who had long-

term follow-up for HCC development. Our viral exposure signature significantly associated with 

HCC status among at-risk individuals in the validation cohort [Area Under the Curve: 0.91 (95% 

CI 0.87–0.96) at baseline and 0.98 (95% CI 0.97–1) at diagnosis]. The signature identified cancer 

patients prior to a clinical diagnosis and was superior to alpha-fetoprotein. In summary, we 

established a viral exposure signature that can predict HCC among at-risk patients prior to a 

clinical diagnosis, which may be useful in HCC surveillance.

In brief

Lui et al. demonstrate how viral infection history, obtained using human blood samples and 

VirScan analysis of antiviral antibodies, can be used to detect hepatocellular carcinoma in at-risk 

patients prior to clinical cancer diagnoses.

Graphical Abstract
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Introduction

Hepatocellular carcinoma (HCC), a main histological type of primary liver cancer, is 

considered a virus-related malignancy in which hepatitis B and C viruses (HBV and HCV) 

are major etiological factors (Farazi and DePinho, 2006). Viral hepatitis causes 

inflammation and chronic liver diseases, which may lead to fibrosis, cirrhosis and eventually, 

HCC. While HBV or HCV chronic carriers have an increased risk of developing HCC, the 

risk varies among individuals and not all patients with liver disease develop liver cancer 

(Arzumanyan et al., 2013). An effective strategy to prevent HCC is to eliminate causative 

factors. However, while direct-acting antiviral treatment is remarkably effective in 

eliminating HCV infection, it reduces but cannot eliminate HCC risk (Carrat et al., 2019; 

Janjua et al., 2017). Similarly, HBV vaccination, when introduced in the early 1980s, has 

been successful in significantly reducing the number of HBV carriers. Still, it only modestly 

reduces HCC burden in HBV-prevalent areas (Chang et al., 2016). It is puzzling that the 

control of HBV infection in HBV-prevalent areas as well as HCV infection has been 

remarkably successful for decades, while the global HCC incidence and mortality rates 

continues to increase since the 1990s (Liu et al., 2019b). Changing trends of etiological 

factors such as alcohol and non-alcohol/non-viral related liver diseases likely contribute to 

the observed increase. Thus, in addition to cancer prevention, early detection remains a key 

approach to prevent HCC-inflicted mortality. Currently, medical society guidelines 

recommend biannual surveillance using ultrasound with or without alpha-fetoprotein (AFP) 

for certain individuals with chronic liver disease and those with cirrhosis (Sherman et al., 

2012). However, these practices have yielded mixed results related to the effectiveness in 

detecting HCC at an early stage or to provide survival benefit (Moon et al., 2018; Sherman 

et al., 1995; Tzartzeva et al., 2018). Notably, a majority of HCC patients are still diagnosed 

at an advanced stage, which precludes their chance to receive potentially curative therapies, 

leading to poor survival. Thus, there is an unmet need to identify an effective biomarker-

guided surveillance program for early liver cancer detection.

Viruses are known to affect human health by altering host immunity, which makes the 

interplay between the virome and the host crucial in the pathogenesis of human chronic 

diseases, including cancer (Cadwell, 2015; Foxman and Iwasaki, 2011). Diverse pathogenic 

and non-pathogenic viruses may interact with one another as well as their host to shape host 

immunity, which may alter its response to new infections and cancer risk. Consequently, 

viruses that persist or are cleared in the host may leave unique molecular footprints that can 

affect host susceptibility to cancer and may serve as an excellent window of early onset of 

disease (Cadwell, 2015). We hypothesize that unique viral exposure signatures resulting 

from virus-host interactions could reflect a cascade of events that may alter the risk of 

developing HCC. Such signatures may serve as early detection biomarkers and offer 

knowledge about potentially modifiable factors for early onset of HCC. In this study, we 

profiled serological samples from 899 individuals currently enrolled in an NCI-UMD case-

control study of liver cancer (NCT00913757; clinicaltrials.gov). We used a synthetic virome 

technology, VirScan, based on a high-throughput sequencing method, to detect the exposure 

history to all known human viruses (Xu et al., 2015). Using the high-throughput method, we 

developed a unique viral exposure signature (VES) that can discriminate HCC cases from at-
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risk or healthy volunteers, and then validated this signature in a prospective NIDDK at-risk 

cohort for HCC (NCT0001971; clinicaltrials.gov).

Results

The landscape of viral exposure profiles.

VirScan applies a phage display library that covers 93,904 viral epitopes, representing 206 

human viral species and over 1,000 viral strains, to screen for previous exposure history (Xu 

et al., 2015). A phage particle with an epitope that was recognized by a participant’s 

antibody was immunoprecipitated (Phage-IP) and the encoding DNA barcode was then 

sequenced (Fig. 1A). We used a case-control design of the Maryland (NCI-UMD) cohort for 

the discovery of viral exposure profiles. The inclusion and enrollment of the study subjects 

are outlined in Suppl. Fig. S1A, following the CONSORT guideline (Schulz et al., 2010) 

(Suppl. Table S1A). For the NCI-UMD cohort, VirScan phage-IP products yielded 0.5–5 

million single-end reads per serum sample, with mean mapped read matching accuracy of 

0.93 (Fig. 1B). A total of 30,033 viral epitopes were significantly enriched with a -log10(p-

value) greater than the reproducibility threshold of 2.358, which was determined based on 

both replicates (Fig. S1B–C). It was noted that the composition of the viral types at the viral 

taxonomic level showed small yet noticeable differences between the obtained Phage-IP 

products and the library input (Fig. S1D–E), indicating a measurable difference between 

patients-derived data and the original input. When assessing viral richness among healthy 

volunteers as a population control (PC), chronic liver disease (CLD) patients as at-risk (AR), 

and HCC, we found that the number of detected viral infections increases initially with the 

sample size but reaches saturation at a sample size of 200 or more (Fig. 1C). We detected a 

median of 7 species of virus per sample, with four individuals showing cross-reactivity to 

more than 20 virus species (Fig. 1D). Overall, the number of viral species was similarly 

distributed among PC, AR, and HCC (Fig. 1D), indicating no bias in the landscape of overall 

viral exposure profiles between these groups. The abundance of the most prevalent viral 

species, including human herpesvirus 4 (EBV) and human herpesvirus 5 (CMV), was 

similar in our study populations to what was reported in other populations (Fig. 1E, Suppl. 

Table S1B) (Xu et al., 2015), and is consistent with previous epidemiology reports (Ho, 

1990; Straus et al., 1993). However, the HCV infection rate (26%) in our study was 

relatively high, which is explained by the high rates in AR (48%) and HCC (39%) (Suppl. 

Table S1B, Suppl. Fig. S2). Intriguingly, we detected a wide range of unique viral epitopes 

for each viral species that were recognized among different participants, indicating that B-

cell antigenicity to the same viral species is rather diverse among the participants (right 

panel in Fig. 1E, Suppl. Fig. S2).

To further assess the quality of VirScan, we compared VirScan results with available medical 

chart entries for HCV, HBV, and HIV testing results and found that VirScan had 45%, 47%, 

and 70% specificity in detecting HCV, HBV, and HIV, respectively, when compared to these 

medical record data (Fig. 2A). In contrast, its sensitivity was 84% for HCV, 48% for HBV, 

and 73% for HIV. It should be noted that a majority of viral status data from medical charts 

are unknown or missing (Suppl. Table S2), which makes this comparison suboptimal. We 

also examined epitope enrichment of HCV1b, a major viral subtype associated with HCC 
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(Bruno et al., 2007). An increase in peptide enrichment, corresponding mainly to the core, 

NS4 and NS5A of HCV1b, was consistently observed among AR and HCC when compared 

to PC, which could be due to a high B-cell antigenicity of the epitopes as indicated by a 

prediction score (Fig. 2B). We also examined the presence of HIV and other viruses known 

to have co-infection with HIV (Chang et al., 2013; Echavarria, 2008; Stover et al., 2003; Xu 

et al., 2015). Consistently, we found an increased co-infection prevalence for HIV with 

human herpesvirus 5, human adenovirus C, human adenovirus D, influenza B virus, human 

herpesvirus B and HBV at false discovery rate FDR < 0.05 (Fig. 2C). Taken together, the 

above results revealed that VirScan is a reliable method to capture a broad spectrum of viral 

exposures with a simple serological assay.

HCC-associated viral exposure signature (VES)

We applied a gradient boosting approach to search for the best-fit virus composition that can 

discriminate HCC from PC (Fig. 3A). Using 10-fold cross validation and 1,000 random 

permutations first where 90% of samples were used for training and remaining 10% of 

samples were used as an independent validation, we found that a viral exposure signature 

(referred to as VES) can significantly discriminate HCC from PC with Area under the Curve 

(AUC) values above 0.9 and 0.7 for training and cross validation, respectively (Fig. 3B). 

This signature consisted of unique epitopes corresponding to 61 viral strains (Fig. 3C). 

Among them, 18 viral strains were positively associated, while the remaining viruses were 

negatively associated, with HCC. A total of 11 HCV strains, including unique variants such 

as 3b or Taiwan 1b, were among the main contributing viruses in the signature. This 

observation was not surprising since 39% of HCC cases from this cohort were HCV 

positive. We also found that herpesvirus 5, HDV and influenza virus strains H1N1 and 

H3N2 were enriched in the HCC group. In contrast, 43 viruses, such as human respiratory 

syncytial virus and human rhinovirus 23, were preferentially depleted in the HCC group 

(Suppl. Table S3A, Fig. 3C). Weighed VES scores of the 61 viral strains differed 

significantly between HCC and PC (p < 0.0001), as well as between HCC and AR (p < 

0.0001), which was not included for initial signature discovery, and also between AR and PC 

(p < 0.0001) (Fig. 3D). There was a significant increase of the VES score among PC, AR 

and HCC (p-trend < 0.0001), suggesting that VES was positively linked to 

hepatocarcinogenesis. We performed phylogenetic analysis of the reactive epitopes of the 61 

viral strains to determine similarity among these HCC-related viruses (Fig. 3E). To search 

common reactive viral epitopes either enriched or depleted in HCC, we restricted viral 

epitopes that rank the top for its association with HCC. These viruses can be divided into 

eight main branches where different HCV epitopes are clustered together with other viral 

epitopes, with an exception of cluster #6 that contains 6 HCV variants (out of 12 viruses) 

(Fig. 3E, Suppl. Table S3B). In general, there was no clear enrichment within each branch 

for increased or decreased viruses, suggesting varying viral epitopes involved in 

immunoreactivity are commonly shared among HCC.

Since a majority of HCC patients has an evidence of chronic liver diseases, to avoid this 

confounding variable, we also compared AR to HCC using the same gradient boosting 

approach. We found that an AR vs HCC VES can significantly discriminate HCC from AR 

or PC with AUC values similar to VES for training and cross validation (Suppl. Fig. S3A–
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B). A majority of these VES-related viral strains overlap (Suppl. Fig. S3C). To further test 

the robustness of VES, we performed 60/40 split where 60% of cases were used for VES 

discovery while the remaining 40% of cases were used for an independent prediction. We 

performed 1000 permutations of the split to establish the confidence interval. Again, we 

found similar VES with a mean of AUC 0.7 for prediction (Suppl. Fig. S3D–G). 

Collectively, these results indicate that a VES consisting of a certain set of viral epitopes is 

relatively stable and robust in discriminating HCC from AR or PC. Given a limited number 

of HCC cases in the NCI-UMD cohort, we decided to keep the original VES for further 

analysis.

Phenotype-genotype association with VES

To determine if the host genetic background may be linked to VES, we performed a 

genome-wide association study (GWAS) in the NCI-UMD cohort, as this approach may help 

to identify genetic variants susceptible to viral infection and cancer (Fumagalli et al., 2010; 

McKay et al., 2017; Pharoah et al., 2013). After quality assessment of genomic data using 

genetic quality control measures, 849 participants (PC=402; AR=323; HCC=124) were 

included in the analysis. Following the removal of mono-allelic SNPs and the ones that 

deviate away from Hardy-Weinberg equilibrium, we performed an association test for all the 

remaining SNPs. To further assess the quality of our GWAS data, we determined whether 

there was an association between a SNP, rs12979860 in IL28B and HCV infection as its 

favorable genotype CC has been shown to be associated with better HCV treatment response 

or natural clearance. We found that rs12979860-CC was significantly associated with HCV 

Genotype 3 with Odds Ratio 2.74 (95% CI 1.14–7.97) in a dominant model manner (Suppl. 

Table S4A). Furthermore, we looked into the SNP associated with 375 epitopes abundances 

of HCV Genotype 2 and 3. We found that the CC allele is associated with a decreased 

abundance of core epitopes but an increased abundance of NS5B epitopes in the HCV 

genome (Suppl. Fig. 4A and Suppl. Table S4B), consistent with a recent study (Ansari et al., 

2017). To assess VES-associated SNPs, HCC and PC groups were combined and then 

divided into two groups based on dichotomization of VES scores. In the associated quantile-

quantile plots (Suppl. Fig. S5B), a wider spread with small differences in allele frequencies 

was evident with increased slope of the line. PCA analysis based on genotyping revealed 

differences in ethnicity (Suppl. Fig. S5C). Manhattan plot revealed significant SNPs between 

the high- and low-VES score groups (Fig. 4A). Three SNPs, namely rs34725101, rs4483229 

and rs16960234, located in three different genomic regions corresponding to the RHOA, 

EPB41L4B and CDH13 loci, respectively, showed associations with VES score groups at the 

p-value < 10−7 significance level (Fig. 4A and Suppl. Table S4C). Among them, rs16960234 

was further analyzed because both major and minor alleles of this variant could be detected 

in this cohort. We also found 127 SNPs with a high linkage disequilibrium (LD) (r2>0.6) for 

rs16960234, but none for rs34725101 and rs4483229 (Fig. 4B–C and Suppl. Table S4D). 

Seven of the high LD SNPs of rs16960234 showed the expression profile of CDH13 as 

expression quantitative trait loci (eQTL) in the genotype-tissue expression (GTEx) database 

(McKay et al., 2017). The CDH13 expression levels in the artery tibial tissues from the 

carriers with risk/protective G/G genotype of rs16960234 were significantly higher than the 

carriers with protective/risk genotype A/A (Fig. 4D). To obtain the genotypic effects of 

rs16960234 in HCC or AR, we generated logistic regression models to calculate the 
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genotypic odds ratio of this SNP in AR or HCC compared to PC (Fig. 4E). The G/G 

genotype of rs16960234 showed an increase in risk of HCC in AR compared to PC, 

OR=1.89 (95% CI 0.30–11.4), and the risk was higher and statistically significant for HCC, 

OR=7.22 (95% CI 1.30–40.0) (Fig.4E and Suppl. Table S4E). Consistent with the genotypic 

effect in HCC, the VES score also increased gradually from heterozygous A/G to G/G when 

compared with A/A (Fig. 4F). Thus, rs16960234 and its linked gene CDH13 may be 

associated with VES and contribute to disease risk.

Validation of the VES in a prospective HCC cohort

To further validate the VES identified above for its clinical utility, we analyzed VirScan 

profiles in the at-risk NIDDK cohort for HCC. This cohort consisted of 173 CLD patients 

who were enrolled for a natural history study of liver disease with a follow-up of up to 20 

years (Table 1, Suppl. Fig. S5A). Among them, 44 individuals developed HCC. The median 

number of viral species in the NIDDK cohort was 6, i.e. similar to the NCI-UMD cohort. 

This cohort contained serum samples collected at enrollment (baseline) and at various 

follow-up timepoints until a diagnosis of HCC by imaging was made (diagnosis). We then 

performed logistic regression analysis using VES. In order to capture their performance in 

either the NCI-UMD cohort or the NIDDK cohort, we generated receiver-operating 

characteristic (ROC) curves. Area under the curve (AUC) performance measures thus 

obtained were 0.89 (95% CI 0.86–0.92) in the NCI-UMD cohort (Fig. 5A). We observed 

that VES scores varied substantially among HCC cases in the NCI-UMD cohort with some 

having scores below the detection limit and others having quite high scores (Fig. 5B). 

Interestingly, patients with a high score had a significantly worse survival compared to 

patients with a low score or a score below the detection limit (logrank p=0.026 and p-trend = 

0.024) (Fig. 5C). Suppl. Table S5A shows the results from univariable and multivariable Cox 

model survival analysis on several clinicopathologic variables to clarify the independent and 

additional prognostic value of VES. Among patients from the NIDDK cohort, VirScan data 

were available for 40 HCC cases at baseline, 129 controls at baseline, 44 HCC cases at 

diagnosis and 106 controls at diagnosis. We found that the AUC values were 0.91 (95% CI 

0.87–0.96) at baseline (Fig. 5D) and 0.98 (95% CI 0.97–1) at diagnosis (Fig. 5E). The 

performance of VES was superior to alpha-fetoprotein (AFP), a known HCC diagnostic 

marker used in clinical practice. The DeLong test showed a significant improvement 

between VES and AFP (p-values 4×10−12 and 8×10−10 at baseline and diagnosis, 

respectively) (Fig. 5D–E). We also found similar trends (p-trend=0.19) between the levels of 

VES and overall survival among 44 patients in the NIDDK cohort (Suppl. Fig. S5B). In 

order to assess the time-dependent performance of VES to predict the onset of HCC, we 

analyzed 104 cancer-free controls and 40 HCC cases (from the NIDDK validation cohort) 

for which at least two timepoints were available.

In the context of survival modeling, an event was defined as the occurrence of an HCC 

diagnosis. Under this interpretation, censoring time was defined as the time difference 

between baseline and follow-up within the cancer-free control group, whereas event time 

was defined as the time difference between baseline and HCC diagnosis within the HCC 

group. Suppl. Table S5B shows results from a multivariable Cox regression model generated 

to predict the occurrence of HCC diagnosis based on VES scores at baseline, adjusted for 
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clinical prognostic variables. Moreover, we performed time-dependent ROC curve analysis 

(Bansal and Heagerty, 2019; Blanche et al., 2013) to assess the performance of VES over a 

range of landmark timepoints from 1 to 10 years relative to baseline (Fig. 5F, Suppl. Fig. 

S5C), which appears very robust and stable across this range. Interestingly, we found that 

patients who developed HCC had on average much higher VES scores at baseline and at 

different times of follow-up until HCC diagnosis, when compared to cancer-free at-risk 

patients who were followed up at a similar time interval without developing HCC (Fig. 5G). 

A statistically significant increase in viral exposures (p < 0.05) was observed only for 

patients who developed HCC over time during the surveillance period in the NIDDK cohort. 

It appears that HCC cases with a high viral exposure had a more aggressive disease than 

those with a low viral exposure, and that VES was a robust indicator of early onset of HCC 

in this prospective cohort. Furthermore, the prediction performance of AR vs HCC based on 

VES was superior to other clinical indicators from the patient charts, such as AFP, ALT, 

cirrhosis and platelet counts, as well as the combination of all key clinical variables, as 

shown by analyses of the NIDDK cohort at baseline (Fig. 5H), which agree qualitatively 

with those of NIDDK at diagnosis (Suppl. Fig. S5D) and the NCI-UMD cohort (Suppl. Fig. 

S5E). An association of VES and HCC was similarly found in both HCV-positive and HCV-

negative patients (Suppl. Table S5C).

DISCUSSION

Detecting cancer at an early stage, preferably before it is symptomatic, may provide an 

opportunity in achieving a cure and improving cancer-related mortality. Evidence suggests 

that earlier detection of cancer may potentially improve survival for some cancer types such 

as cervical and colon cancers. A conventional approach is to develop biomarkers specific for 

cancer cells in order to determine cancer early diagnosis. CancerSEEK is an emerging 

platform with a good sensitivity and specificity to clinically-detected multiple cancer types 

by profiling circulating cell-free DNA (ctDNA) for driver mutations presumably shed from 

tumor cells (Cohen et al., 2018). However, a recent study offers a cautionary note using 

cancer gene panels in ctDNA because of its high false positive rate among healthy 

individuals (Liu et al., 2019a). Molecular and biological heterogeneity of cancer cells 

contributed by complex etiological landscape creates a dilemma as how best to design 

cancer-specific diagnostic panels effective for early cancer detection. As such, a continuous 

debate has been carried out in recent decades for many malignant diseases including HCC as 

to whether available methods are adequate in achieving this goal (Sherman et al., 2012; 

Shieh et al., 2016).

HCC is a unique malignancy in which we know most of the major causative etiologies 

(Wang and Thorrgeirsson, 2014). However, defining biomarkers specific for HCC cells has 

been challenging because of its complex genomic landscape with extensive intratumor and 

intertumor heterogeneities. Are there common features shared among HCC patients to be 

used as a surrogate for early detection? An emerging concept is that an interplay between 

viral infection and host genetic background is crucial for maintaining virome homeostasis or 

causing human disease (Virgin, 2014). In this study, we have attempted to assess how a 

history of viral exposures in an individual is associated with its risk to develop HCC. Using 

a synthetic viral scan technology (VirScan) with a simple blood test (Xu et al., 2015), we 
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found a VES that could discriminate HCC with a high confidence from at risk individuals or 

from healthy volunteers. Remarkably, this signature was able to identify individuals at a 

median follow-up year of 8.8 prior to a clinical diagnosis of HCC. Thus, our results may 

offer a sensitive tool applicable to the HCC surveillance program to improve early diagnosis.

The current study took the advantage of a simple tool to profile serological samples to link 

an individual’s history of viral infection and corresponding response to early onset of HCC. 

Our strategy was first to search VES using a case control design that include HCC cases as 

well as at-risk individuals with chronic liver diseases and healthy volunteers matched by age, 

sex and race. A VES that can discriminate HCC from at-risk and healthy individuals was 

then validated using a prospective cohort of sequentially enrolled at-risk patients who were 

followed up for the development of HCC. Interestingly, the VES consists of known HCC 

etiologies such as HCV, HBV and HDV, but also includes other viruses such as EBV 

(HHV-4), CMV (HHV-5), Crimean-Congo hemorrhagic fever virus, cytomegalovirus, 

influenza A virus, among others. A few features are noted. First, HCV appears a major 

etiological factor driving VES but an extended heterogeneity in various HCV subtypes are 

noted in both NCI-UMD and NIDDK cohorts. Second, a set of viruses are enriched while 

many others including HBV are depleted in HCC patients. The nature of a potential impact 

of detected viruses in VES other than HBV, HCV and HDV on HCC pathogenesis is 

unknown at the present time. One plausible explanation is that some of the detected viruses 

and the levels of viral burden may reflect how individuals react to a history of viral exposure 

and how an individual’s intrinsic immune surveillance unique to linked genetic background 

may react to viral infection. Encouragingly, GWAS analysis revealed that several SNPs have 

a strong association with a history of viral infection. Among them, rs16960234 in CDH13 

has the strongest link to viral infection, a gene previously linked to cytomegalovirus 

infection (Borglum et al., 2014). Although the molecular mechanisms of CDH13 in human 

cancer are unknown, some studies suggest that its expression may be associated with 

tumorigenesis (Takeuchi et al., 2000). Whether this variant is linked to viral infection in 

general remains to be further validated.

It should be noted that VES discovery was based on a case-control study design with 150 

HCC cases. Given the nature of both molecular and clinical heterogeneity in HCC, we were 

unable to test all possible clinical covariables that may confound VES classification. To 

overcome this limitation, we used both 10-fold cross validation and 60/40 split approaches 

with random permutations to test the robustness of VES. Remarkably, various approaches 

yielded VES with similar viral compositions and HCC classification when compared to 

healthy volunteers or at-risk individuals. Moreover, the VES could independently classify 

HCC in a prospective at-risk population, confirming the robustness of VES in HCC 

diagnosis. These results suggest a clinical utility of VES as a surveillance tool to screen 

early onset of HCC, thereby increasing the opportunity for HCC patients receiving curative 

therapies. While an initial discovery of VES was validated using a prospective cohort with a 

longitudinal follow up, these cohorts were used retrospectively. It is important to develop a 

CLIA-certified diagnostic assay that consists of VES and then test its ability to reduce HCC 

mortality in a randomized trial, similar to the study of lung cancer (de Koning et al., 2020).
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The current method of VirScan is based on the phage immunoprecipitation sequencing 

(PhIP-Seq) technology that provides a powerful approach for analyzing antibody-repertoire 

binding specificities with high throughput and at low cost to all known human viruses 

(Mohan et al., 2018). How accurate and sensitive is the VirScan method? Comparing 

VirScan results (as predicted values of HCV and HBV status) against those from medical 

charts of the NCI-UMD cohort (as true values), we found that VirScan shows better 

accuracy (0.73, 95% CI 0.67–0.79), sensitivity (0.84, 95% CI: 0.77–0.89) and positive 

predictive value (0.80, 95% CI 0.76–0.84) for HCV than the accuracy (0.48, 95% CI 0.41–

0.54), sensitivity (0.48, 95% CI 0.40–0.57) and positive predictive value (0.55, 95% CI 

0.49–0.61) for HBV. HCV encodes a large polyprotein consisting of ~3,000 amino acids, 

which is cleaved co- and post-translationally into ten different proteins associated with 

intracellular membranes (Bartenschlager et al., 2013). Consistently, we found that the HCV 

antigen reactivity is largely overlapped with the predicted antigenicity score by the B-cell 

epitope prediction method coinciding with the epitopes to be presented at the surface of the 

cellular membrane. Consistent with early reports for the likelihood of coinfection of HIV 

and other viruses associated with AIDS and non-AIDS diseases (Lichtner et al., 2015; 

Slyker et al., 2013; Xu et al., 2015), we found evidence of coinfection between HIV and 

viruses such as HBV, herpesvirus 8 and adenovirus D, influenza B virus, adenovirus C, and 

herpesvirus 5 in patients enrolled in the NCI-UMD cohort. Interestingly, we found that 

history of HCV infection is prevalent among at-risk (48%), HCC patients (39%) and healthy 

volunteers (4%) who reside in Maryland. This is in contrast to an estimate prevalence of 

about 4.6 million persons (~1.5%) infected with HCV in the U.S. (Edlin et al., 2015). It 

should be noted that 7.5%−44% of incarcerated individuals and 4%−38% of hospitalized 

patients tested positive for HCV (Edlin et al., 2015), suggesting that the current surveys 

underestimate the prevalence of HCV infection. In contrast, while we observed 2.6% of 

healthy individuals in the NCI-UMD study showing evidence of HBV infection, more than 

800,000 chronic HBV carriers were detected during 2011–2012 in the noninstitutional U.S. 

population (Roberts et al., 2016). It seems that the current survey methods may 

underestimate the prevalence of HBV and HCV. This is important as both HBV and HCV 

are major causative factors for HCC. It should also be noted that the sensitivity and 

specificity of HBV detection by VirScan are relatively low. Due to a significant fraction of 

missing data for medical test results for HBV, we were not able to perform in-depth 

correlation analysis of HBV genotypes and VES-based viral loads. This is a limitation of 

this study. It is worth to speculate that cancer-prone individuals may perceive viral epitopes 

differently compared to healthy individuals. An in-depth correlative analysis between 

individual viral epitopes, a host’s TCR/BCR profile and genetic background may help to 

understand mechanisms of anti-tumor immunity. VirScan is a reliable method for profiling 

viral exposure collectively and is both scalable (regarding to sample throughput) and non-

invasive, which makes it amenable for surveillance and early detection of HCC.

In conclusion, we performed the largest study to date analyzing serological samples using a 

high throughput virome technology in patients with HCC and the first one, to our 

knowledge, utilizing VES as cancer biomarkers for early onset of HCC. The VES was 

validated in at-risk patients with a longitudinal design for HCC diagnosis. A prospective 
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randomized study with a large population is warranted to evaluate its utility in HCC 

surveillance.

STAR Methods

RESOURCE AVAILABILITY

Lead Contact—Further information and requests for resources and reagents should be 

directed to and will be fulfilled by the Lead Contact, Xin Wei Wang, xw3@nih.gov

Materials Availability—This study did not generate new unique reagents.

Data and Code Availability—The viral exposure profiles supporting the current study 

have not been deposited in a public repository because of the requirement for reporting only 

the aggregate data by the study protocol but are available from the corresponding author on 

request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Study Cohorts

NCI-UMD cohort.: To measure virome-host interplay, 899 participants were recruited; all 

were from the greater Baltimore area between 2003 and 2016. All participants voluntarily 

signed informed consent for collection and analysis of blood and cheek swab samples under 

Institutional Review Board (IRB)-approved protocols at the National Institutes of Health. 

Participants were classified into three groups, as follows: healthy individuals without any 

diagnosis of liver disease were classified as population controls (PC, n=412); patients 

diagnosed with chronic liver diseases due to hepatitis B virus (HBV), hepatitis C virus 

(HCV), hepatitis delta virus (HDV), aflatoxins from fungal contamination, alcohol, 

nonalcoholic fatty-liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH) were 

classified as at-risk (AR, n=337); and patients diagnosed with hepatocellular carcinoma 

were classified in the third group (HCC, n=150). All clinic measurements were covered by 

NCT0091375 (clinicaltrials.gov) with liver disease status as the enrollment criteria. Serum 

and matching buffy coat or cheek swab were collected at the time of interview.

NIDDK cohort.: This cohort consisted of 173 patients with chronic liver disease that 

included 44 HCC cases with 129 controls matched by liver disease etiology, age and sex. 

Patients were at-risk individuals for the development of HCC who were enrolled in a natural 

history protocol (clinicaltrials.gov number; NCT0001971) between 1991 and 2017 with 

longitudinal follow-up, at least annually with serologic testing and imaging, for up to 20 

years. Only cases with complete clinical and laboratory data and available longitudinal 

serologic samples were selected for analysis. The 44 HCC cases were sequentially identified 

out of 3,067 patients followed in this natural history study on chronic liver disease, and the 

controls were matched on a 2:1 basis as described above. HCC was diagnosed by radiologic 

imaging and/or liver biopsy as described by the American Association for the Study of Liver 

Disease (AASLD) practice guidelines (Marrero et al., 2018). For the purposes of this 

analysis, stored serum samples (−80°C) were analyzed at study entry (baseline) and at 

recurrent time points until the time of HCC diagnosis.
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All participants were volunteers with informed consent for collection and analysis of blood 

samples under the IRB-approved protocols at NCI and NIDDK.

Sample collection.: Sera were prepared from blood samples and then stored at −80°C for 

research (protocols previously listed) (n=899 from NCI-UMD, n=488 from NIDDK). Buffy 

coat and cheek swab samples were collected and stored at −80°C for research (protocols 

previously listed) (n=849 from NCI-UMD).

Study Oversight.: The study was approved by the NCI and NIDDK institutional review 

boards. All participants provided written informed consent.

METHOD DETAILS

VirScan T7 phage library proliferation.—The T7 phage library displays the virome 

peptide library. It was created to cover 56-amino acid (aa) peptide titling from all viral 

proteins with 28-aa overlap, which has been published previously2. The T7 library was 

proliferated using BLT5403 E.coli. Briefly, to keep the diversity of phage-displayed libraries 

during T7 phage proliferation, the agar plates were used as isolated compartments of the T7 

phage library with M9LB/Ampicillin with for 3 to 4 hr. The plates were checked at every 20 

minutes after 2.5 hours until the plates were just cleared, so that the final phage titer was 

high and also maintain the heterogeneity of the phage library. To elute the phage, each plate 

was covered with 10 ml of Phage Extraction Buffer and placed on a rocking platform at 4°C 

overnight. The phage library was harvested by tipping the plate slightly. Combine the 

extraction buffer from all the plates in several Falcon tubes. 0.5 ml chloroform was added to 

each 50 ml Falcon tube and gently mixed. The tubes were centrifuged at 4500 rpm for 15 

min to clarify the lysate and transfer the supernatant to a sterile bottle. DMSO was added to 

final volume of 10% to the supernatant. The expanded library was aliquot and snapped 

freeze in liquid nitrogen. Then the expanded library was stored in −80°C freezer. The titer of 

the amplified library was determined by plaque assay.

Library Quality Control.—The library was sampled and lysed at 95C for 10min. After 

two rounds of PCR were performed to amplify and index the lysed bacteriophage DNA 

product. After gel extraction, the size and quality of libraries were assessed on a Bioanalyzer 

instrument from Agilent. The DNA samples were sent for sequencing. Then, the sequencing 

was done at Sequencing Facility - Illumina (CCR) using 50bp single round sequenced the 

DNA base read cycle on Illumina HiSeq 4000 platform (1X50 bp) obtained ~100 million to 

200 million reads per lane (around 1,000,000 reads per sample). Total coverage rate is more 

than 99.99% of designed peptides displayed in T7 phage library.

VirScan PhIP-seq.—We performed phage immunoprecipitation and sequencing by using 

a slightly modified version of previously published PhIP-Seq protocols (Mohan et al., 2018; 

Xu et al., 2015). First, 96-deep-well plates were blocked with bovine serum albumin in 

TBST overnight on a rotator at 4°C. The diluted 1ml bacteriophage library were added in 

each blocked well. Serum samples, containing 2mg IgG, were mixed with the bacteriophage 

library. Two technical replicates for each sample were set up. After overnight rotation as the 

incubation, protein A and protein G Dynabeads were added to each well. With another 4-
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hours incubation on a rotator at 4°C, with a 96-well magnetic stand, the beads were washed 

for three times with 400 ml of PhIP-Seq wash buffer. Next, the beads were resuspended in 

water and adhered phages were lysed at 95°C for 10 min. The blank PBS samples instead of 

serum were also set up as negative controls on each plate. Two rounds of PCR were 

performed to amplify and multiplex on the lysed bacteriophage DNA product. After the 

second round of PCR, PCR products were pooled equimolar amounts of all 192 samples for 

gel extraction. After gel extraction, the size and quality of libraries were assessed on a 

Bioanalyzer instrument from Agilent. The DNA samples were aliquot and stored at −80°C 

until sequencing. Then, the sequencing was done at Sequencing Facility - Illumina (CCR) 

using 50bp single round sequenced the DNA base read protocol on Illumina HiSeq 4000 

platform (1X50 bp) obtained ~100 million to 200 million reads per lane (around 1 million 

reads per sample). Raw data from Illumina HiSeq 4000 platform was processed by 

BCL2FASTQ2 for demultiplexing and converting binary base calls and qualities to fastq 

format. The fastq files were mapped to original virome peptide reference sequences by using 

Bowtie program. Two sequencing samples were cut off from next-step analysis.as their reads 

were less than 30,000. The initial informatics and statistical analysis were performed by 

using a slightly modified version of the previously published technique (8, 10). Briefly, the 

scatter plots of the –log10(p-values) and a sliding window of width 0.005 from 0 to 2 across 

the axis of one replicate were used. We found that the distribution of the threshold –log10 

(p-value) was centered around a mode of ~2.358 (Suppl. Fig. S1B). We eliminated the 593 

hits that came up in at least 3 of the 22 immunoprecipitations with PBS beads alone blank 

sample. We also filtered out any peptides that were not enriched in at least two of the 

samples. A threshold number of hits per virus was set based on the size of the virus. If the 

hit shared a subsequence of at least 7 aa with any hit previously observed in any of the 

viruses from that sample, that hit was considered to be from a cross-reactive antibody and 

would be ignored for that virus. The peptide hits, which do not share any linear epitopes, 

were summed to be strain and species score data. The final score was compared for each 

virus to the threshold for that virus to determine whether the sample is positive for exposure 

to that virus. The raw count data were calculated based on – log10(p-value)=2.358 cutoff.

Predicted antigenicity score.—Peptide sequence of HCV1b from PhIP is used to 

generate the prediction score based on bepipred linear epitope prediction for B-cell.

DNA sample extraction.—DNA extraction from buffy coat or lymphocyte samples was 

performed following the manufacturer’s instruction (DNeasy Blood & Tissue Kit, Qiagen). 

The eluted DNA was stored at −20°C for further analysis.

Genotyping and GWAS analysis.—Illumina OmniExpress was applied for the SNP 

array. Genotyping was performed on 200 ng of genomic DNA using Illumina Infinium HTS 

Global Screening Arrays on an Illumina iScan system at the Genomic Share Resource of 

University of Hawaii Cancer Center. The raw genotyping data were processed by Illumina 

GenomeStudio software 2.0. Quality control was performed using PLINK version 2.0 

(http://www.cog-genomics.org/plink/2.0). Samples with a genotyping call rate<95% were 

removed and 849 individuals remained. SNPs with mono-allelic and MAF (Minor Allele 

Frequency) <0.05, HWE (Hardy-Weinberg equilibrium) <10–4, and call rate<95%, were 
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excluded. After further considering the ones in high linkage disequilibrium, we obtained 

roughly 500,000 SNPs for the association study. Therefore, the suggestive genome-wide 

significant p-value threshold in current study was set at 10−7 as 0.05/5×105 using Bonferroni 

correction. We identified three and 849 individuals remained. SNPs with mono-allelic and 

MAF (Minor Allele Frequency) <0.05, HWE (Hardy-Weinberg equilibrium) <10–4, and call 

rate<95%, were excluded. After further considering the ones in high linkage disequilibrium, 

we obtained roughly 500,000 SNPs for the association study. Therefore, the suggestive 

genome-wide significant p-value threshold in current study was set at 10−7 as 0.05/5×105 

using Bonferroni correction. We identified three independent loci in three regions were 

associated with virus feature phenotype at P < 10−7 using PLINK. LocusZoom was used to 

plot regional signals associated with phenotype with LD and recombination rate calculated 

from 1000 Genomes. LD structure of signals were further investigated with Haploview. A 

linear regression with additive model was applied to estimate the genotypic effect of SNP 

contributed to the disease or phenotype.

ELISA assay.—IgG, IgA and IgG4 levels in serum were measured using human ELISA 

kits (Bethyl and Thermo Fisher) according to the manufacturers’ instructions. The ELISA 

results were obtained using a microplate absorbance reader from (Bio-Rad).

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical Methods.—To identify differences between populations, Xgboost was used to 

calculate the significance of association of virus exposure traits with HCC versus PC.

XGBoost.—XGBoost is a recently developed software, which implements a machine 

learning approach of regression and classification using ensemble learning with gradient tree 

boosting (https://xgboost.readthedocs.io/en/latest/). It is designed to increase the scalability 

and acceleration of optimized computation for practical use. XGBoost includes three types 

of parameters: general, booster and task. Each of these types has several hyperparameters, 

such as maximum depth of the regression trees, number of weak learners, learning rate, 

regularization, etc, that need to be tuned. We tuned these parameters using a grid search to 

maximize the mean AUC value computed from 10-fold cross validation on the training data. 

After finding the optimal values of the hyperparameters, we constructed the model using the 

following main parameter setting: max_depth =3, eta =0.1, subsample=1, colsample_bytree 

=0.5, and min_child_weight=1. Then Xgboost was applied to the entire data set with 200 

boosting iterations.

To avoid over-fitting, we applied several approaches according to the document of XGBoost. 

First, we controlled model complexity, and adjust parameters max_depth, min_child_weight 

and gamma. Second, we added randomness to make training robust to noise and adjust 

parameters, subsample and colsample. Third, we introduce early stopping to training models 

to avoid overfitting. It stops the training procedure once the performance on the test dataset 

has not improved after a fixed number of training iterations. It avoids overfitting by 

attempting to automatically select the inflection point where performance on the test dataset 

starts to decrease while performance on the training dataset continues to improve as the 

model starts to overfit. We set to stop model training at least 20 rounds when no 
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improvement was observed in AUC value was set (early_stopping_rounds=20). The best 

iteration model was then used as the final model. XGBoost automatically conducts feature 

selection and calculates the importance for each feature. We tested multiple subsets of the 

features to achieve the highest AUC and decided to take all the output features for further 

analysis. For each training and testing sample, we also generated a virus feature score based 

on the features we selected implemented in the XGBoost classification prediction.

Phylogenetic tree.—The full protein library sequences of 61 feature virus species were 

obtained from VirScan reference library and stored in fasta format. A multiple sequence 

alignment tool, Clustal Omega (https://www.ebi.ac.uk/Tools/msa/clustalo/) was used to 

generate alignments with default parameters. The phylogenetic trees were then imported to 

ITOL (https://itol.embl.de/itol.cgi) for further visualization and labelling in normal display 

mode.

Additional Statistical Methods.—All analyses were conducted in R and GraphPad 

Prism 7 (La Jolla, CA) used for statistical analyses. Data are presented either as means +/− 

s.e.m. or medians of continuous values and were analyzed by a two-sided Student’s t-test or 

Mann-Whitney test used for comparison of two groups, respectively. Fisher’s exact X2 t-test 

was used to calculate statistical significance of categorical values between groups. Two-tail 

P values with no more than 0.05 were considered significant. Linear regression was used to 

determine the correlation between two different variables.

Viral feature level, clinical outcome and ROC curve.—All HCC patients were 

classified into high, low or below viral feature score groups based on viral feature levels. 

Kaplan-Meier estimates of overall survival were estimated for each group and compared 

using the log rank test. Hazard ratios and 95% confidence intervals were calculated using 

univariate and multivariate Cox proportional hazards models to assess associations between 

different viral feature level along with several clinical factors. The ability of clinical and 

viral features in predicting HCC was assessed by computing receiver operating characteristic 

(ROC) curves using the logistic regression in R. Area under the curve (AUC) values were 

calculated for these variables. Comparison of ROC curves obtained from different feature 

sets was assessed by the DeLong test.

Survival modeling and time-dependent ROC assessment.—Cox regression was 

performed using the R package survival (version 3.1–8). In order to analyze time-dependent 

ROC curves and corresponding AUC values, the R package timeROC (version 0.4)(Blanche 

et al., 2013) was used.

Participants and VirScan analysis.—The NCI-UMD (Maryland) cohort consisted of 

899 sequentially enrolled participants (clinicaltrials.gov number: NCT0091375) and 

included 150 hepatocellular carcinoma (HCC) cases, 337 at-risk (AR) individuals and 412 

population control (PC) healthy volunteers matched by age and sex (Suppl. Table S1A). The 

NIDDK cohort (clinicaltrials.gov number; NCT0001971) consisted of 129 AR individuals 

without HCC and 44 AR individuals with HCC (Table 1).
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Highlights

• A host-virome infection map at epitope resolution of 1,072 people in the U.S.

• A history of viral exposure predicts liver cancer among at-risk populations

• A viral exposure signature identifies liver cancer prior to a clinical diagnosis

• GWAS uncovers genetic variants that link viral exposure signature to liver 

cancer
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Figure 1. Assessment of Viral Infection History in a Case-control and a Prospective Cohort Using 
VirScan.
(A) Schema of screening of a NCI-UMD cohort consisting of 899 serum samples (analyzed 

by VirScan) and 849 matching buffy coat or cheek swab samples (analyzed by GWAS) with 

integrated analysis across population groups, namely population controls (PC, n=412), at-

risk chronic liver disease cases (AR, n=337) and hepatocellular carcinoma cases (HCC, 

n=150); the resulting viral exposure signatures (VES) were validated in a prospective 

NIDDK cohort with cancer-free (n=129) and HCC (n=44) patients. (B) Sequencing read 

statistics of VirScan with mean matching accuracy of 0.93. (C) Rarefaction plot showing the 
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viral species richness detected in PC, AR and HCC groups. (D) Raincloud plot showing the 

number of viral species in each individual across populations. (E) Left panel: viral infection 

prevalence across all samples. Right panel: number of unique epitopes per sample; vertical 

bars represent mean values.
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Figure 2. Comparison of VirScan with Medical Charts, Antigenicity of HCV1b and HIV 
Coinfection Viruses.
(A) Contingency matrices comparing HCV, HBV and HIV detection with VirScan against 

viral detection laboratory tests reported in the patient medical charts. For the purpose of 

computing binary classification test statistics, clinical results were considered true values 

and VirScan results were considered predicted values. (B) Left panel: Heatmap showing 

HCV proteomic enrichment among PC, AR and HCC groups. Each row represents the 

significant peptide tiling. Each column is a sample. The proteomic location of the tiling 

peptides is annotated with a vertical bar on the left. The top-most horizontal annotation bar 

indicates patients grouped as PC, AR and HCC, as indicated. Second from the top, the 
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annotation bar indicates positive HCV species based on VirScan data. The color intensity of 

each cell corresponds to the scaled - log10(p-value) measure of significance of enrichment 

for a peptide in a sample (where greater values indicate stronger antibody response). Right 

panel: B-cell epitope prediction score for each peptide. (C) Coinfection viral status in HIV 

positive versus HIV negative cases. Asterisks denote false discovery rate FDR < 0.05.
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Figure 3. Extraction of Predictive VES Signatures Associated with HCC.
(A) VES are identified using the Xgboost machine learning algorithm. The flow chart shows 

the procedure to compare HCC versus PC viral profiles in training and cross validation sets. 

The resulting model provides scored results leading to a predictive VES score for each 

individual in the PC, AR and HCC groups. (B) Gradient boosting plot showing the area 

under the curve (AUC) value of training and cross validation sets. Gradient boosting stops at 

round 108 (vertical line) to avoid overfitting. (C) Bar plot showing the VES identified by 

comparing HCC with PC using Xgboost in the NCI-UMD cohort. Red bars denote an 
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increase of viral infections in HCC versus PC, whereas blue bars represent a decrease. (D) 

Predictive VES score among PC, AR and HCC groups (**** two-tailed Mann-Whitney test 

p-value < 0.0001). (E) Phylogenetic analysis of the 61 viral strains, which results in 8 well-

defined branches.
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Figure 4. Genome-wide Scan Identifies Specific Genetic Variants Linked to VES. Related to 
Figure 3, Figure 5 and Genotyping and GWAS analysis in STAR Method section.
(A) Manhattan plot showing the detected genetic variants from GWAS associated with the 

viral featural phenotype of the NCI-UMD cohort. Annotated names of gene loci with P-

value less than 10−7 (B) Locus Zoom plot showing the LD structure one of the lead SNPs, 

rs16960234, around the region of CDH13 and RP11-543N12.1. (C) Heatmap showing the 

high linkage disequilibrium (LD) SNPs of rs16960234 from 1000 Genomes database 

(R2>0.6). The density of the heatmap indicates the r2 value of the correlation. The labeled 

SNPs are the ones with eQTL available. (D) The eQTL of CDH13 in tissue artery tibial 
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across genotypes of SNP rs1690234 from GTEx database. (E) The genotypic Odds Ratios 

(OR) of rs1690234 among AR (black) and HCC (red) relative to PC. (F) VES score fold 

changes (FD) in genotypes AA, AG and GG of rs1690234 based on VES among HCC 

relative to PC.
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Figure 5. Assessment of VES Signatures: Predictive Performance and Association with Clinical 
Outcomes.
(A) Receiver operating characteristic (ROC) curves for the NCI-UMD cohort at HCC 

diagnosis. Area under the curve (AUC) values are shown for PC vs HCC prediction, as well 

as for AR vs HCC prediction, as indicated. (B) Feature score distributions of NCI-UMD 

subcohorts grouped by VES level, which were classified as below (threshold=0.50, dashed 

line), low and high. Low and high VES levels are separated by the median among patients 

with VES above the threshold. (C) Kaplan-Meier survival plots for NCI-UMD subcohorts 

grouped by VES level. (D, E) ROC curves for the NIDDK validation cohort at HCC baseline 
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and diagnosis, respectively. AUC values are shown for alpha-fetoprotein (AFP), VES, and 

the combination of both. (F) Time-dependent AUC showing the landmark timepoints 

performance of VES from 1 to 10 years relative to baseline. (G) Baseline and follow-up viral 

feature scores of the NIDDK cancer-free group compared with those of high-risk patients 

that ultimately developed HCC. (H) AUC values corresponding to predictions based on 

clinical indicators from patient charts compared with those based on VES, as well as those 

based on the combination clinical and VES for the NIDDK cohort at baseline.
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Table 1.

Clinical Characteristics of the Patients.*

Variable Without HCC (N=129) With HCC (N=44) P Value

Age – year 0.12

 Median (Range) 51 (23–79) 54 (23–79)

 Missing data 1 0

Sex — no. (%) 1.00

 Female 40 (31.0) 14 (31.8)

 Male 89 (69.0) 30 (68.2)

 Missing data 0 0

Race — no. (%) 0.69

 European American 63 (48.8) 22 (50.0)

 African American 29 (22.5) 12 (27.3)

 Asian American 26 (20.2) 8 (18.2)

 Other 2 (1.6) 0

 Missing data 9 (7.0) 2 (4.6)

HCV only — no. (%) 98 (76.0) 27 (61.4) 0.61

HBV only — no. (%) 18 (14.0) 7 (15.9)

HBV + HCV — no. 2 (1.6) 1 (2.3)

HBV + HDV — no. 4 (3.1) 3 (6.8)

Others not hepatitis 7 (5.4) 6 (13.6)

Cirrhosis — no. (%) 15 (11.6) 28 (63.6) <0.001

 Missing data 2 (1.6) 4 (9.1)

Alanine aminotransferase — no. (%) < 0.01

 Elevated (>50 U/L) 84 (65.1) 28 (63.6)

 Normal (≤50 U/L) 45 (34.9) 16 (36.4)

Alpha-fetoprotein — no. (%) <0.001

 >20 ng/mL 9 (7.0) 21 (47.7)

 ≤20 ng/mL 120 (93.0) 23 (52.3)

 Missing data 0 0

Survival (months)

 Median NA 15.2

 Range NA 0.07–131.8

 Missing data (%) NA 1 (2.3)

*
The clinical characteristics of the 173 at-risk patients in the prospective NIDDK cohort.
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