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Abstract

Deep convolutional neural networks (CNNs) trained on regulatory genomic sequences tend to 

build representations in a distributed manner, making it a challenge to extract learned features that 

are biologically meaningful, such as sequence motifs. Here we perform a comprehensive analysis 

on synthetic sequences to investigate the role that CNN activations have on model interpretability. 

We show that employing an exponential activation to first layer filters consistently leads to 

interpretable and robust representations of motifs compared to other commonly used activations. 

Strikingly, we demonstrate that CNNs with better test performance do not necessarily imply more 

interpretable representations with attribution methods. We find that CNNs with exponential 

activations significantly improve the efficacy of recovering biologically meaningful 

representations with attribution methods. We demonstrate these results generalise to real DNA 

sequences across several in vivo datasets. Together, this work demonstrates how a small 

modification to existing CNNs, i.e. setting exponential activations in the first layer, can 

significantly improve the robustness and interpretabilty of learned representations directly in 

convolutional filters and indirectly with attribution methods.

Introduction

Convolutional neural networks (CNNs) have become increasingly popular in recent years for 

genomic sequence analysis, demonstrating state-of-the-art accuracy accross a wide variety of 

regulatory genomic prediction tasks1–4. However, it remains a challenge to understand why 

CNNs make a given prediction5, which has earned them a reputation as a black box model. 

Recent progress to explain model predictions has been driven by attribution methods – such 
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as saliency maps6, integrated gradients7, DeepLIFT8, DeepSHAP9, and in genomics, in 
silico mutagenesis2,10 – among other interpretability methods11–15. Attribution methods are 

of special interest in genomics because they provide the independent contribution of each 

input nucleotide toward model predictions, a technique that naturally extends itself to 

scoring the functional impact of single nucleotide variants. In practice, attribution “maps” 

can be challenging to interpret, requiring downstream analysis to obtain more interpretable 

features, such as sequence motifs, by averaging clusters of attribution scores16.

In genomics, an alternative approach to gain insights from a trained CNN is to visualise first 

layer filters to obtain representations of “salient” features, such as sequence motifs. 

However, it was recently shown that training procedure17 and design choices18,19 can 

significantly affect the extent that filters learn motif representations. For instance, a CNN 

employing a large max-pool window size after the first layer obfuscates the spatial ordering 

of partial features, preventing deeper layers from hierarchically assembling them into whole 

feature representations18. Hence, the CNN’s first layer filters must learn whole features, 

because it only has one opportunity to do so. One drawback to these design principles is that 

they are limited to shallower networks. Depth of a network significantly increases its 

expressivity20, enabling it to build a wider repertoire of features. In genomics, deeper 

networks have found greater success at classification performance3,4,21. Evidently, there 

seems to be a trade off between performance and interpretability that goes hand-in-hand 

with network depth.

One consideration for CNN filter interpretability that has not been comprehensively 

explored thus far is the activation function. Here we perform systematic experiments on 

synthetic data that recapitulate a multi-class classification task to explore how first layer 

activations affect representation learning of sequence motifs. For common activation 

functions, we find the extent that first layer filters learn motif representations is highly 

dependent on the CNN’s architecture. Strikingly, we find that an exponential activation 

consistently yields robust motif representations irrespective of the network’s depth. We then 

investigate how CNN design choice influences the efficacy of attribution methods. 

Surprisingly, we find CNNs that make more accurate predictions on held-out test sequences 

do not necessarily recover biologically meaningful representations with attribution methods. 

One consistent trend that emerges from this study is that CNNs that learn robust 

representations of sequence motifs in first layer filters tend to yield better efficacy with 

attribution methods. We demonstrate that these results generalise to real DNA sequences 

across several in vivo datasets.

Exponential activations lead to interpretable motifs

The rectified linear unit (relu) is the most commonly employed CNN activation function in 

genomics22. Alternative activations include sigmoid, tanh, softplus23, and exponential linear 

unit (elu)24 (Supplementary Table 1). Many of these activations scale linearly for positive 

inputs, with differences arising from how they deal with negative inputs (Fig. 1a). Unlike 

previous activations, we are intrigued by the exponential activation, because it provides a 

function that is bounded by zero for negative values and diverges quickly for positive values. 

Unlike relu or softplus activations, which also bound negative values to zero but scale 
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positive values linearly, the highly divergent exponential function, in principle, provides the 

sensitivity to amplify positive signal while maintaining low background levels. The inputs to 

the exponential function should be scaled to the sensitive region of the function – optimal 

scaling varies with the signal and background levels. By setting the activation to be a 

standard exponential function, the network can scale pre-activations to this threshold with 

first layer filters. Moreover, the linear behaviour of relu and softplus activations can be more 

permissive in the sense that if background is propagated through the first layer, then deeper 

layers can still build representations that correct for this noise. On the other hand, for a CNN 

with exponential activations in the first layer and relu activations in deeper layers, if 

background noise is propagated through the first layer, then the rest of the network, which is 

scaled linearly, is ill-equipped to deal with such exponentially amplified noise. In this 

scenario, we anticipate a failure of training, which would be realised as poor classification 

accuracy. To be successful, the network must opt for a strategy to suppress background prior 

to activation and only propagate discriminatory signals, which we anticipate will lead to 

more interpretable first layer filters. For these reasons, we propose that the exponential 

activation should only be applied to a single layer of a deep CNN – the layer desired to have 

interpretable parameters, while employing traditional activations, such as a relu, for the other 

layers. For genomics, motif representations in first layer filters is highly desirable and hence 

is the ideal layer for exponential activations. In other applications, determining which layer 

should employ the exponential activation requires prior knowledge of the relevant scales of 

the features that are important. To the authors’ knowledge, a stand-alone exponential 

activation has not been used as an activation function in hidden layers of CNNs.

Exponential activations lead to improved motif representations.

To test the extent that CNN activations influence representation learning, we uniformly 

trained and tested various CNNs with different first layer activation functions on a multitask 

classification dataset from Ref.18, which we refer to as Task 1. The goal of Task 1 is to 

determine class membership based on the presence of transcription factor (TF) motifs 

embedded in random DNA sequences, where each TF motif represents a unique class. Using 

representation learning design concepts developed for CNNs with relu activations18, we 

explored 3 CNNs, namely CNN-2, CNN-50, and CNN-deep (see Methods). CNN-50 is 

designed with large max-pooling after the first of 2 convolutional layers to provide an 

inductive bias to learn “local” representations (i.e. whole motifs) in the first layer, while 

CNN-2 employs small max-pooling, which allows it to build “distributed” representations in 

a hierarchical manner by combining partial motifs learned in the first layer into whole 

representations in deeper layers. CNN-deep consists of 4 convolutional layers with small 

max-pooling, which is designed to build distributed motif representations.

The classification performances given by the area under the precision-recall curve (AUPR) 

on the held-out test set for Task 1 are more-or-less comparable across networks and 

activations (Supplementary Table 2). CNN-deep exhibits a slight overall edge while CNN-50 

yields a slightly lower performance, with tanh and sigmoid activations yielding the poorest 

classification. Tweaking the initialisation strategy could presumably improve the 

performance25 but was not explored here to maintain a systematic approach. To quantify 

how well representations learned in first layer filters match ground truth motifs, we 
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visualised first layer filters using activation-based alignments1,10 and employed Tomtom26 to 

quantify the fraction of first layer filters that yield a statistically significant match to ground 

truth motifs (Fig. 1b). The filters in CNN-50, which are designed to learn whole motif 

representations with relu activations, were also able to capture ground truth motifs with 

other activations, the exceptions being sigmoid and tanh activations, which was expected 

given their poor classification performance (Fig. 1c). On the other hand, the CNNs designed 

to learn distributed representations, CNN-2 and CNN-deep, were unable to do so for most 

activation functions, with the exception being the exponential activation, which consistently 

yielded improved motif matches both quantitatively (Fig. 1c) and qualitatively 

(Supplementary Figs. 1 and 2). Notably, 36.6% of the filters of CNN-2 with softplus 

activations have a statistically significant match to some motif in the JASPAR database 

despite the vast majority of these being irrelevant for Task 1 (Supplementary Table 2). This 

highlights a potential pitfall that arises from over-interpreting filters that match an annotated 

motif from a motif database. Together, this demonstrates that exponential activations yield 

interpretable filters for CNNs, irrespective of max-pooling size and network depth without 

sacrificing performance.

Although the unbounded behaviour of the exponential could make the CNN activations 

diverge, in practice, there were no obvious issues with training (Supplementary Fig. 3), with 

convergence times that are similar to CNNs with relu activations and stable gradients 

throughout (Supplementary Fig. 4). In addition, we found CNNs with exponential 

activations are robust to standard initialisation strategies27–30 (Supplementary Table 3) as 

well as over a large range of random normal initialisations with varying degrees of the 

standard deviation (Supplementary Table 4), albeit with decreased ability to learn robust 

motif representations for standard deviations that are far larger than what is typically 

employed (Supplementary Fig. 5).

Improved representation learning generalises to real DNA sequences.

We performed similar experiments on a modified DeepSea dataset2, truncated to include 

only sequences with a peak called in at least one of 12 ChIP-seq experiments corresponding 

to those in Task 1 (see Methods), using augmented CNNs – doubling the number of 

parameters in each hidden layer – to account for the increased complexity of features in real 

DNA sequences31. We refer to this analysis as Task 2. The classification performance 

follows similar trends as Task 1 (Supplementary Table 2), albeit with a larger gap between 

CNN-deep and the shallower CNNs. Moreover, filter comparisons confirm that employing 

exponential activations consistently lead to more interpretable filters both visually 

(Supplementary Fig. 6) and quantitatively (Fig. 1d) for all CNNs, albeit with an overall 

decrease number of matches to relevant motifs, i.e. motifs in the JASPAR database that are 

associated with each TF. Consequently, filters that are dedicated to other TFs, such as 

GATA1, CTCF, GATA1-TAL1, ATF4, among many others, were not included as a motif 

match, despite being learned consistently across all random initialisations (see 

Supplementary Data).
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Local function properties drive interpretability.

To understand the properties of the exponential activation that drive improved motif 

representations, we transformed sigmoid, tanh, and relu activations to emulate the 

exponential function locally near the origin (Supplementary Fig. 7, Supplementary Table 5). 

Indeed, these modified activations now yield comparable performance as the exponential 

activation for both synthetic sequences in Task 1 (Extended Data Fig. 1a) and real DNA 

sequences in Task 2 (Supplementary Fig. 8). As a control, we also modified the exponential 

activation to behave relu-like (Extended Data Fig. 1a). Since each modified activation can be 

decomposed to a shift- and a scale-transformation (Supplementary Table 5), we performed 

an ablation study, testing each transformation on its own. However, we could not identify a 

transformation that consistently worked well for all activations (Extended Data Fig. 1b). We 

also tested a relu activation modified to have a steep, linear slope of 400, we call super-relu, 

but found that high divergence alone does not lead to motif representations, resulting in 

performance metrics that closely resemble standard relu activations (Supplementary Table 

2). In addition, we introduced and varied a multiplicative scaling factor for the inputs to the 

exponential. We found that performance was robust near a scaling factor of 1 but degrades 

rapidly for deviations greater than a factor of 2 in either direction (Supplementary Table 6, 

Supplementary Fig. 9). Taken together, this suggests that the divergence of the activation 

function alone is not sufficient, but rather, its combination with a shift from the origin 

provides a strong inductive bias to learn motif representations.

Exponential activations suppress background.

To better understand how the exponential activation processes input data, we compared the 

pre- and post-activations in the first layer of CNN-deep before and after training 

(Supplementary Fig. 10). We found that standard initialisations yield a low activity in first 

layer neurons with exponential activations, and as training progresses, parameters are tuned 

to activate just a few neurons to large values while background is maintained to low values. 

By contrast, standard initialisations applied to relu activations result in activity across half of 

the neurons. Surprisingly, the distribution of post-activations changes only slightly after 

training, shifting the mode to have a slight negative bias. This suggests that in addition to up-

weighting signal, the CNN has to mainly down-weight the noise. During training, if the 

deeper layers learn to deal with noise, then there remains a low incentive to continue down-

weighting the noise in the first layer filters, which would result in less interpretable filters.

Scanning exponentially activated filters localises motifs.

Since exponential activations suppress background and propagate signal, the first layer filter 

scans may be used to footprint motif instances along a sequence. Indeed, the first layer filter 

scans of CNN-deep with exponential activations yield crisp peaks at locations along the 

sequence where motifs were implanted (Extended Data Fig. 1c). The gold standard for motif 

scans are PWMs32–34, which is a log-ratio of motif similarity given by the position 

probability matrix to background nucleotide levels (Extended Data Fig. 1d, middle row). 

Since we have ground truth for Task 1, we can quantify the motif localisation performance 

using the localisation AUROC (see Methods). Indeed, CNN-deep with exponential 

activations yield a localisation AUROC of 0.889±0.201, which is significantly greater than 
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with relu activations (0.391±0.331, errors represent the standard deviation of the mean 

across all test sequences). The localisation AUROC for the ground truth PWMs is 

0.884±0.252. This confirms that in ideal circumstances, i.e. knowing the ground truth motif 

and background frequencies, PWM scans are a powerful approach to footprint motifs along 

a sequence. In practice, motif activity may depend on flanking nucleotide context and can be 

nuanced from cell type to cell type35. Moreover, PWM performance is sensitive to the 

choice of background frequencies36. The appeal of CNNs is their ability to infer motif 

patterns and make predictions in an end-to-end manner.

Log-based activations actively suppress background.

Just as an exponential function provides a high sensitivity which the network can exploit to 

suppress background and propagate signal, a log2 function of a PWM provides a high 

sensitivity to scale down background while maintaining signal. Both approaches serve to 

improve the signal-to-noise ratio. Hence, we tried a standard natural log as an activation for 

first layer filters of CNN-deep, but we found model training was quite unstable, presumably 

due to the large negative values that arise close to zero. To remedy this, we incorporated a 

relu activation after the log function, which we call log-relu combined with a strong L2-

regularisation penalty of 0.2 (Supplementary Table 5). A strong L2-regularisation 

encourages parameters to stay close to zero, hence this provides a mechanism to drive 

background noise levels toward zero while maintaining signal above a value of 1, which 

adds a hefty L2 penalty that can only be outweighed by capturing discriminative patterns 

that minimises the loss, i.e. motifs. As a control, we applied the same L2-regularisation with 

CNN-deep with relu activations. The classification performance was accurate for both 

models (AUPR of 0.980±0.003 and 0.978±0.003 for log-relu and relu, respectively), but the 

motif representations were only interpretable for log-relu activations (Extended Data Fig. 

1e). Together, this demonstrates that activations that provide a high-sensitivity to scale 

signal/background can improve learning motif representations.

CNNs that learn robust motif representations are more interpretable with 

attribution methods

Although filter visualisation is a powerful approach to assess learned representations from a 

CNN, they do not specify how decisions are made. Attribution methods aim to resolve this 

by identifying input features that are important for model predictions. To understand the role 

that the activation function plays in the efficacy of recovering biologically meaningful 

representations with attribution methods, we trained two CNNs, namely CNN-local and 

CNN-dist, on a synthetic regulatory classification task that serves to emulate the billboard 

model for cis-regulation37,38. The goal of this binary classification task, which we refer to as 

Task 3, is to predict whether a DNA sequence contains at least 3 motifs sampled from a set 

of “core motifs” (positive class) versus motifs sampled from a background set (negative 

class). CNN-local is a shallow network with 2 hidden layers that is designed to learn 

interpretable filter representations with relu activations18, while CNN-dist is a deep network 

with 5 hidden layers that learn distributed representations of features. Since we have ground 

truth for which motifs were embedded and their positions in each sequence, we can test the 

efficacy of attribution methods by summarising the distribution of attribution scores at 
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sequence locations with the embedded motifs and the without the embedded motifs using the 

interpretability AUROC and the interpretability AUPR (see Methods).

Better accuracy does not imply better interpretability.

Classification performance as measured by area-under the receiver-operating characteristic 

curve (AUC) is comparable between CNN-dist and CNN-local, with a slight edge in 

performance favouring CNN-dist (Fig. 2a, Supplementary Table 7). Using attribution scores 

given by saliency maps, i.e. gradients of predictions with respect to inputs, we find that 

CNN-local yields a slightly higher interpretability AUROC compared to CNN-dist across 

most activations functions, with the exception of the exponential activation (Fig. 2b); while, 

CNN-dist yields a slightly better performance under the AUPR metric (Fig. 2c). Each metric 

describes slightly different aspects of the attribution scores. AUROC captures the ability of 

the network to correctly predict the embedded motifs, while penalising spurious noise. 

Hence, CNN-local is less susceptible to attributing positions that are not associated with the 

ground truth motifs (lower false positives). AUPR considers false negative rates, and so the 

improved performance here suggests that CNN-dist is slightly better at capturing more 

ground truth patterns, while CNN-local tends to miss some ground truth patterns. One 

limitation of this study is that we are only accounting for ground truth motifs that are 

implanted in randomised sequence, not the spurious motifs that arise by chance, which 

contributes to label noise.

Interestingly CNN-dist with softplus and linear activations yields higher classification 

performance relative to CNN-local, but significantly lower interpretability under both 

interpretability metrics (Supplementary Table 7). This counters the common intuition that 

improved predictive models should better capture feature representations to explain the 

improved performances and suggests instead that predictive performance does not 

necessarily imply reliable interpretability with attribution methods. This discrepancy 

between accurate predictions and model interpretability has also been observed in computer 

vision39. Strikingly, we find that exponential activations consistently lead to superior 

interpretability performance across all tested CNNs, both quantitatively (Figs. 2b,c) and 

qualitatively (Fig. 2d).

Several issues have been documented for saliency maps8,40–42, and hence the poor 

performance may be a reflection of flawed methodology and not necessarily the model’s 

learned representations. We therefore compared the interpretability performance of different 

attribution methods, including in silico mutagenesis, integrated gradients, and DeepSHAP, 

and find that different attribution methods yield very different recovery of ground truth 

motifs (Extended Data Fig. 2 and Supplementary Table 8). The gold standard is in silico 
mutagenesis which consistently yields the most reliable attribution maps with DeepSHAP in 

second place. Irrespective of the attribution method used here, we find that CNNs that 

employ exponential activations significantly improve performance across all interpretability 

metrics compared with other activations.
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Modified activations improve attribution scores.

Modifying activations, such as sigmoid, tanh, and relu, which all yield low interpretability 

performance, to behave exponential-like near the origin significantly improves the 

interpretability performance (Supplementary Figs. 11). Similarly, modifying the exponential 

to appear relu-like locally decreases interpretability performance. Together, this suggests the 

extent that CNN filters learn robust motif representations may be indicative of network’s 

interpretability performance with attribution methods.

Improved attribution interpretability generalises to in vivo sequences.

To validate that the improved representations with exponential activations generalises to real 

regulatory genomic sequences, we trained two Basset models on a multitask classification of 

chromatin accessibility sites, i.e. the Basset dataset1, which we refer to as Task 4 (see 

Methods). Each Basset model consists of 3 convolutional layers followed by 2 fully-

connected hidden layers with the only difference being the first layer activations, relu or 

exponential. Both Basset models yield very similar classification performance with an 

AUPR of 0.486±0.042 and 0.489±0.041 for relu and exponential activations, respectively. 

However, Basset with exponential activations evidently leads to more interpretable motif 

representations (Supplementary Fig. 12). Figure 3a shows an anecdotal example of a 

saliency map for an accessible DNA sequence in Fibroblast cells where a Basset model with 

exponential activations reveals 3 motifs – TCF4, NFIX, and HLF – which are all important 

regulators previously identified for chromatin accessibility43–45. Similarly, exponential 

activations lead to more informative filters with a higher match fraction of 0.617 to the 

JASPAR database compared to 0.370 given by relu activations (see Supplementary data).

Consistent results are found for ResidualBind, a CNN originally employed for RNA-protein 

interactions46, trained on ChIP-seq data for ZBED2 (Task 5) and IRF1 (Task 6). 

ResidualBind with relu and exponential activations yield comparable classification 

performance (AUROC on Task 5: 0.882 and 0.898 and Task 6: 0.985 and 0.982, 

respectively), but the attribution maps generated using a ResidualBind model with 

exponential activations are evidently more interpretable (Fig. 3b–c, Supplementary Figs. 13 

and 14).

Discussion

A major draw of deep learning in genomics is their powerful ability to automatically learn 

features from the data that enable it to make accurate predictions. It is critical that we 

understand what features are learned to build trust in their predictions. Model interpretability 

is key to understanding these features. Deep CNNs, however, tend to learn distributed 

representations of sequence motifs that are far too complex to be processed by humans. 

While attribution methods identify input features that affect decision making, their scores 

tend to be noisy and difficult to interpret in practice. Here, we show that an exponential 

activation applied to the first layer is a powerful approach to encourage first layer filters to 

learn sequence motifs and also to improve the efficacy of attribution scores, revealing more 

interpretable representations.
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One major consequence from this study raises the red flag that a CNN which yields high 

classification performance does not necessarily provide meaningful representations with 

attribution methods. Previous studies have focused on comparing representations from 

different attribution methods using only a single model8. Here, we show that different 

models, each with comparable classification performance, can yield significantly different 

representations with the same attribution methods. We believe CNNs that learn distributed 

representations may be learning a function that build noisier motifs, which may not 

necessarily impact classification performance but can result in poor interpertability. 

Investigating properties of the underlying function is important to address the root of this 

issue.

Variant effect prediction.

Scoring the functional impact of mutations is a promising application of deep learning in 

genomics. However, we must trust that the CNN is making reliable predictions. Testing 

model predictions on held-out test data is not sufficient to evaluate whether we can trust 

model predictions for single nucleotide mutations. We demonstrated that models that yield 

high classification performance can yield very low interpretability with first-order attribution 

methods, including in silico mutagenesis. While we do not elucidate all of the factors that 

underlie the discrepancy between model classification and interpretability, we identified a 

strong association that models that learn more robust representations of motifs in first layer 

filters lead to significantly improved interpretability with first-order attribution methods. We 

suspect that if a robust motif representation is learned anywhere in the network, then 

attribution methods will be reliable. Hence, verifying that a network has learned a strong 

motif representations can serve as a necessary (but not sufficient) quality control to ensure 

trust in attribution methods, including in silico mutagenesis. Since the representations of 

filters in deeper layers of a CNN are challenging to recover, enforcing that first layer filters 

learn strong motif representations can be achieved and easily verified with exponential (or 

equivalent) activations.

Trade off no more.

Previously, interpretability of first layer convolutional filters was seemingly at odds with 

classification performance, especially for deeper networks, which are more flexible in terms 

of the function classes that they can fit. Existing design principle for CNNs to learn 

interpretable motif representations tend to sacrifice network depth18, which, in general, leads 

to better classification performance. Here, we show that CNNs with exponential activations 

substantially improve motif representations in the first layer while not making any sacrifices 

in performance. Importantly, this trick can be applied to networks of any depth. Although 

not tested here, we believe that it could also improve filter interpretability in deeper layers to 

potentially capture motif-motif interactions. In practice, the exponential should probably 

only be applied to one layer for numerical stability. One possible solution is to instead 

employ an exponential equivalent that doesn’t diverge, such as a modified-sigmoid 

activation, to explore “interpretable” activations in multiple layers.
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Methods

Data

Task 1.—Task 1 consists of a multitask classification dataset from Ref.18. This dataset 

consists of 30,000 synthetic DNA sequences embedded with known transcription factor 

motifs. Synthetic sequences, each 200 nucleotides long, were sampled from a uniform (i.e. 

equiprobable) sequence model implanted with 1 to 5 known TF motifs, randomly selected 

with replacement from a pool of 12 motifs, which include Arid3, CEBPB, FOSL1, Gabpa, 

MAFK, MAX, MEF2A, NFYB, SP1, SRF, STAT1, and YY1. Sequences were sampled once 

from a unique sequence model. This dataset makes a simplifying assumption that the only 

important pattern for a given binding event is the presence of a PWM-like motif in a 

sequence. The dataset is randomly split to a training, validation, and test set according to the 

fractions 0.7, 0.1, and 0.2, respectively.

Task 2.—Task 2 consists of a truncated version of the DeepSea dataset2. The DeepSea 

dataset was reduced to 12 labels by removing sequences that did not correspond to 12 class 

labels defined in Supplementary Table 1 in Ref.18. This truncation only includes 12 labels 

that match the TFs in Task 1 in K562 cells. Sequences are 1000 nucleotides in length.

Task 3.—We generated 20,000 synthetic sequences each 200 nts long by embedding known 

motifs in specific combinations in a uniform sequence model. Positive class sequences were 

synthesised by sampling a sequence model embedded with 3 to 5 “core motifs” – randomly 

selected with replacement from a pool of 10 position frequency matrices, which include the 

forward and reverse-complement motifs for CEBPB, Gabpa, MAX, SP1, and YY147 – along 

a random sequence model. Negative class sequences were generated following the same 

steps with the exception that the pool of motifs include 100 non-overlapping “background 

motifs” from the JASPAR database47. Background sequences can thus contain core motifs; 

however, it is unlikely to randomly draw motifs that resemble a positive regulatory code. We 

randomly combined synthetic sequences of the positive and negative class and randomly 

split the dataset into training, validation and test sets with a 0.7, 0.1, and 0.2 split, 

respectively.

Task 4.—Task 4 sequences are from the Basset dataset1. This includes 164 DNase-seq 

datasets from ENCODE48 and Roadmaps Epigenomics49. The processed dataset consists of 

1,879,982 training and 71,886 test sequences that are 600 nts long. Each sequence has an 

associated binary label vector corresponding to the presence of a statistically significant 

peak for each of the 164 cell types.

Tasks 5 and 6.—Processed ZBED2 and IRF1 ChIP-seq data for Tasks 5 and 6 were 

acquired from50. Positive class sequences were defined as 400 nt sequences centred on 

ChIP-seq peaks in pancreatic ductal adenocarcinoma cells. Negative class sequences were 

defined as 200 nt sequences centred on peaks for H3K27ac ChIP-seq peaks that do not 

overlap with any positive peaks from the same cell type. We randomly subsampled the 

negative class sequences to balance the class labels. We randomly split the dataset into 

training, validation and test sets with a 0.7, 0.1, and 0.2 split, respectively. The total number 
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of sequences is 4,902 and 3,892 for Tasks 5 and 6, respectively. We augmented the training 

data by generating reverse-complement sequences.

Models

Task 1.—CNN-2, CNN-50, and CNN-deep take as input a 1-dimensional one-hot-encoded 

sequence with 4 channels, one for each nucleotide (A, C, G, T), and have a fully-connected 

(dense) output layer with 12 neurons that use sigmoid activations. The hidden layers for each 

model are:

1. CNN-2

1. convolution (32 filters, size 19, activation) max-pooling (size 2)

2. convolution (124 filters, size 5, relu) max-pooling (size 50)

3. fully-connected layer (512 units, relu)

2. CNN-50

1. convolution (32 filters, size 19, activation) max-pooling (size 50)

2. convolution (124 filters, size 5, relu) max-pooling (size 2)

3. fully-connected layer (512 units, relu)

3. CNN-deep

1. convolution (32 filters, size 19, activation)

2. convolution (48 filters, size 9, relu) max-pooling (size 4)

3. convolution (96 filters, size 6, relu) max-pooling (size 4)

4. convolution (128 filters, size 4, relu) max-pooling (size 3)

5. fully-connected layer (512 units, relu)

All models incorporate batch normalisation51 in each hidden layer prior to the nonlinear 

activation; dropout52 with probabilities corresponding to 0.1 (layer 1), 0.1 (layer 2), 0.5 

(layer 3) for CNN-2 and CNN-50; and 0.1 (layer 1), 0.2 (layer 2), 0.3 (layer 3), 0.4 (layer 4), 

0.5 (layer 5) for CNN-deep; and L2-regularisation on all parameters in the network with a 

strength equal to 1e-6, unless stated otherwise.

Task 2.—Same models as Task 1 but with augmented hidden layers, multiplying the 

number of filters or hidden units by a factor of 2. Note that the inputs to the models also 

change from 200 nt to 1000 nt.

Task 3.—We designed two CNNs, namely CNN-local and CNN-deep, to learn “local” 

representations (whole motifs) and “distributed” representations (partial motifs), 

respectively. Both take as input a 1-dimensional one-hot-encoded sequence (200 nt) and 

have a fully-connected (dense) output layer with a single sigmoid activation. The hidden 

layers for each model are:

1. CNN-local
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1. convolution (24 filters, size 19, activation) max-pooling (size 50)

2. fully-connected layer (96 units, relu)

2. CNN-dist

1. convolution (24 filters, size 7, activation)

2. convolution (32 filters, size 9, relu) max-pooling (size 3)

3. convolution (48 filters, size 6, relu) max-pooling (size 4)

4. convolution (64 filters, size 4, relu) max-pooling (size 3)

5. fully-connected layer (96 units, relu)

We incorporate batch normalisation in each hidden layer prior to the nonlinear activation; 

dropout with probabilities corresponding to: CNN-local (layer1 0.1, layer2 0.5) and CNN-

deep (layer1 0.1, layer2 0.2, layer3 0.3, layer4 0.4, layer5 0.5); and L2-regularisation on all 

parameters in the network with a strength equal to 1e-6.

Task 4.—We replicated a Basset-like model that takes as input a 1-dimensional one-hot-

encoded sequence (600 nt) and have a fully-connected (dense) output layer with 164 units 

with sigmoid activations. The hidden layers for each model are:

1. Basset

1. convolution (300 filters, size 19, activation) max-pooling (size 3)

2. convolution (200 filters, size 11, relu) max-pooling (size 4)

3. convolution (200 filters, size 7, relu) max-pooling (size 4)

4. fully-connected (1000 units, relu)

5. fully-connected (1000 units, relu)

We incorporate batch normalisation in each hidden layer prior to the nonlinear activation; 

dropout with probabilities corresponding to: 0.2, 0.2, 0.2, 0.5 and 0.5; and L2-regularisation 

on all parameters in the network with a strength equal to 1e-6.

Tasks 5 and 6.—We employed a ResidualBind-like model to classify positive-label DNA 

sequences about ChIP-seq peaks for ZBED2 (Task 5) and IRF1 (Task 6) in pancreatic ductal 

adenocarcinoma cells versus negative-label sequences about ChIP-seq peaks for H3K27ac 

marks within the same cell-type (nonoverlapping peaks with the TFs)50. The model takes as 

input one-hot encoded sequence (400 nt) and have a fully-connected layer to a single unit 

with sigmoid activations. The hidden layers are:

1. Residualbind

1. convolution (24 filters, size 19, activation) residual block max-pooling (size 10)

2. convolution (48 filters, size 7, relu) max-pooling (size 5)

3. convolution (64 filters, size 7, relu) max-pooling (size 4)
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4. fully-connected (96 units, relu)

The residual block consists of a convolutional layer with filter size 5, followed by batch 

normalisation, relu activation, dropout with a probability of 0.1, convolutional layer with 

filter size 5, batch normalisation, and a element-wise sum with the inputs to the residual 

block, a so-called skipped connection, followed by a relu activation, and dropout with a 

probability of 0.2. For each hidden layer, we incorporate batch normalisation51 and 

dropout52 with probabilities corresponding to: 0.1, 0.3, 0.4, and 0.5.

Training.—We uniformly trained each model by minimising the binary cross-entropy loss 

function with mini-batch stochastic gradient descent (100 sequences) for 100 epochs with 

Adam updates using default parameters53. We decayed the learning rate which started at 

0.001, and when the performance metric that was monitored (AUPR for Tasks 1, 2, 4; 

AUROC for Tasks 3, 5, 6) did not improve for 5 epochs, the learning rate was decayed by a 

factor 0.3. All reported performance metrics are drawn from the test set using the model 

parameters which yielded the highest performance metric on the validation set. Each model 

was trained (10 times for Tasks 1–3 and once for Task 4–6) with different random 

initialisations according to Ref.27.

Filter analysis

Filter visualisation.—To visualise first layer filters, we scanned each filter across every 

sequence in the test set. Sequences whose maximum activation was less than a cutoff of 50% 

of the maximum possible activation achievable for that filter in the test set were removed1,10. 

A subsequence the size of the filter centred about the max activation for each remaining 

sequence and assembled into an alignment. Subsequences that are shorter than the filter size 

due to their max activation being too close to the ends of the sequence were also discarded. 

A position frequency matrix was then created from the alignment and converted to a 

sequence logo using Logomaker54. The motif representations were largely not sensitive to 

the activation threshold (Supplementary Fig. 15), with only a slight increase in motif 

matches for CNN-deep with relu activations for higher activation thresholds. On the other 

hand, exponential activations decrease presumably due to the reduced sequence diversity in 

the alignment when high thresholds are applied.

Quantitative motif comparison.—The interpretability of each filter was assessed using 

the Tomtom motif comparison search tool26 to determine statistically significant matches to 

the 2016 JASPAR vertebrates database47, with the exception of Grembl, for which many 

filters yielded a statistically significant match, despite visually appearing non-informative. 

Since the ground truth motifs are available for our synthetic dataset, we can test whether the 

CNNs have captured relevant motifs. Tomtom was employed with an E-value threshold of 

0.1.

Motif localisation analysis.—The performance of locating motifs along a given 

sequence with motif scans was quantified by segmenting the sequence into regions that have 

the implanted motif or do not. This was determined by calculating the information content of 

the sequence model used to generate the synthetic sequence and segmenting ground truth 

from background according to an information content threshold greater than zero. A buffer 
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size of 10 nts was added to the boundaries of each embedded motif, because motif positions 

within filters are not necessarily centred. The max filter scan score was given for each 

segmented region with a label of one for ground truth regions and a label of zero otherwise. 

The positive and negative label scores were aggregated across all test sequences and the 

AUROC was calculated.

Attribution analysis

Attribution methods.—To test interpretability of trained models, we generate attribution 

scores by employing saliency maps6, in silico mutagenesis1,2,10, integrated gradients7, and 

DeepSHAP9. Saliency maps were calculated by computing the gradients of the predictions 

with respect to the inputs. Integrated gradients were calculated by adding the saliency maps 

generated from 20 sequences that linearly interpolate between a reference sequence and the 

query sequence. We average the integrated gradients score across 10 different reference 

sequences generated from random shuffles of the query sequence. For DeepSHAP, we used 

the package from Ref.9, and averaged the attribution scores across 10 different randomly 

shuffled reference sequences. We found that 10 randomly shuffled reference sequences 

marked the elbow point where the inclusion of additional sequences only provided a 

marginal improvement in performance (Supplementary Fig. 16). Saliency maps, integrated 

gradients, and DeepShap scores were multiplied by the query sequence (times inputs). In 
silico mutagenesis was calculated by generating new sequences with all possible single 

nucleotide mutations of a sequence and monitoring the change in prediction compared to 

wildtype. In silico mutagenesis scores were reduced to a single score for each position by 

calculating the L2-norm of the mutagenesis scores across nucleotides for each position. All 

attribution maps were visualised as a sequence logo using Logomaker54.

Quantifying interpretability.—Since we have the ground truth of embedded motif 

locations in each sequence, we can test the efficacy of attribution scores. To quantify the 

interpretability of a given attribution map, we calculate the area under the receiver-operating 

characteristic curve (AUROC) and the area under the precision-recall curve (AUPR), 

comparing the distribution of attribution scores where ground truth motifs have been 

implanted (positive class) and the distribution of attribution scores at positions not associated 

with any ground truth motifs (negative class). Specifically, we first multiply the attribution 

scores (Sij) and the input sequence (Xij) and reduce the dimensions to get a single score per 

position, according to Ci =∑j SijXij, where j is the alphabet and i is the position. We then 

calculate the information of the sequence model, Mij, according to Ii = log2 4−∑j Mij log2 

Mij. Positions that are given a positive label are defined by Ii > 0.01, while other positions 

are given a negative label. The AUROC and AUPR is then calculated separately for each 

sequence using the distribution of Ci at positive label positions against negative label 

positions.
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Extended Data

Extended Data Figure 1. 
Task 1 motif representations for CNNs with modified activations. (a) Boxplot of the fraction 

of filters that match ground truth motifs for different CNNs with traditional and modified 

activations. (b) Boxplot of the fraction of filters that match ground truth motifs for an 

ablation study of transformations for modified activations. (c) First layer filter scans from 

CNN-deep with relu activations (top) and exponential activations (middle). Each colour 

represents a different filter. (d) Motif scans (top) and PWM scans (middle) using ground 

truth motifs and their reverse-complements (each colour represents a different filter scan). 

Negative PWM scan values were rectified to a value of zero. (c, d) The information content 

of the sequence model used to generate the synthetic sequence (ground truth), which has 3 

embedded motifs centred at positions 15, 85, and 150, is shown at the bottom. (e) Boxplot of 

the fraction of filters that match ground truth motifs for CNN-deep with various activations: 

log activations trained with and without L2-regularisation (Log-Relu-L2 and Log-Relu, 

respectively) and relu activations with and without L2-regularisation. (a, b, e) Each boxplot 

represents the performance across 10 models trained with different random intialisations 

(box represents first and third quartile and the red line represents the median).
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Extended Data Figure 2. 
Interpretability performance comparison of different attribution methods. Boxplots of the 

interpretability AUROC (a) and AUPR (b) for CNN-local (top) and CNN-dist (bottom) with 

relu activations (left) and exponential activations (right) for different attribution methods. 

Each boxplot represents the performance across 10 models trained with different random 

intialisations (box represents first and third quartile and the red line represents the median). 

Sequence logo of a saliency map for a Task 3 test sequence generated with different 

attribution methods for CNN-deep with relu activations (c) and exponential activations (d). 

The right y-axis label shows the interpretability AUROC score. (c-d) The sequence logo for 

the ground truth sequence model is shown at the bottom.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Motif representation performance. (a) Plot of various activation functions, including 

exponential (exp), relu, sigmoid, tanh, softplus, linear, and elu. (b) Sequence logos for first 

convolutional layer filters are shown for CNN-deep with relu activations (top) and 

exponential activations (middle). The sequence logo of the ground truth motifs and its 

reverse-complement for each transcription factor is shown at the bottom. The y-axis label on 

select filters represent a statistically significant match to a ground truth motif as determined 

by Tomtom with an E-value threshold of 0.1. None of the filters from CNN-deep with relu 

activations yield any hits to ground truth motifs. (c) Boxplot of the fraction of filters that 

match ground truth motifs for CNN-2 (top), CNN-50 (middle), and CNN-deep (bottom) 

with various first layer activations trained on synthetic sequences of Task 1. (d) Boxplot of 

the fraction of filters that match ground truth motifs for CNN-2 (top), CNN-50 (middle), and 

CNN-deep (bottom) with various first layer activations trained on real DNA sequences of 

Task 2. (c,d) Each boxplot represents the performance across 10 models with different 

random initialisations (box represents first and third quartile and the red line represents the 

median).
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Figure 2. 
Interpretability performance of saliency maps. (a) Scatter plot of the classification AUC for 

CNN-dist versus CNN-local for different first layer activations (shown in a different colour), 

when trained with 10 different random intialisations. Scatter plot of the average (b) 

interpretability AUROC and (c) interpretability AUPR of saliency maps from test sequences 

generated from CNN-dist versus CNN-local for different activations (shown in a different 

colour). (d) Sequence logo of a saliency map for a representative test sequence generated 

with CNN-deep with different first layer activations (y-axis label). The right y-axis label 

shows the interpretability AUROC score. The sequence logo for the ground truth sequence 

model is shown at the bottom.
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Figure 3. 
Attribution score comparison for real regulatory DNA sequences. Sequence logo of a 

saliency map generated for a representative test sequence from a CNN with exponential 

activations (top) and relu activations (bottom) trained on (a) Task 4 (DNase-seq peaks), (b) 

Task 5 (ZBED2 ChIP-seq peaks) and (c) Task 6 (IRF1 ChIP-seq peaks). The sequence logo 

of the known motifs are highlighted.
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