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ABSTRACT Metallo-B-lactamases (MBLs) result in resistance to nearly all B-lactam
antimicrobial agents, as determined by currently employed susceptibility testing
methods. However, recently reported data demonstrate that variable and supraphy-
siologic zinc concentrations in conventional susceptibility testing media compared
with physiologic (bioactive) zinc concentrations may be mediating discordant in
vitro-in vivo MBL resistance. While treatment outcomes in patients appear suggestive
of this discordance, these limited data are confounded by comorbidities and combi-
nation therapy. To that end, the goal of this review is to evaluate the extent of
B-lactam activity against MBL-harboring Enterobacterales in published animal infec-
tion model studies and provide contemporary considerations to facilitate the optimi-
zation of current antimicrobials and development of novel therapeutics.
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he emergence and rapid spread of bacterial infections due to carbapenemase-pro-

ducing organisms pose a global health challenge (1, 2). Using conventional antimi-
crobial susceptibility testing (AST) methods, metallo- B-lactamases (MBLs) confer high-
level B-lactam resistance which severely limits therapeutic options (2-7). In clinical
practice, phenotypic profiling as characterized by the MIC is used to guide therapeutic
decision-making via susceptibility classification and breakpoints. In addition, MIC val-
ues are pivotal in generating pharmacokinetic/pharmacodynamic (PK/PD) indices in
both preclinical and clinical studies for optimizing dosing regimens (8, 9). Finally, in
vitro susceptibility data are also used for epidemiological purposes to track changing
resistance patterns within geographic regions or institutions (10-12).

An important step in developing effective therapeutic strategies is to understand
the dynamics of microbial resistance in the context of in vitro susceptibility, host fac-
tors, and clinically relevant antibiotic exposure (13-15). Indeed, based on host factors,
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or therapeutic failure after carbapenem treatment. Therein, clinically achievable exposures
of meropenem resulted in bacterial reduction among a variety of clinical MBL-harboring
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Further insights can be gained from human studies. However, interpretation of cur-
rent outcome data among patients infected with MBL-producing organisms is chal-
lenging, as most studies have small sample sizes and are retrospective in design with
investigators having no control over patient characteristics and treatment (21-23).
Furthermore, infected patients are critically ill at baseline and typically receive combi-
nation antimicrobial therapy or ineffective empiric therapy. In the preclinical research
arena, animal infection models have been instrumental in bridging in vitro data to
human studies. These experimental animal models provide a reliable means of con-
firming or establishing PK/PD relationships and evaluating antimicrobial efficacy
against isolates typically not represented in clinical trials (9, 24). Furthermore, specific
magnitudes of bacterial reduction, such as 1-log kill, have been adopted as preclinical
surrogates for clinical efficacy (25-27).

As a result of an apparent high level of in vitro resistance, clinical use of B-lactam
antibiotics and subsequent efficacy data against MBL-harboring organisms are limited.
To address this knowledge gap and ascertain the effect, if any, of B-lactam monother-
apy, this review leverages data from MBL-infected animal studies, of which the majority
were designed to evaluate investigational metallo-B-lactamase inhibitors in vivo.

LITERATURE SEARCH

A literature search for studies evaluating antimicrobial efficacy against metallo-
B-lactamase-producing isolates using PubMed from January 2000 to December 2020
was conducted. A 2-step search strategy was developed, as follows: one identifying
articles on “metallo-B-lactamase,” and a second limiting the search to mentions of “in

"o

vivo,” “murine,” or “mouse.” In addition, a manual search of reference lists from relevant

articles was performed.

DATA ABSTRACTION AND ANALYSIS

Study data were entered into a Microsoft Excel spreadsheet, and accuracy was veri-
fied by all authors. Type of animal infection model, isolate genotype, in vitro suscepti-
bility, dose, and administration route of the B-lactam, B-lactamase-inhibitor (BL-I), me-
tallo- B-lactamase-inhibitor (MBL-I), and endpoint measured (i.e.,, change in bacterial
burden) were extracted and collated. Extracted data were limited to Enterobacterales
and studies in which bacterial density in the control (vehicle) arm at study endpoint
was reported. Given that the primary objective of many studies meeting inclusion crite-
ria was to assess the potential of the BL/MBL-I combination to reverse B-lactam-resist-
ance, bacterial density (i.e, CFU count) results after treatment with the B-lactam
monotherapy were rarely reported as a numerical value. In those instances, we
abstracted data from graphs.

In studies that reported bacterial density at the time of treatment (0-h control), we
determined if microbiological activity of B-lactam monotherapy or BL/MBL-I combina-
tion therapy at the study endpoint met the following criteria: (i) =1-log,, bacterial
growth relative to 0-h control, (ii) bacteriostatic (stasis) relative to 0-h control, or (iii)
=1-log,, bacterial reduction relative to 0-h control. In studies that did not report 0-h
control bacterial density, we defined microbiological activity at study endpoint as (i)
“no difference” if no change in bacterial density relative to the control group at the
study endpoint was observed or (ii) “|CFU” if a reduction in bacterial density relative to
the control group at the study endpoint was observed.

ANIMAL MODELS AND STUDY ENDPOINTS

We identified 27 articles that reported in vivo studies evaluating B-lactam activity
against MBL-producing Enterobacterales. Key characteristics of the animal infection
model, B-lactam doses administered, and change in bacterial burden are summarized
in Table 1 and 2 (19, 20, 28-52). Table 1 highlights studies (n = 14) that reported bacte-
rial density counts for 0-h control animals, allowing for a =1-log,, bacterial reduction
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assessment (preclinical surrogate for clinical efficacy) (25-27), while Table 2 describes
characteristics and outcomes of all other studies.

With the exception of the rabbit intra-abdominal abscess study by Souli et al. (45),
all studies were conducted in mice. The most common infection model was the thigh
model in 18 studies, followed by peritonitis model (9 studies). In the peritonitis model,
CFU was enumerated from a variety of sites, including liver (7 studies), spleen (6 stud-
ies), blood (6 studies), kidney (5 studies), and peritoneal fluid (3 studies). Change in
bacterial density was assessed at a variety of time points, ranging from 4 to 96 hours
postinoculation, with the majority at 24 and 48 hours. A slightly larger proportion of
studies utilized the neutropenic model than the immunocompetent model (19 versus
13 studies). Historically, in vivo efficacy or PK/PD assessments have utilized the neutro-
penic model for several reasons. First, immunosuppression allows for the evaluation of
antimicrobial activity against the infecting pathogen without the contribution and
confounding effect of the immune system (27). Consequently, a larger dose of drug is
typically required to achieve a similar change in bacterial burden (i.e., bacteriostasis or
1-log kill) in neutropenic than in immunocompetent infection models (53). Second, in-
hibition of the immune system is sometimes necessary to enable bacteria to establish
an infection in vivo (27).

ISOLATE CHARACTERISTICS

Isolate selection in the studies was consistent with real-world prevalence and distri-
bution (54, 55). Indeed, the vast majority of MBL-harboring Enterobacterales evaluated
in these animal models were clinical Klebsiella pneumoniae or Escherichia coli isolates
harboring NDM-1. Only 5 studies included either a VIM- or IMP-harboring isolate (19,
20, 31, 45, 56). Current surveillance data suggest that among MBLs, NDMs are the most
frequently identified worldwide, with NDM-1 being the most detected NDM variant (6,
57, 58). For example, in a multiyear, global distribution study, Kazmierczak et al.
reported that among MBL-positive Enterobacteriaceae, 44% of isolates carried blaypw,
39% carried blay,,, and 17% carried bla,,, (58). However, sporadic outbreaks due to
Enterobacterales isolates harboring VIM and IMP in parts of Europe as well as an
increasing global prevalence suggest preclinical animal studies evaluating novel thera-
pies should not be limited only to NDM producers (59, 60). Furthermore, evidence of
different zinc sensitivities between genotypes and the evolution of MBL variants also
warrants inclusion of a genotypically diverse isolate collection when evaluating B-lac-
tam and BL/MBL-I efficacy (42, 61-64).

In select studies, investigators utilized wild-type (WT) strains and their isogenic
derivatives with inserted plasmids encoding an NDM, VIM, IMP, or KPC as experimental
positive and negative controls (Table 1 and 2).

The rabbit model utilized a VIM-producing E. coli isolate with a carbapenem-suscep-
tible phenotypic profile determined by broth microdilution (meropenem and imipe-
nem) and Etest (ertapenem). Notably, this isolate was shown to be positive for MBL
production with the imipenem-EDTA double-disc synergy test and negative for
extended-spectrum B-lactamases (ESBLs) by the isoelectric focusing test. Despite the
presence of a MBL (VIM-1 by genotypic confirmation), the isolate was susceptible to
imipenem (MIC, 1mg/liter), meropenem (MIC, =0.25mg/liter), ertapenem (MIC,
1.5 mg/liter), and aztreonam (MIC, =0.25 mg/liter) (45). In contrast, all murine studies in
this literature review utilized carbapenem nonsusceptible isolates, with susceptibility
routinely determined by conventional broth microdilution. Additional in vitro suscepti-
bility testing with zinc-depleted media was reported in 2 studies (19, 20).

Besides reporting the MBL genotype, only a few studies provided details on ESBLs,
which are typically coproduced by these clinical strains. Similarly, few studies utilized
publicly available or clinical reference strains such as ATCC or NCTC isolates. In the
future, reporting of both target (i.e, NDM-1) and coharbored enzymes as well as inclu-
sion of reference strains will enable valuable drug-bug comparisons by other laborato-
ries as drug development advances.
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A range of bacterial inoculums (10> to 108 CFU/ml) were used to establish infections
in the studies evaluated, reflecting typical animal inoculation practices observed in the
literature.

CHOICE OF -LACTAM AND DOSING REGIMEN

Meropenem was the preferred B-lactam backbone to pair with MBL-Is in all but one
study (imipenem) (44). In contrast, a variety of B-lactam agents were administered in
the studies designed to evaluate B-lactam agents alone (i.e, no MBL-I combination
therapy), namely, meropenem, doripenem, imipenem, ertapenem, cefepime, ceftazi-
dime, and aztreonam. In a small number of these studies, a serine-based B-lactamase
inhibitor such as avibactam was also used in combination (Table 1 and 2).

The B-lactam dose and frequency of administration differed greatly between stud-
ies with no clear dose justification in the majority of studies for the MBL-I activity
assessed. Notably, 10 mg/kg of body weight meropenem was the most common dose
administered and was typically given as a single dose. In comparison, studies designed
to evaluate B-lactam agents alone tended to utilize murine doses that resulted in drug
exposures similar to those achieved in humans receiving clinical doses.

Understandably, the majority of MBL-I studies are in the early preclinical phase and
utilized carbapenem/MBL-I doses sufficient enough to demonstrate proof of concept.
Nonetheless, the importance of dosage and dosing frequency selection in preclinical in
vivo research cannot be understated. Indeed, for studies utilizing approved and exist-
ing B-lactams such as meropenem as the backbone therapy, consideration of the well-
established pharmacokinetics of meropenem in early studies will provide more accu-
rate assessments and a higher degree of confidence in human translatability upon
addition of the investigational inhibitor. For instance, recognizing meropenem'’s rapid
clearance after pharmacokinetic analysis of the B-lactam backbone (meropenem) and
MBL-l (compound-272), Ooi et al. utilized a frequent dosing interval (every 2 hour) to
compensate for clearance. The half-life of meropenem was determined to be 0.3 hours
(18 minutes) compared with 1 hour for compound-272, demonstrating that a single
dose or infrequent dosing would have been significantly inadequate (38). With regard
to the rabbit experimental model, doses were selected to achieve concentrations com-
parable to those achievable in humans, with >50% time of a 24-h period that the drug
concentration exceeds the MIC under steady-state pharmacokinetic conditions (T-,c)
for the respective isolates for the dosing interval (45).

ACTIVITY OF -LACTAMS ON BACTERIAL BURDEN

Observations of reductions in bacterial density after administration of B-lactam
monotherapy were markedly different between studies (Table 1 and 2). In studies that
utilized nonoptimized B-lactam exposures (e.g., single-dose frequency) and demon-
strated treatment benefit, this evidence of bacterial killing was not limited to any one
infection model, immune status, isolate genotype/phenotype, or site of infection.
Notably, the administration route (subcutaneous [s.c.] and intravenous [i.v.]) of identi-
cal meropenem doses appeared to result in different magnitudes of efficacy for 2 stud-
ies with similar infection model designs (E. coli IR3; NDM-1) (38, 49). The lack of
reported CFU counts from 0-h controls in several studies reviewed precludes a more
robust comparison of B-lactam efficacy to established bacteriostatic or 1-log bacterial
density reduction endpoints indicative of clinical efficacy. As a result, bacterial density
of treatment groups could be compared only with control groups enumerated at the
end of study (Table 2). So, while a B-lactam treatment effect relative to endpoint con-
trols may have been observed, this approach does not account for the possibility that
net bacterial growth relative to bacterial density at the onset of infection (0-h control)
may have still occurred with the treatment regimen. Furthermore, the lack of CFU data
from 0-h control animals hinders any efforts to evaluate if an in vitro-in vivo inoculum
effect exists with MBL-producing bacteria (65).
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Several antimicrobial agents, such as meropenem, doripenem, imipenem, ertapenem,
ceftazidime-avibactam, aztreonam-avibactam, and aztreonam-ceftazidime-avibactam, dem-
onstrated microbiological activity when administered at clinically achievable exposures
(Table 1). The majority of these studies demonstrated bacterial activity ranging from bacter-
iostasis to 2-log,, bacterial reduction in the thigh, lung, and kidney infection models relative
to bacterial density at onset of infection (0-h controls). Of these agents, the activity of aztreo-
nam in combination with avibactam is not unexpected given aztreonam’s stability against
MBLs and avibactam's role in protecting aztreonam from hydrolysis by coharbored ESBLs. In
isolates lacking clinically relevant ESBLs, cefepime alone also demonstrated microbiological
in vivo activity despite high-level in vitro resistance (20).

Notably, a humanized meropenem regimen in the murine thigh study by Moya et
al. was reported to be inefficacious against 4 NDM-harboring isolates (47).
Unfortunately, the human meropenem dose on which the murine PK profile was based
on was not provided, but a 42% free Ty (fTopwc) at a MIC of 1 mg/liter and 26% fT_
at an MIC of 4 mg/liter were reported (47). For comparison, the percent free time above
MIC achieved in humans receiving either 2 g meropenem every 8 hours (q8h) as a 3-h
intravenous infusion is 100% fT- ¢, at an MIC of 1 mg/liter, and 85% fT_,,c, at an MIC
of 4mg/liter, or 1 g meropenem q8h (0.5-h intravenous infusion) is 86% fT_,c, at an
MIC of 1 mg/liter, and 50% fT- ¢, at an MIC of 4 mg/liter, making interpretation of their
results challenging (39, 66-68). In this regard, reporting the human B-lactam dose that
is humanized in the animal model and comparison of relevant T_ ¢ indices is impera-
tive for providing robust translatable data.

In the five studies that included wild-type (WT) and isogenically derived isolates
with inserted plasmids, clinically relevant carbapenem and ceftazidime-avibactam
exposures resulted in bacterial killing in the WT, WT-blaypy, and WT-bla,,, strains, while
growth was observed with the WT-bla,, strain (20, 28, 30, 43, 52). Similarly, a select
number of studies included clinical KPC- and OXA-48-harboring isolates as controls
and demonstrated inefficacy with carbapenems (Table 1 and 2).

In the rabbit model, investigators created an intra-abdominal abscess that was ino-
culated with a carbapenem-susceptible VIM-1-producing E. coli isolate. Concordant
with in vitro susceptibility and an ESBL-negative profile, treatment with meropenem,
imipenem, ertapenem, and aztreonam resulted in significant bacterial reduction (45).

DISCUSSION

Over the last 2 decades, there has been a warranted and growing interest in the dis-
covery and development of MBL-Is (5, 69, 70). As detailed in this review, several investi-
gational MBL-Is with mechanisms of action ranging from zinc chelation to zinc-inde-
pendent enzyme inhibition and novel gene silencing are in the preclinical pipeline and
are being studied in combination with existing B-lactam backbones. In tandem, evi-
dence of unexpected B-lactam efficacy against MBL-producing Enterobacterales in ani-
mal models has been growing (Fig. 1), but the extent and range of available data have
not been comprehensively reviewed until now (19, 46, 51, 71-73). In addition, we
recently detailed how currently utilized susceptibility testing media (i.e., Mueller-
Hinton broth) may be inappropriate for characterizing MBL resistance due to variable
and supraphysiologic zinc cation concentrations (63). When these zinc cations are
reduced to mimic physiologic bioactive concentrations elicited by nutritional immunity
during an infection, B-lactam MICs are reduced severalfold (19, 20, 63, 74).

Within the limitations of this review, abstracted animal data suggest that (i) B-lactams
with intrinsic stability against ESBLs/cephalosporinases (i.e,, carbapenems) and (i) ceftazi-
dime, aztreonam, and cefepime in combination with a broad-spectrum BL- (i.e., avibactam)
result in substantial bacterial reduction among clinical and engineered MBL-harboring
Enterobacterales when administered at clinically relevant exposures. While these results are
potentially promising, it remains to be determined if the addition of a MBL-l to optimized
carbapenem therapy results in enhanced efficacy (i.e., further reduction in bacterial burden
compared with the carbapenem alone) in the animal model. It is also worth noting that
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FIG 1 Mean change in bacterial density at 24 hours relative to 0-h controls after administration of meropenem (A) and ceftazidime-avibactam (B) against
an NDM-harboring E. coli and K. pneumoniae, respectively. Data adapted from 2 contemporary B-lactam dose-ranging studies (46, 51).

animal studies that utilize subtherapeutic backbone exposures continue to have a critical
role in drug development as a means to dose fractionate or to demonstrate additional or
enhanced efficacy upon addition of the BL-l or adjunctive agent. However, key to the design
of these studies is the reporting on the efficacy of the full therapeutic exposure of the back-
bone agent alone (75, 76).

Observed trends in microbiological activity among studies in this review also suggest
that despite an apparent in vitro resistant profile, inclusion of the B-lactam backbone as a
monotherapy arm in future B-lactam/MBL-I animal studies will yield valuable insights and
opportunities to further our understanding of MBL in vitro-in vivo discordance (77, 78). In
addition, a recently published study demonstrating unexpected in vivo activity with imipe-
nem and ertapenem against an isogenic derivative E. coli with inserted NDM-1 plasmid was
not included in this literature review due to a lack of 24-h control groups, which is critical for
appropriately evaluating the impact of treatment versus placebo/vehicle over the course of
the study period and as an indicator of bacterial fitness (71).

This review highlights the diversity in animal infection models and study endpoints
employed within MBL-I development studies. Similar heterogeneity was observed in a
recent study aimed at better understanding the range and scientific use of animal lung
infection models, resulting in the authors advocating for the need for harmonized consensus
models in drug development (79). Nonetheless, animal infection models continue to be an
essential translational tool for assessing the toxicity and efficacy of antimicrobial agents. Data
generated in these models have been valuable components of regulatory-approval applica-
tions (79, 80). However, there is an awareness to remain cautious when drawing conclusions
from experimental animal studies especially in regard to MBL-harboring organisms, as our
knowledge of zinc variability, MBL-variant evolution, bacterial species differences, and most
importantly host factors (mouse versus human) appears to be the tip of the iceberg (7, 19, 20,
62, 81-84). Indeed, our current understanding of the impact of zinc concentration on MBL-
mediated resistance is limited to murine models but provides noteworthy insights. For
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example, in a murine study by Corbin et al, imaging of metal distribution in a staphylococcal
liver abscess revealed a cation-starved environment (i.e, devoid of zinc and manganese) (85).
This host versus pathogen interaction raises important clinical and microbiological questions.
Similar to the importance of characterizing free antibiotic concentrations at various infection
sites, how does bioactive zinc availability compare between infection sites, e.g. soft tissue,
blood, epithelial lining fluid, peritoneal fluid, and urine; and importantly, what is the temporal
profile of zinc over the course of an infection at each site? Furthermore, how does the ability
of the pathogen to acquire zinc from its environment (host or susceptibility media) impact
MBL resistance and ultimately B-lactam efficacy? Also, what physiochemicals in the patho-
gen'’s environment are required to facilitate this zinc uptake? Clearly, the manifestation of MBL
resistance (in vitro and in vivo) is complex and presents a unique opportunity for multiple disci-
plines to begin to systematically reassess our current microbiological, PK/PD, and clinical
knowledge.

STUDY DESIGN CONSIDERATIONS

The drug pipeline does demonstrate innovative efforts to increase the throughput
of lead MBL-l candidates, and their subsequent integration with robust classic and
translational PK/PD studies will go a long way to derisk clinical development programs.
Previous PK/PD reviews have described general study considerations one may take
with respect to the design of animal infection models, drug pharmacokinetics, and
study endpoints (27, 66, 80, 86, 87), and we echo those considerations and summarize
additional recommendations relevant to this current topic:

Antimicrobial susceptibility testing. Underpinning MBL in vitro-in vivo discord-
ance is the MIC. The challenge, therefore, is to elucidate the relationship between MIC
and likelihood of outcome (clinical or animal). While there is insufficient data to propose a
change in current susceptibility testing methodology, efforts to create a host-mimicking
media (zinc-limited) through addition of EDTA or zinc chelation/removal and resupplemen-
tation have provided a physiologically plausible means with which to describe in vivo data.
Studies should consider reporting MICs from conventional (Mueller-Hinton broth) and zinc-
limited media to aid in a more complete understanding of exposure-response relationship.

Isolate selection. A sufficient number of clinical and engineered strains (if avail-
able) that harbor a variety of MBLs should be evaluated in the animal model to enable
robust microbiological activity profiling across genotypes and variants.

One should consider an inclusion of reference strains (i.e., ATCC, NCTC, and CDC AR
Bank) to enable drug-bug comparisons across different laboratories.

One should report both target (i.e., NDM-1) and coharbored enzymes (i.e., CTX-M)
to discern the activity of the B-lactam backbone and the contribution of MBL-I.

Exposure-response assessment. Due to a lack of clinical data with B-lactams and
evidence of MBL in vitro-in vivo discordance, (i) a number of efficacy studies in small and
large mammals may be required to elucidate B-lactam monotherapy activity against MBLs
before being relied upon as a model to bridge to humans, and (ii) each of these animal
models should include a B-lactam monotherapy arm in addition to the B-lactam/MBL-I arm
as a means with which to interrogate MBL in vitro-in vivo resistance correlation.

Faster drug elimination in animal models requires careful design of the dosing strat-
egy. A PK profile at the site of infection is important for the backbone alone, inhibitor
alone, and in combination to assess drug exposure and any drug interaction effects.

A variety of dosing strategies can be administered to elucidate a relevant PD index.
However, for efficacy studies, one should consider a therapeutic exposure of the backbone if
utilizing a clinically approved agent in an effort to derisk the drug development program.

One should report 0-h bacterial density to allow for appropriate preclinical end-
point assessment of the treatment arm, i.e., bacteriostasis, 1-log kill, and 2-log kill.

CONCLUSIONS

Developing effective therapeutic agents against Gram-negative bacteria has always
been a challenge in the antimicrobial arena and is more so true for MBL-harboring
organisms for which no B-lactamase inhibitor has yet made it into clinical practice.
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This review highlights animal studies, albeit heterogeneous in design, in which select
B-lactam agents demonstrate activity (with and without a MBL-l) against MBL-harbor-
ing Enterobacterales, suggesting an urgent need for robust preclinical studies in small
and large mammals to both optimize current antimicrobials and advance the transla-
tional development of MBL-Is. As more robust data are generated, we can collectively
refine our approach to the selection of animal species and model, infection site, dosing
strategy, and in vitro susceptibility tests to improve data interpretation and our ability
to correlate preclinical exposure-response relationships to clinical efficacy.
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