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ABSTRACT Antifungal activity of AmBisome against Candida auris was determined
in vitro and in vivo. AmBisome showed MIC50 and MIC90 values of 1 and 2mg/ml, respec-
tively. Unlike conventional amphotericin B, significant in vivo efficacy was observed in
the AmBisome 7.5mg/kg treatment group in survival and reduction of kidney tissue
fungal burden compared to the untreated group. Our data show that AmBisome has
significant antifungal activity against C. auris infection in vitro and in vivo.
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C andida auris is an emerging multidrug-resistant yeast that has been associated
with nosocomial infection worldwide (1), with a high infection rate in elderly

patients and those with underlying illnesses (2–7). Critically, most C. auris isolates are
resistant to at least two of the three main antifungal classes (azoles, polyenes, echino-
candins), with some strains of C. auris exhibiting pan resistance (8–10). Although resist-
ance of C. auris strains to conventional amphotericin B (CAmphoB) has been reported,
activity of the liposomal preparation (AmBisome) against this yeast was not reported.
Here, the in vitro and in vivo activity of AmBisome compared with CAmphoB and fluco-
nazole against C. auris was investigated.

Clinical C. auris isolates (n=35) were used in this study. Susceptibility testing was
performed according to Clinical and Laboratory Standards Institute (CLSI) document
M27-A4 (11). AmBisome was highly active against most of the tested strains (29/35,
83%), with an MIC range between 0.25 and 2mg/ml and MIC50 and MIC90 values of 1
and 2mg/ml (Table 1). In contrast, CAmphoB showed an MIC range of 1 to 4mg/ml and
MIC50 and MIC90 values of 4mg/ml for both. Fluconazole was the least active, with most
C. auris isolates demonstrating high resistance to this antifungal (12). Fluconazole
showed MIC ranges of 0.25 to .64mg/ml, with MIC50 and MIC90 values of 64mg/ml.

Using tentative breakpoints suggested by the CDC, we showed that 77% of the iso-
lates tested were resistant to CAmphoB, with MIC values of $2mg/ml, whereas only
17% of the examined isolates showed resistance to AmBisome.

In vivo testing was performed using a previously described disseminated C. auris
infection model (13). All procedures were performed in compliance with the Animal
Welfare Act, the Guide for the Care and Use of Laboratory Animals, and approval of the
Case Western Reserve University Institutional Animal Care and Use Committee (IACUC).
Female BALB/c mice (weighing ;20 g; Charles River Laboratories, Wilmington, MA) were
used in the study.

C. auris (MRL 35368) with in vitroMICs for AmBisome, CAmphoB, and fluconazole of 1, 4,
and .64mg/ml, respectively, was used to challenge the mice. Treatment was initiated 2h
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postchallenge. Treatment groups consisted of once-daily dosing of AmBisome at 3.5, 5, and
7.5mg/kg; CAmphoB at 0.75mg/kg administered intraperitoneally; and fluconazole at
25mg/kg administered orally. Untreated control animals were included. Efficacy endpoints
were animal survival and kidney fungal load.

Survival was monitored for 14days postinoculation. The AmBisome 7.5mg/kg treatment
group showed 90% survival at 14days postinoculation (Fig. 1), whereas CAmphoB- and flu-
conazole-treated groups showed 20% and 50% survival, respectively. The AmBisome
7.5mg/kg group demonstrated significant survival compared with the untreated control
group (P , 0.001) and had significantly higher survival rates than either the CAmphoB or
fluconazole group (P = 0.003 and 0.025, respectively). The AmBisome formulation allows
the drug to remain within the liposomes until it adheres to the fungal cell wall, where it
enters the fungus intact, preventing the drug from interacting with mammalian cells to
exert its toxic effects (14, 15).

Five mice from each group were euthanized 1 day after treatment (day 8) to determine
kidney fungal burden. Kidneys were removed aseptically and weighed, homogenized in
1ml of phosphate-buffered saline, serially diluted, plated onto potato dextrose agar (Becton,
Dickinson and Company, Sparks, MD), and cultured at 37°C for 48h to determine CFU per
gram. The tissue fungal burden was expressed as CFU per gram of tissue. Efficacy of
AmBisome was evaluated as a reduction in log10 CFU compared with other tested groups.

Table 2 shows the kidney tissue fungal burden of mice challenged with C. auris. As
expected, the mice in the untreated control group showed the highest kidney tissue fun-
gal burden (8.646 0.7 log CFU/g 6 SD). The AmBisome 7.5mg/kg group demonstrated

TABLE 1MICs for AmBisome, amphotericin B, and fluconazole against C. auris

Parameter for C. auris
(n=35)

MIC (mg/ml) for:

AmBisome Amphotericin B Fluconazole
Range 0.25–2 1–4 0.25 to.64
MIC50 1 4 64
MIC90 2 4 .64

FIG 1 Survival curves in BALB/c mice infected with C. auris (3� 107). Treatments were administered
by intraperitoneal injection for AmBisome and conventional amphotericin B and orally for fluconazole
(n= 10/group). Treatment consisted of once-daily dosing starting 2 h postchallenge and continuing
for 7 days. Survival was monitored until day 14. Survival was plotted by Kaplan-Meier analysis, and
differences in the percent survival among groups were analyzed by log-rank test and Fisher exact
test. *, P# 0.001 versus untreated control; †, P , 0.05 versus conventional amphotericin B and
fluconazole, respectively.
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a tissue fungal burden of 5.556 0.6 log CFU/g. The AmBisome 5 and 3.5mg/kg treat-
ment groups showed tissue fungal burdens of 5.886 2.2 and 6.546 1.2 log CFU/g,
respectively. These data show that AmBisome reduced tissue burden in a dose-depend-
ent manner, with AmBisome 7.5mg/kg reaching a significant reduction in tissue fungal
burden (P = 0.028). The 5- and 3.5-mg/kg AmBisome arms showed a trend toward reduc-
ing kidney tissue fungal burden compared with the untreated control group, which did
not reach statistical significance (P = 0.069 and 0.387, respectively). In contrast to
AmBisome 7.5mg/kg, CAmphoB 0.75mg/kg did not demonstrate significant efficacy
against C. auris (6.186 1.6 CFU/g; P = 0.356). However, fluconazole 25mg/kg treatment
showed significant reduction in fungal tissue burden (5.466 1.4 CFU/g) compared with
the untreated control (P = 0.022). No statistical difference in fungal tissue burden was
noted between the AmBisome 7.5mg/kg and fluconazole treatment groups (P. 0.05).

AmBisome 7.5mg/kg demonstrated a significant reduction in CFU in the kidneys,
with a better survival rate than CAmphoB and fluconazole. This could be explained by
the ability of AmBisome to distribute to infected tissues at levels above the MIC values.
AmBisome also demonstrated slow tissue clearance rates (16).

Interestingly, the isolate used in our animal model demonstrated resistance to fluconazole
when tested in vitro, whereas fluconazole in vivo showed a significant reduction in CFU in the
kidneys. This difference could be because susceptibility tests are designed to test the activity
of antifungals in a static test situation. These conditions do not mimic the in vivo situation in
that many factors may influence the intrinsic antifungal properties, including the underlying
condition and immunological status of the animal model (17). Although fluconazole demon-
strated activity in reducing the kidney tissue burden, it was not as effective as AmBisome in
enhancing animal survival rates (P=0.025 versus AmBisome 7.5mg/kg).

The underlying mechanisms for AmBisome’s higher in vitro and in vivo activity
against C. auris compared with CAmphoB are unknown. Recently, Walker et al. (14)
reported that the viscoelastic properties of the Candida albicans and Cryptococcus neo-
formans cell wall allowed for travel of AmBisome as intact liposome vesicles. At the tar-
get site, the higher affinity of amphotericin B for fungal ergosterol over the lipid carrier
and the availability of extracellular yeast and host lipases facilitated the release of
amphotericin B from the lipid complex, where it binds to the cell membrane of the fun-
gal pathogen (16). Additional evidence differentiating liposomal amphotericin B for-
mulations from CAmphoB can be gleaned from the findings that lipid formulations are
more efficient at inhibiting Candida biofilms than CAmphoB in vitro (18, 19) and in a
rabbit model of catheter-associated C. albicans biofilm infection (20, 21).

Taken together our findings show that AmBisome possesses significant antifungal activ-
ity against C. auris in vitro and in vivo compared with CAmphoB and fluconazole.
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TABLE 2 Average kidney tissue fungal burden compared with untreated control

Treatment group Kidney tissue fungal burden (avg log CFU/g± SD) P value
Untreated control 8.646 0.7

AmBisome (mg/kg)
3.5 6.546 1.2 0.387
5 5.886 2.2 0.069
7.5 5.556 0.6 0.028

Amphotericin B 0.75mg/kg 6.186 1.6 0.356
Fluconazole 25mg/kg 5.466 1.4 0.022
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