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ABSTRACT In vitro antifungal susceptibility profiling of 32 clinical and environmental
Talaromyces marneffei isolates recovered from southern China was performed against olor-
ofim and 7 other systemic antifungals, including amphotericin B, 5-flucytosine, posacona-
zole, voriconazole, caspofungin, and terbinafine, using CLSI methodology. In comparison,
olorofim was the most active antifungal agent against both mold and yeast phases of all
tested Talaromyces marneffei isolates, exhibiting an MIC range, MIC50, and MIC90 of 0.0005
to 0.002mg/ml, 0.0005mg/ml, and 0.0005mg/ml, respectively.
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T alaromyces (formerly Penicillium) marneffei is the etiological agent of talaromycosis
(1), a life-threatening disease that affects immunocompromised hosts, especially

those with human immunodeficiency virus (HIV) infection (2). The fungus is a thermal
dimorphic microorganism exhibiting a mycelial form at 25°C and a yeast form at 37°C.
It may have a natural habitat in soil in areas of southern China (3), and Southeast Asia
(including India), where it is endemic (4), and is known to be associated with bamboo
rats (5) and dogs (6). Notably, the risk of infection is not restricted to those living in
areas where it is endemic. HIV-infected individuals traveling to areas of endemicity
have also become infected by T. marneffei (7).

Treatment of talaromycosis is typically initiated with amphotericin B, but its use is
limited due to toxic side effects and requires a prolonged hospital stay (8). After completing
2 weeks of amphotericin B, patients will be transitioned to consolidation therapy with itraco-
nazole for 10weeks. For those who cannot take amphotericin B or itraconazole, voriconazole
is recommended (8). If untreated or if there is a delay in diagnosis, the mortality rate of
T. marneffei infections in HIV-infected patients is up to 100% (9). Therefore, the need for new
antifungals to treat talaromycosis is urgent.

Several investigational antifungals with novel mechanisms of action that may override
both the low susceptibility and adverse side effects are currently under development (10,
11). Among them, ibrexafungerp (12) and fosmagepix (13) demonstrated good in vitro activ-
ity against the Scedosporium species complex and Lomentospora prolificans. The new triazole
derivative albaconazole (ALBA) (UR-9825) also showed potent activity against these patho-
gens in both in vitro (14) and in vivo (15) studies. Olorofim (formerly F901318) is a novel fun-
gicidal drug that selectively inhibits fungal dihydroorotate dehydrogenase (DHODH), a key
enzyme in the de novo pyrimidine biosynthesis pathway (16). Olorofim has shown potent in
vitro inhibitory activity against isolates of Aspergillus spp., including azole-resistant isolates of
Aspergillus fumigatus (17) and cryptic aspergilli (18); the Scedosporium/Pseudallescheria
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species complex and Lomentospora spp. (19, 20); Madurella mycetomatis (21); certain species
of Fusarium and non-marneffei Talaromyces spp. (16); as well as the dimorphic human
pathogen Coccidioides species (22) using both European Committee on Antimicrobial
Susceptibility Testing (EUCAST) and Clinical and Laboratory Standards Institute (CLSI)
methodologies (18). The potent activity of olorofim has also been demonstrated in
experimental animal models of disseminated infections caused by A. fumigatus (23, 24),
Aspergillus flavus (25), Aspergillus nidulans (23), Aspergillus tanneri (23), Scedosporium apiosper-
mum, Pseudallescheria boydii, Lomentospora prolificans (26), and Coccidioides immitis (22).

The drug is currently being investigated in phase II clinical studies for the treatment
of invasive mold infections (invasive fungal infections [IFIs]) (11). In November 2019,
olorofim received breakthrough therapy designation from the U.S. Food and Drug
Administration (FDA) for the treatment of IFIs. Currently, a phase IIb clinical trial of oral
olorofim is recruiting patients with IFIs and lacking treatment options (ClinicalTrials.
gov identifier NCT03583164). The in vitro efficacy of olorofim against T. marneffei has
not been extensively tested yet. We therefore aimed to evaluate the susceptibility of T.
marneffei to olorofim and other currently available systemic antifungals in its yeast as
well as mold phases.

(This study was partially presented at the 9th Advances against Aspergillosis and
Mucormycosis Conference, Lugano, Switzerland, 27 to 29 February 2020 [www.AAAM2020
.org] [27], and the 30th European Congress of Clinical Microbiology and Infectious Diseases
[ECCMID], Paris, France, 18 to 21 April 2020 [28]).

A collection of 32 T. marneffei strains recovered from southern China was investi-
gated, including 17 isolates of human origin, 11 animal isolates, and 4 environmental
strains (Table 1). The 17 clinical strains were isolated from patients who were admitted
to Sun Yat-sen Memorial Hospital (3,000 inpatient beds with over 3.02 million outpa-
tient visits per year), Second Affiliated Hospital of Sun Yat-Sen University (SYSU),
Guangdong, China, from 1995 to 2014. The 11 animal isolates were obtained from
bamboo rats captured in the Jiangxi, Fujian, and Guangdong provinces of China. The 4
environmental strains were isolated from bamboo root and soil in the area where bam-
boo rats lived. The identity of each strain was confirmed at the species level via PCR
amplification and sequence-based analysis of the internal transcribed spacer (ITS) of
the ribosomal DNA (rDNA) region and b-tubulin gene, as described previously (29).

In vitro antifungal susceptibility testing was performed using CLSI broth microdilution
M38-ED3:2017 and M27-ED4:2017 guidelines (33, 34) for mycelial and yeast growth forms,
respectively. The mold conidial suspensions were obtained from T. marneffei strains cultured
on malt extract agar for 7 to 14days at 25°C. The yeast suspensions were obtained from T.
marneffei strains cultured on brain heart infusion agar for 4 to 5days at 37°C. The drugs
were provided by F2G, Ltd., Eccles, Manchester, United Kingdom (olorofim), or purchased
from Sigma, St. Louis, MO (all other agents). The final concentration ranges of antifungal
agents were 0.0313 to 16mg/ml for amphotericin B, itraconazole, voriconazole, posacona-
zole, and terbinafine; 0.031 to 32mg/ml for 5-flucytosine and caspofungin; and 0.00025 to
0.25mg/ml for olorofim. The MIC was defined as the lowest concentration that completely
inhibited growth as assessed by visual inspection in comparison with the control (drug-free
well). For caspofungin in mycelial-form cultures of T. marneffei only, the MEC (minimum
effective concentration) was defined as the lowest concentration in which abnormal, short,
and branched hyphal clusters were observed, in contrast to the long, unbranched hyphal
elements that were seen in the well.

A. flavus (ATCC 204304) and A. fumigatus (ATCC 204305) were used as quality con-
trol strains in all experiments.

All experiments on each strain were performed using two independent replicates
on different days. The data were analyzed using GraphPad Prism, version 9.0, for
Windows (GraphPad Software, San Diego, CA). The MIC/MEC distributions between the
isolates originating from different locations were compared using Student’s t test and
the Mann-Whitney-Wilcoxon test; differences were considered statistically significant
at a P value of#0.05 (two tailed).
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The geometric mean (GM) MICs/MECs, the MIC/MEC ranges, and the MIC50/MEC50

and MIC90/MEC90 distributions of the eight antifungals against 32 T. marneffei
strains are listed in Table 2. The MIC/MEC distributions of all tested antifungals are
presented in Fig. 1. In summary, the GM MICs/MECs of the antifungals against the
mold growth form of all T. marneffei strains were as follows (in increasing order):
0.0005mg/ml for olorofim, 0.016mg/ml for itraconazole and posaconazole, 0.05mg/
ml for voriconazole, 0.08mg/ml for 5-flucytosine, 0.1mg/ml for terbinafine, 0.4mg/
ml for caspofungin, and 2mg/ml for amphotericin B. The GM MICs/MECs against the
yeast phase were as follows: 0.0007mg/ml for olorofim, 0.016mg/ml for posacona-
zole, 0.016mg/ml for itraconazole, 0.017mg/ml for voriconazole, 0.12mg/ml for ter-
binafine, 0.13mg/ml for amphotericin B, 0.25mg/ml for 5-flucytosine, and 4.5mg/ml
for caspofungin.

Overall, olorofim showed the lowest MIC values among antifungals tested in both
mold and yeast phases of all T. marneffei strains, independent of the source of isola-
tion. No statistically significant differences in the olorofim susceptibility profiles were
detected between the clinical and environmental isolates of T. marneffei. In several

TABLE 1 Talaromyces marneffei strains tested in this study

Origin (no. of isolates)
and strain no.

GenBank
accession no. Origin of isolationa

Source of
isolation

Geographical
origin of isolate

Yr of
isolation

Human (17)
SUMS0047 AB353906 AIDS patient Skin lesion Guangdong 1995
SUMS0174 AB353915 AIDS patient Skin lesion Guangdong 2002
SUMS0217 JX036541 AIDS patient Stool Guangdong 2004
SUMS0304 KR902349 SLE patient Bone marrow Guangdong 2007
SUMS0326 MN700104 AIDS patient Skin lesion Guangdong 2007
SUMS0486 JQ585633 MM patient Skin lesion Guangdong 2010
SUMS0565 MN700095 DM patient Skin lesion Guangdong 2011
SUMS0573 MN700102 TB patient Sputum Guangdong 2011
SUMS0579 MN700101 SLE patient Skin lesion Guangdong 2011
SUMS0590 MN700100 COPD patient Sputum Guangdong 2011
SUMS0598 MN700096 AIDS patient Blood Guangdong 2011
SUMS0687 MN700099 ALL patient Blood Guangdong 2012
SUMS0688 MN700097 SLE patient Blood Guangdong 2012
SUMS0743 MN700103 AIDS patient Blood Guangdong 2013
SUMS0751 KT121405 AIDS patient Blood Guangdong 2013
SUMS0765 MN700105 AIDS patient Blood Guangdong 2014
SUMS0766 MN700106 AIDS patient Blood Guangdong 2014

Animal (11)
SUMS0265 MN700098 Bamboo rat Liver Jiangxi 2006
SUMS0272 FJ009555 Bamboo rat Lung Jiangxi 2006
SUMS0347 FJ009564 Bamboo rat Liver Fujian 2007
SUMS0349 FJ009552 Bamboo rat Liver Guangdong 2007
SUMS0547 JN679219 Bamboo rat Liver Guangdong 2011
SUMS0556 JN679223 Bamboo rat Lung Guangdong 2011
SUMS0603 JQ910936 Bamboo rat Liver Guangdong 2011
SUMS0608 JQ910941 Bamboo rat Liver Guangdong 2011
SUMS0612 JQ910945 Bamboo rat Liver Guangdong 2011
SUMS0623 JQ912271 Bamboo rat Liver Guangdong 2011
SUMS0629 JQ912277 Bamboo rat Spleen Guangdong 2011

Environmental (4)
SUMS0602 JQ910935 Near the bamboo

rat hole
Bamboo root Guangdong 2011

SUMS0615 JQ910948 Far from the
bamboo rat hole

Soil Guangdong 2011

SUMS0624 JQ912272 Near the bamboo
rat hole

Bamboo root Guangdong 2011

SUMS0630 JQ912278 Bamboo rat hole Soil Guangdong 2011
aMM,multiplemyeloma; DM, dermatomycosis; TB, tuberculosis; SLE, systemic lupus erythematosus; COPD, chronic obstructive pulmonary disease; ALL, acute lymphoblastic leukemia.
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recent studies, a similar in vitro potency of olorofim was observed for several other
molds (16, 17, 19–22), including non-marneffei Talaromyces species and multiazole-re-
sistant Penicillium spp. (30). Consistent with previous reports, our study also showed
that itraconazole, posaconazole, and voriconazole were potent against all T. marneffei
isolates, with higher MICs of fluconazole than other azoles (31). Caspofungin showed
relatively high MICs (MIC ranges, 0.5 to 4mg/ml and 0.25 to 32mg/ml against mold
and yeast forms, respectively) against all strains tested, which is in agreement with
a previous report from China (32). For all tested strains, 5-flucytosine and terbina-
fine had low MIC values, whereas amphotericin B exhibited higher MIC values
against the mycelial phase of all isolates (MIC range, 0.5 to 4mg/ml). Our results
agreed with a previous report (24) that the range of amphotericin B MICs for the
mold phase was 0.5 to 4mg/ml.

In conclusion, olorofim is an antimycotic that is potent against both growth
phases of T. marneffei in vitro, and further studies are warranted to evaluate its in
vivo efficacy.

TABLE 2 In vitro susceptibility results for cultured mycelial and yeast forms of 32 Talaromyces marneffei strains against eight antifungal agents

Strain type (no. of
isolates) and drug

MIC/MEC (mg/ml)a in mycelial form MIC (mg/ml)a in yeast form

Range
MIC50/
MEC50

MIC90/
MEC90

Geometric
mean Range

MIC50/
MEC50

MIC90/
ME90

Geometric
mean

All strains (32)
Olorofim 0.0005–0.001 0.0005 0.0005 0.0005 0.00025–0.002 0.0005 0.002 0.0007
Amphotericin B 0.5–4 2 4 1.9152 0.031–1 0.125 0.475 0.1331
Itraconazole #0.016 0.016 0.016 0.0160 #0.016–0.031 0.016 0.016 0.0163
Voriconazole #0.016–0.063 0.063 0.063 0.0453 #0.016–0.031 0.016 0.0295 0.0174
Posaconazole #0.016 0.016 0.016 0.0160 #0.016 0.016 0.016 0.0160
Caspofungin 0.5–4 1 4 1.3543 0.25–32 8 16 4.5552
5-Flucytosine 0.031–1 0.062 0.125 0.0755 0.031–2 0.25 0.95 0.2443
Terbinafine 0.125–0.25 0.125 0.25 0.1393 0.031–0.5 0.125 0.25 0.1168

Clinical (17)
Olorofim 0.0005–0.001 0.0005 0.0005 0.0005 0.00025–0.002 0.0005 0.02 0.0007
Amphotericin B 0.5–4 2 4 2 0.031–1 0.125 0.5 0.1252
Itraconazole #0.016 0.016 0.016 0.016 #0.016 0.016 0.016 0.016
Voriconazole #0.016–0.063 0.063 0.063 0.0419 #0.016–0.031 0.016 0.031 0.0173
Posaconazole #0.016 0.016 0.016 0.016 #0.016 0.016 0.016 0.016
Caspofungin 0.5–4 2 4 1.8434 0.25–32 2 16 2.6606
5-Flucytosine 0.031–1 0.063 0.125 0.0834 0.031–2 0.25 1 0.2825
Terbinafine 0.125–0.25 0.125 0.25 0.1471 0.031–0.5 0.125 0.25 0.1252

Animal (11)
Olorofim 0.0005–0.0005 0.0005 0.0005 0.0005 0.00025–0.002 0.0005 0.002 0.0006
Amphotericin B 1–4 2 2 1.7631 0.063–0.5 0.125 0.25 0.1512
Itraconazole #0.016 0.016 0.016 0.016 #0.016–0.031 0.016 0.016 0.017
Voriconazole 0.031–0.063 0.063 0.063 0.0519 #0.016–0.031 0.016 0.031 0.018
Posaconazole #0.016 0.016 0.016 0.016 #0.016 0.016 0.016 0.016
Caspofungin 0.5–4 1 2 1.065 1–16 16 16 8.5203
5-Flucytosine 0.063–0.125 0.063 0.125 0.0714 0.031–0.5 0.125 0.5 0.1714
Terbinafine 0.125–0.25 0.125 0.125 0.1331 0.031–0.25 0.063 0.25 0.0971

Environmental (4)
Olorofim 0.0005–0.0005 0.0005 0.0005–0.002 0.0008
Amphotericin B 2–2 2 0.063–0.25 0.1252
Itraconazole #0.016 0.016 #0.016 0.016
Voriconazole 0.031–0.063 0.0442 #0.016 0.016
Posaconazole #0.016 0.016 #0.016 0.016
Caspofungin 0.5–1 0.7071 2–32 8
5-Flucytosine 0.031–0.125 0.0626 0.125–1 0.3536
Terbinafine 0.125–0.125 0.125 0.063–0.25 0.1489

aMEC, minimal effective concentration; MIC50/MEC50, minimal concentration that inhibits 50% of isolates; MIC90/MEC90, minimal concentration that inhibits 90% of isolates.
MECs were used for caspofungin.
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FIG 1 MIC/MEC distributions for 32 Talaromyces marneffei strains of clinical and environmental
origins. The x axis shows the MICs/MECs (in micrograms per milliliter), and the y axis shows the
number of strains in the set with the given MIC/MEC.
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