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ABSTRACT Confirmed diagnosis of chronic Chagas disease (CD) requires positive results
by two different IgG serology tests. Variable sensitivity has been reported among tests and
in different geographic regions. Inadequate specificity presents a particular challenge in
low-prevalence settings such as the United States. This study provides a direct comparison
of the latest-generation IgG serology assays with four previously assessed FDA-cleared tests.
Seven hundred ten blood donor plasma specimens were evaluated by Wiener Lisado and
Wiener v.4.0 enzyme-linked immunosorbent assays (ELISAs) and Abbott PRISM Chagas
chemiluminescent assay (ChLIA). Sensitivity and specificity were assessed relative to infec-
tion status as determined by the original blood donation testing algorithm. All three latest-
generation assays demonstrated 100% specificity (95% confidence interval [CI], 98.6 to
100.0). Wiener Lisado, Wiener v.4.0, and Abbott PRISM had sensitivities of 97.1% (95% CI,
95.1 to 98.4), 98.9% (95% CI, 97.4 to 99.6), and 95.5% (95% CI, 93.2 to 97.3), respectively.
As with previously evaluated FDA-cleared tests, all three assays had the highest reactivity
and sensitivity in samples from donors born in South America and lowest reactivity and
sensitivity in specimens from those born in Mexico, with intermediate results in specimens
from Central American donors. Wiener v.4.0 had the highest diagnostic sensitivity in all
comparisons. Our findings suggest that the latest-generation CD serology tests could
improve diagnostic sensitivity without affecting specificity.
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Chagas disease (CD) is responsible for the highest public health burden of any para-
sitic disease in the Americas, with an estimated 6 million people infected and 1.2

million associated cases of cardiomyopathy (1–3). While rare, autochthonous, vector-borne,
transplant, transfusion, and congenital transmissions have been reported in the United
States, most of the estimated 300,000 U.S. residents with CD acquired the disease in Latin
America (4–8). For testing purposes in U.S. populations, birth or residence for greater than
6months in an area of endemicity has been utilized as an easily screened risk factor (9).

Confirmation of chronic Trypanosoma cruzi infection requires concordant positive
results by at least two distinct IgG serological tests; no single assay is considered to
have sufficiently high sensitivity and specificity to be relied on alone (10–15). Because
assays use cultured or recombinant parasite proteins as antigen sources, regional parasite
genetic diversity is hypothesized to affect test performance (16–18). Discordance between
assay results has been reported, especially in populations from Mexico (19).

Four assays have U.S. Food and Drug Administration (FDA) 510(k) clearance for
diagnostic use: Hemagen Chagas’ kit enzyme-linked immunosorbent assay (ELISA)
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(Hemagen Diagnostics, Inc., Columbia, MD), Ortho T. cruzi ELISA test system (Ortho
Clinical Diagnostics, Raritan, NJ), Wiener Chagatest Recombinante v.3.0 ELISA (Wiener
Laboratories, Rosario, Argentina), and InBios Chagas Detect Plus (CDP) rapid test lateral
flow assay (LFA) (InBios International, Inc., Seattle, WA). Ortho ELISA and Abbott PRISM
Chagas chemiluminescent assay (ChLIA) (Abbott Laboratories, Abbott Park, IL) are li-
censed for blood and organ donor screening through a separate FDA approval process
(20, 21). While Ortho ELISA has 510(k) clearance for diagnostic use, it is currently mar-
keted only for blood donor testing.

In a previous study from our group, the four FDA-cleared diagnostic assays showed
a range of performance characteristics (17). All assays exhibited their lowest sensitivity
in samples from donors born in Mexico, who make up the largest proportion of Latin
American immigrants in the United States (17, 22). We extended this analysis to include
two of the latest-generation serology assays from Wiener Laboratories, Chagatest
Recombinante v.4.0 ELISA (Wiener v.4.0) and Chagatest Lisado ELISA (Wiener Lisado),
and the Abbott PRISM assay, currently licensed only for donor screening. This direct
comparison provides novel data on CD diagnostic test performance across diverse
populations living in the United States.

MATERIALS ANDMETHODS
Ethical approval. This research was approved by the American Red Cross (ARC) institutional review

board and was deemed exempt by the Human Research Protection Program at the University of
California, San Francisco (UCSF).

Sample selection and preparation. Blood donor plasma samples were selected from lists of seroposi-
tive and seronegative specimens provided by ARC. From the list of 1,091 seropositive specimens, all specimens
with country-of-birth data available were included; the remainder of 500 seropositive specimens were selected
at random. From the list of 3,938 seronegative specimens, a random sample of 300 specimens, frequency
matched by region of donation to the seropositive specimen set, was selected. Serological status was deter-
mined at the time of blood donation (September 2006 to June 2018) (17, 23). Final infection status was defined
by ARC testing algorithms, which require repeat reactivity by the screening test (Ortho ELISA or Abbott PRISM)
followed by positive results on a confirmatory assay (radioimmunoprecipitation assay or Abbott enzyme strip
assay) (23). Three hundred sixty-eight confirmed positive specimens were initially screened by Ortho ELISA
(September 2006 to August 2011), while 137 specimens were screened positive by Abbott PRISM (starting
September 2011). Matrix effects of blood donor plasma and frozen storage time of specimens in this analysis
were previously reported and deemed to have minimal effect on specimen quality (24). Additional details
regarding specimen selection are available in our previous publication (17).

Plasma samples were initially frozen at220°C within 24 h of collection and then thawed in a temper-
ature-controlled water bath, aliquoted, and refrozen at 220°C under research protocol. Aliquots tested
by Hemagen, Wiener v.3.0, and InBios assays at UCSF were thawed and refrozen only once (March 2019);
those tested by Wiener v.4.0 and Wiener Lisado were thawed and refrozen twice (March 2019 and
December 2019). The Ortho ELISA and Abbott PRISM were thawed and refrozen twice for testing at
Innovative Blood Resources (Minneapolis, MN) and Abbott Laboratories (Abbott Park, IL), respectively.
All specimens run at outside laboratories were tested in a blinded manner.

A total of 800 specimens were thawed and spun at 2,300 relative centrifugal force for 10 min, and 1ml
was aliquoted to randomized positions in 96-deep-well plates. During testing, one randomized sample plate
(n=90) had failed runs by Wiener Lisado and Wiener v.4.0, and there was insufficient reagent to retest; these
specimens were excluded from analysis. The final data set comprised 710 plasma samples.

Serology testing. Specimens were tested and interpreted in accordance with package inserts using
the kit reagents, an ELx405 Select microplate washer (BioTek, Winooski, VT), and a SpectraMax Plus
microplate reader (Molecular Devices, San Jose, CA) with an optical density at 450 nm (OD450). Signal-to-
cutoff ratios (S/CO) were utilized for quantitative analyses and determined by dividing the OD450 readout
by the positive cutoff as described in the package insert. InBios CDP results were scored on a semiquan-
titative scale of 0 to 6, with a score of 1 or greater considered a positive result, as previously described
(17). Deviation from package insert protocols were the use of plasma for Hemagen tests (the manufac-
turer recommends use of serum) and counting tests with indeterminate zones (Hemagen and Wiener
ELISAs) as positive. Indeterminate results were counted as positive because they would require confirm-
atory testing in clinical settings.

Data analysis. Test characteristics were assessed using ARC donor status as the reference.
Sensitivity, specificity, and receiver operating characteristics (ROC) curves were generated for each test
compared to the designated status, and binomial exact confidence intervals were used for all resulting
estimates. Analyses were conducted in STATA 14.2 statistical software.

RESULTS
Specimen characteristics and demographics. Of 710 donor samples analyzed,

448 (63%) were classified as seropositive and 262 (37%) as seronegative by the ARC
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donor algorithm at time of donation (Table 1). Data on region of birth were available
for 252 (56%) seropositive donors, 86 (34%) from Mexico, 77 (31%) from Central
America, and 65 (26%) from South America.

Serology test performance. All three of the latest-generation assays had 100%
specificity (95% confidence interval [CI], 98.6 to 100.0) in this specimen set. Sensitivity
was 95.5% (95% CI, 93.2 to 97.3) for Abbott PRISM, 97.1% (95% CI, 95.1 to 98.4) for Wiener
Lisado, and 98.9% (95% CI, 97.4 to 99.6) for Wiener v.4.0. The four FDA-cleared tests had
specificity estimates from 91.2% to 100% and sensitivity estimates from 87.7% to 97.5% in
this set (Table 2). The area under the curve (AUC) figures derived from ROC analyses showed
the best overall performance for Wiener v.4.0 and Wiener Lisado.

Sensitivity by region of birth. All three latest-generation assays showed similar
patterns to those seen for the FDA-cleared tests in our earlier evaluation, with the high-
est sensitivity in specimens from those born in South America, intermediate for Central
America, and lowest for Mexico (Table 3). Wiener v.4.0 had the highest point estimate
of sensitivity across all regions. As with the FDA-cleared tests (17), S/CO values were
highest in samples from donors of South American origin, intermediate in those from
Central America, and lowest in samples from Mexican-born donors (Fig. 1).

DISCUSSION

The approach to Chagas disease management in the United States has changed markedly
over the last several years (2). Prior to 2018, antitrypanosomal drugs were available only
through the Centers for Disease Control and Prevention (CDC) Drug Service under investiga-
tional protocols (25). CDC provided both serological testing and treatment drugs directly to
physicians, and every drug release required a diagnosis confirmed by a CDC laboratory and
discussion with an epidemiologist with expertise in CD (2). Now, diagnosis of chronic T. cruzi
infection relies primarily on commercial laboratories, with CDC providing confirmatory testing

TABLE 1 Characteristics of blood donors whose specimens were used in the evaluation

Characteristic

No. (%) of donors by Trypanosoma cruzi
infection statusa

Positiveb Negative
Total 448 (100) 262 (100)

Sex
Male 222 (49.5) 109 (42.6)
Female 226 (50.5) 153 (58.4)

Ethnicityc

Hispanic 181 (40.4) 32 (12.2)
Non-Hispanic 15 (3.4) 225 (85.9)
Unknown 252 (56.3) 5 (1.9)

Region of birth
United States 24 (3.4) ND
Mexico 86 (12.1) ND
Central America 77 (17.2) ND
South America 65 (14.5) ND
Unknown 196 (43.8) 262 (100)

Region of blood centerd

California 178 (39.2) 100 (38.2)
West 44 (9.8) 30 (11.5)
Midwest 28 (6.3) 14 (5.3)
Northeast 47 (10.5) 26 (9.9)
Southeast 151 (33.7) 92 (35.1)

aTrypanosoma cruzi infection status as determined by American Red Cross screening and confirmation algorithm
at the time of donation (23). ND, no data available.

bMedian age, 43 years; interquartile range, 33 to 50.5 years.
cBlood donors with positive test results were significantly more likely to report Hispanic ethnicity (P, 0.001).
dSeronegative specimens were frequency matched to seropositive specimens by donation region.
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only if initiated by health care providers. Benznidazole, the first-line treatment for CD (2), was
approved by the FDA in 2018. With approval of nifurtimox in 2020, access to antiparasitic
treatment has shifted fully to the commercial sector. These developments are likely to accel-
erate a transition of CD diagnosis and management into the mainstream of U.S. infectious
diseases practice. However, accurate diagnosis and appropriate treatment depend on under-
standing performance characteristics of serological assays, especially in the low-prevalence
environment of the United States.

Community screening of high-risk populations in the United States generally yields sero-
prevalence in the 1% to 2% range, with higher prevalence in older persons (26). Screening
that targets younger individuals, for example, pre- or postnatal screening of mothers to

TABLE 2 Performance characteristics of latest-generation and FDA-cleared IgG serological
assays compared to Trypanosoma cruzi infection status determined by American Red Cross
screening and confirmation algorithm at the time of donation

Assaya

Among 448 ARC-positive
specimens

Among 262 ARC-negative
specimens

AUC
(% [95% CI])c

No.
positive

Sensitivity
(% [95% CI])b

No.
negative

Specificity
(% [95% CI])b

ELISA
Wiener Lisado 435 97.1 (95.1–98.4) 262 100 (98.6–100.0) 0.99 (0.97–0.99)
Wiener v.4.0 443 98.9 (97.4–99.6) 262 100 (98.6–100.0) 0.99 (0.99–1.00)
Wiener v.3.0 422d 94.2 (94.6–96.2) 261 99.6 (97.9–100.0) 0.97 (0.95–0.98)
Hemagen 393e 87.7 (84.3–90.6) 262 100 (98.6–100.0) 0.94 (0.92–0.95)
Ortho 416 92.9 (90.1–95.1) 262 100 (98.6–100.0) 0.96 (0.95–0.98)

LFA
InBios CDP 437 97.5 (95.6–98.8) 239 91.2 (87.1–94.4) 0.94 (0.92–0.96)

ChLIA
Abbott PRISM 428 95.5 (93.2–97.3) 262 100 (98.6–100.0) 0.98 (0.96–0.99)

aELISA, enzyme-linked immunosorbent assay; LFA, lateral flow assay; ChLIA, chemiluminescent assay.
bBinomial exact 95% confidence interval.
cAUC, area under the curve of receiver operating characteristics.
dData include 5 specimens with indeterminate results. Indeterminate results were classified as positive results for
the purpose of these analyses (see text for explanation).

eData include 9 specimens with indeterminate results.

TABLE 3 Sensitivity of latest-generation and FDA-cleared IgG serological assays compared to
Trypanosoma cruzi infection status determined by American Red Cross screening and
confirmation algorithm at the time of donation, by donor region of birth

Assaya

South America (n=65) Central America (n=77) Mexico (n=86)

No.
pos

Sensitivity
(% [95% CI])b

No.
pos

Sensitivity
(% [95% CI])b

No.
pos

Sensitivity
(5 [95% CI])b

ELISA
Wiener Lisado 65 100 (94.5–100.0) 74 96.1 (89.0–99.1) 80 93.0 (85.4–97.3)
Wiener v.4.0 65 100 (94.5–100.0) 77 100 (95.3–100.0) 85 98.8 (93.7–100.0)
Wiener v.3.0 64 98.5 (91.7–100.0) 74 96.1 (89.0–99.2) 79c 91.9 (83.9–96.6)
Hemagen 60 92.3 (83.0–97.5) 68d 88.3 (79.0–94.5) 71e 82.6 (72.9–89.9)
Ortho 63 96.9 (89.3–99.6) 75 97.4 (90.9–99.7) 74 86.0 (76.9–92.6)

LFA
InBios CDP 64 98.5 (91.7–100.0) 77 100 (95.3–100.0) 84 97.7 (91.9–99.7)

ChLIA
Abbott PRISM 64 98.5 (91.7–100.0) 74 96.1 (89.0–99.2) 78 90.7 (82.5–95.9)

aELISA, enzyme-linked immunosorbent assay; LFA, lateral flow assay; ChLIA, chemiluminescent assay.
bBinomial exact 95% confidence intervals.
cData include 2 specimens with indeterminate results. Indeterminate results were classified as positive results for
the purpose of these analyses (see text for explanation).
dData include 1 specimen with indeterminate results.
eData include 5 specimens with indeterminate results.

Kelly et al. Journal of Clinical Microbiology

June 2021 Volume 59 Issue 6 e00158-21 jcm.asm.org 4

https://jcm.asm.org


identify infants at risk of congenital CD, results in prevalence figures below 1% (27). In such
low-prevalence settings, the number of false-positive results will inevitably outnumber the
true-positive results unless the clinical specificity of the screening test is higher than 98% to
99%. At the same time, the low sensitivity of many assays in specimens from those infected
in Mexico and, to a lesser extent, Central America, will result in missing true infections (17,
19, 28, 29). Among the FDA-cleared assays, we observed the common trade-off sensitivity
and specificity, with the most sensitive test being the least specific and vice versa (17). The
latest assays, especially Wiener v.4.0, appear to offer a significant advance in performance,
with improved sensitivity and highest specificity.

Like the FDA-cleared Wiener v.3.0, Wiener v.4.0 uses recombinant antigens 1, 2, 13,
30, 36, and secreted acute-phase antigen (SAPA) (30, 31). The major difference
between the two Wiener recombinant assays is the replacement of the v.3.0 polyclonal
conjugate secondary antibody with a monoclonal anti-human IgG antibody in v.4.0.
This improvement appears to have resulted in more-accurate reproducible results.
Wiener Lisado relies on the same kit reagents and secondary antibody as the Wiener
v.4.0 but uses lysate of the Tulahuen T. cruzi strain as the antigen source. This strain
belongs to the TcVI genotype, which is predominant in Argentina, Bolivia, and neigh-
boring countries (32). Nevertheless, Wiener Lisado sensitivity remained reasonably
high in specimens from TcI-predominant Mexico and Central America. Currently, the
Wiener v.4.0 and Wiener Lisado assays are not FDA cleared for use in the United States.

Abbott PRISM is licensed by the FDA for CD screening in blood and organ donors but is
not cleared for diagnostic use through 510(k) submission. Unlike more manual ELISAs,
Abbott PRISM employs a semiautomated chemiluminescent immunoassay, which enables
high-throughput testing. In our analysis, Abbott PRISM demonstrated 95.5% sensitivity, the
median figure among the seven assays evaluated, with no false-positive results. Although
several assays had higher sensitivity in our data, a high-throughput format greatly increases
the capacity for screening at-risk populations. While it is unlikely to be practical to perform
clinical testing on the PRISM platform, the same reagents are currently marketed outside the
United States for use on Abbott Architect instruments, a widely utilized platform for routine
laboratory testing. Successful 510(k) clearance of these reagents could provide a readily
adoptable solution for CD testing across hospital systems and reference laboratories.

FIG 1 Comparison of optical density values for latest-generation IgG serological assays by region of
birth. Wiener Lisado displayed a median S/CO of 6.95 (interquartile range [IQR], 6.05 to 7.38) for samples
of donors born in South America, 4.89 (IQR, 3.96 to 5.65) for samples of donors born in Central America,
and 2.68 (IQR, 2.28 to 3.34) for samples of donors born in Mexico. Wiener v.4.0 displayed a median S/CO
of 5.78 (IQR, 5.43 to 6.72) for samples of donors born in South America, 5.20 (IQR, 4.69 to 6.04) for
samples of donors born in Central America, and 3.67 (IQR, 3.02 to 4.07) for samples of donors born in
Mexico. Abbott PRISM displayed a median S/CO of 8.92 (IQR, 7.64 to 9.71) for samples of donors born in
South America, 7.97 (IQR, 6.71 to 8.59) for samples of donors born in Central America, and 5.09 (IQR,
4.42 to 6.60) for samples of donors born in Mexico. Bar and whiskers represent median with interquartile
range. ns, P $ 0.05; *, P , 0.05; **, P , 0.01; ***, P , 0.001; ****, P , 0.0001.
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As with our earlier evaluation, all three assays examined in this study had highest
sensitivity in samples from donors born in South America, intermediate in those from
Central America, and lowest in those from Mexico (17). This pattern correlates closely
with the regional distributions of reactivity and is hypothesized to result from geo-
graphic differences in the predominant T. cruzi genotypes (17, 29). From central Brazil
southward, the related lineages TcII, TcV, and TcVI predominate, while TcI is the pre-
dominant genotype in northern South America, Central America, and Mexico (32).
However, TcI is highly heterogeneous and may elicit a range of immune responses (18).
These differences may contribute to decreased affinity or lack of antibody response to anti-
gens from heterologous strains (33). Other factors that may affect antibody response could
include levels of parasitemia and host-specific immune responses (34).

To overcome the practical challenge of amassing an adequate set of specimens for multi-
assay evaluations, we used blood donor plasma. However, blood donors tend not to represent
the underlying clinical populations. In the United States, donors tend to be younger and
healthier and are less likely to be Hispanic than the general population (35, 36). The generaliz-
ability of our results could be impaired if age and comorbidities impact immunological
response in CD; however, aside from immunosuppression, this has not been reported in the
literature. Furthermore, two assays included in this analysis (Ortho ELISA and Abbott PRISM)
were used in blood donor screening algorithms, introducing the potential for selection bias.
This was unavoidable given the absence of other sources of robust numbers of seropositive
specimens incorporating the diversity of Latin American populations in the United States.
Specimens from each screening algorithm were included in this analysis as detailed in
Materials and Methods. Additional studies including clinical populations and prospective
evaluation in higher prevalence populations are needed to better approximate real-world
test performance.

Serology assays with simultaneous high sensitivity and specificity hold the potential to
advance CD diagnosis in the United States. Clearance through the FDA 510(k) pathway and
local distribution will be needed to facilitate widespread diagnostic use (37). Lower reactivity
among donors born in Mexico compared to those born in Central and South America was
observed among all assays and remains a challenge for CD diagnostic tests. However, the lat-
est-generation of assays show better overall and regional performance than those currently
cleared by FDA. Our data provide evidence to support their introduction to improve CD diag-
nosis in the United States.
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