
GENOME EDITING IN PLANTS Review

Targeted genome editing of plants and plant cells
for biomanufacturing

J. F. Buyel . E. Stöger . L. Bortesi
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Abstract Plants have provided humans with useful

products since antiquity, but in the last 30 years they

have also been developed as production platforms for

small molecules and recombinant proteins. This

initially niche area has blossomed with the growth of

the global bioeconomy, and now includes chemical

building blocks, polymers and renewable energy. All

these applications can be described as ‘‘plant molec-

ular farming’’ (PMF). Despite its potential to increase

the sustainability of biologics manufacturing, PMF

has yet to be embraced broadly by industry. This

reflects a combination of regulatory uncertainty,

limited information on process cost structures, and

the absence of trained staff and suitable manufacturing

capacity. However, the limited adaptation of plants

and plant cells to the requirements of industry-scale

manufacturing is an equally important hurdle. For

example, the targeted genetic manipulation of yeast

has been common practice since the 1980s, whereas

reliable site-directed mutagenesis in most plants has

only become available with the advent of CRISPR/

Cas9 and similar genome editing technologies since

around 2010. Here we summarize the applications of

new genetic engineering technologies to improve

plants as biomanufacturing platforms. We start by

identifying current bottlenecks in manufacturing, then

illustrate the progress that has already been made and

discuss the potential for improvement at the molecu-

lar, cellular and organism levels. We discuss the

effects of metabolic optimization, adaptation of the

endomembrane system, modified glycosylation pro-

files, programmable growth and senescence, protease

inactivation, and the expression of enzymes that

promote biodegradation. We outline strategies to

achieve these modifications by targeted gene modifi-

cation, considering case-by-case examples of individ-

ual improvements and the combined modifications

needed to generate a new general-purpose ‘‘chassis’’

for PMF.
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Programmable growth and senescence � Protease

inactivation

Abbreviations

DSB Double strand break

DSP Downstream processing

EMS Ethylmethanesulfonate

ERAD Endoplasmic reticulum-associated

degradation

HCP Host cell protein

PMF Plant molecular farming

PPO Polyphenol oxidase

PTM Post-translational modification

RuBisCO Ribulose-1,5-bisphosphate carboxylase/

oxygenase

SSN Site-specific nuclease

TSP Total soluble protein

Significance statement

The review examines a number of diverse technolo-

gies for the production of recombinant proteins and

small molecules in plant-based systems. The article

emphasizes strain development, biomass accumula-

tion and processing at the molecular, cellular and

organism levels, thus providing the reader not only

with an overview of the latest developments in plant

genome editing, but also with decision-making tools

for specific applications. The article also illustrates

how genome editing and conventional transgenesis

technologies can complement each other to establish

platform host plants for biomanufacturing

applications.

P. Christou, University of Lleida-Agrotencio Cen-

ter, Lleida and ICREA, Barcelona, Spain.

Introduction

Plants have provided humans with food, fiber, con-

struction materials and useful chemicals for thousands

of years. However, since the early 1990s they have

also been promoted as production platforms (Hiatt

et al. 1989), mostly to manufacture small molecules

and recombinant proteins (Fischer and Buyel 2020).

This niche area has expanded with the global

bioeconomy starting around 2010 to include chemical

building blocks, polymers and renewable energy

(Buyel 2018). All these applications can be considered

under the umbrella of ‘‘plant molecular farming’’

(PMF).

Despite its potential to tap into alternative, renew-

able resources for manufacturing, PMF has yet to be

adopted by the biomanufacturing industry on a large

scale. Initially this reflected the uncertain regulatory

framework, particularly for pharmaceuticals produced

in intact plants (Fischer et al. 2012), as well as the

limited understanding of associated process costs, and

the lack of trained personnel and suitable manufactur-

ing capacity (Alam et al. 2018; Walwyn et al. 2015;

Buyel and Fischer 2012). However, an additional

important drawback is the limited adaptation of plants

and plant cells to the requirements of industry-scale

manufacturing (Fig. 1). For example, targeted genetic

manipulation in yeast has been common practice since

the 1980s (Green and Tibbetts 1980), whereas efficient

site-directed mutagenesis in higher plants only

become available following the advent of CRISPR/

Cas9 and similar genome editing technologies

(Doudna and Charpentier 2014; Li et al. 2014).

Industry has also been discouraged by the timeframe

of 6–18 months needed to regenerate stable, trans-

genic plants (Sack et al. 2015) and the bottlenecks

along the path to regulatory approval (Ma et al. 2015;

Tusé et al. 2020). Furthermore, the highest level of

product accumulation recorded in plants and plant

cells is currently * 4 g kg-1 for GFP and similar

levels have been achieved for monoclonal antibodies

and influenza antigens as well (Yamamoto et al. 2018;

Shoji et al. 2012; Zischewski et al. 2015) whereas

mammalian cells often achieve yields[ 25 g L-1

with well-characterized products such as antibodies

(Yang et al. 2016). Product yields in plants can also

vary substantially within the biomass (Sack et al.

2015; Buyel and Fischer 2012; Knödler et al. 2019),

especially if host reactions, such as the response to

infiltrating bacteria during transient expression, lead to

the activation of endogenous proteases (Grosse-Holz

et al. 2017). Proteins expressed in plants and plant

cells gain non-human glycosylation profiles (Fischer

et al. 2018; Strasser 2016), and further unwanted

product modifications or degradation may occur

during downstream processing (DSP) due to oxidation

or proteolysis in the crude extract. DSP in general can

be difficult to develop and operate for plant-based
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systems due to the large quantities of host cell proteins

(HCPs) and potentially toxic metabolites in the

extracts, including nicotine if whole tobacco plants

are used as the production host (Buyel et al. 2015b).

Finally, some plants and plant cells feature unfavor-

able characteristics for bioprocessing, such as a large

but biosynthetically inactive vacuole that reduces

volumetric and fresh mass-based productivity, and

biomass components such as stems that accumulate

very little product but are typically processed along

with leaves to simplify the harvesting method. These

factors add to the cost of goods during DSP and

generate residual biomass that must be processed

before disposal.

In this article, we discuss modifications that can

help to improve plants for biomanufacturing applica-

tions, focusing on the production of recombinant

proteins (Fig. 2). These modifications can be achieved

by genetic engineering and/or genome editing, which

provide complementary toolsets. We use the

bottlenecks described above to illustrate progress that

has already been made, and discuss potential improve-

ments at the molecular, cellular and organism levels.

First, we review the benefits of targeted gene integra-

tion platforms to design engineered plants before

discussing modifications at the cellular level that can

help to create a supportive environment for recombi-

nant protein synthesis, including adaptations of the

endomembrane system and modified glycosylation

patterns. We then assess the options to modify HCP

and metabolite profiles for streamlined DSP. Finally,

we consider alterations on the whole-plant level such

as growth habit and residual biomass processing. We

conclude with our vision of how these improvements

can be combined into a new general purpose ‘‘chassis’’

for PMF.

Fig. 1 Potential limitations of plant-based processes for the

industry-scale manufacturing of recombinant proteins. Several

features of plants that affect their use as bioreactors and reduce

the efficiency of the production process could be modified by

genome editing to improve product quality, overall productivity

and cost-efficiency. ERAD endoplasmic reticulum-associated

degradation, PTMs post-translational modifications
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Targeted gene integration platforms

Landing pads for the rapid production

of transgenic lines expressing multigene pathways

Conventional plant transformation (usually mediated

by Agrobacterium tumefaciens or particle bombard-

ment) generates random transgene insertion events.

The inability to control the integration process leads to

variable expression levels due to position effects and

different transgene copy numbers. Position effects

include transgene integration in genomic regions with

different chromatin structures (active euchromatin vs.

transcriptionally inactive heterochromatin) and in the

proximity of native regulatory elements. Furthermore,

epigenetic modifications such as methylation at the

integration site can reduce the long-term stability of

transgene expression, causing the productivity of

selected lines to fall over time (Rajeevkumar et al.

2015). For these reasons, many independent trans-

genic events must be generated and screened to

identify those with the highest expression levels,

which is both time consuming and expensive.

The challenges of random transgene integration can

be overcome using site-specific nucleases (SSNs). By

introducing a double-strand break (DSB) at a pre-

determined sequence, SSNs enable controlled trans-

gene integration. Compared to SSN-induced indel

formation, site-specific DNA insertion remains chal-

lenging because it is not the preferred outcome of DSB

repairs in plants. SSN-mediated DNA insertion has not

yet been used specifically for PMF applications, but it

has been described in a handful of studies in different

species including Arabidopsis (Miki et al. 2018),

maize (Svitashev et al. 2015), barley (Watanabe et al.

2016), tobacco, rice (Li et al. 2016), soybean (Bon-

awitz et al. 2019) and potato (Forsyth et al. 2016).

These experiments have involved different types of

SSNs and delivery methods, and the reported efficien-

cies of transgene insertion—calculated as number of

precise insertion events per 100 transformations—are

mostly in the lower single digit range and all rely on

the use of strong selectable markers to isolate the

Fig. 2 Applications of genetic engineering and genome editing

to improve plant molecular farming depending on the process

stages (columns) and scales (rows). Every step during process

development (columns) can benefit at the molecular, cellular

and organism levels (rows). The aim of the improvements is to

increase product yields, achieve authentic or compatible post-

translational modifications, and integrate the use of residual

biomass
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desired events. By developing an engineered trans-

gene integration platform based on previously intro-

duced incomplete marker genes at the insertion site,

the efficiency of targeted transgene integration has

been increased to 41% in tobacco BY-2 cells (Schier-

meyer et al. 2019) but its transferability to other cells

lines and intact plants remains to be demonstrated. The

efficiency of targeted integration is inversely propor-

tional to the size of the DNA fragment, so it becomes

more challenging to insert large constructs ([ 20 kb)

as required for the introduction of multigene con-

structs for entire metabolic pathways, including the

biosynthesis of mammalian-type sialylated N-linked

glycans. This limitation could be overcome using a

SSN-mediated targeted transgene stacking approach

in which several transgenes are integrated sequentially

in tandem to create a genetically linked molecular

stack. This would avoid the cumbersome breeding

steps needed to combine different genes in a single

plant line.

An experimental setup with two SSN recognition

sites flanking the target sequence makes it possible to

simultaneously remove one DNA sequence and insert

a new one at the same location, a process called

transgene replacement (Weinthal et al. 2013; Schnei-

der et al. 2016). This approach could be used to

generate final production lines devoid of co-expressed

selectable marker genes. First, a generic transgenic

‘acceptor line’ containing a positive/negative selec-

tion marker such as codA (Shao et al. 2015) at the

desired genomic location is generated by homologous

recombination (HR) as a means of initial targeted

integration. In a subsequent transformation step, the

marker gene is replaced with the production transgene,

and the lines with successful cassette exchange are

recovered by negative selection against codA. In the

specific case of antibodies, existing high-performance

lines could be modified by the targeted replacement of

only the variable domains in the antibody transgene.

Ideally, at least one safe-harbor locus should be

identified as the site for targeted integration for each

plant species and variety used for PMF. This locus

would allow sustained, high-level transgene expres-

sion because transgene integration would not cause

any obvious deleterious phenotypic effects. This

would minimize the effort needed to screen for

productive lines and would accelerate the character-

ization and selection of production lines with pre-

dictable and consistent performance. Because targeted

transgene integration and replacement in higher plants

are technically challenging and rather inefficient

(Kumar et al. 2016; D’Halluin et al. 2013), more

efforts have to be made in understanding how to

improve these molecular processes before they can be

routinely exploited, also for PMF purposes.

Improving recombinant protein accumulation

Codon preferences and tRNA pools

Even if the transcriptional activity of a transgene is

maximized by site-directed integration as described

above, and gene silencing effects are avoided (see next

section), this does not guarantee high-level product

accumulation in planta, which is the key factor

affecting overall process costs, especially when the

yield is below 1 g kg-1 biomass (Nandi et al. 2016;

Fischer and Buyel 2020). In addition to large numbers

of mRNAs (Bhullar et al. 2009; Jansing and Buyel

2019) efficient protein synthesis by ribosomes must

also be ensured, and this has turned out to be a more

complex, multi-parameter problem than expected. The

GC content of genes may not only affect transcription

due to an influence on chromatin structure (Barahi-

mipour et al. 2015) but can also have an effect on

translation as was shown for different untranslated

regions and coding sequences (Zhao et al. 2017).

Interestingly, others have recently suggested that not

GC content (alone) but more importantly codon-

anticodon kinetics may be a major driver for transla-

tion efficacy (Sahoo et al. 2019).

The phenomenon of codon bias can cause a gene

from one (source) organism to be poorly expressed in

another (host) due to the prevalence of disfavored

codons (Gouy and Gautier 1982; Webster et al. 2017;

Mahalik et al. 2014; Liu et al. 2016; Gustafsson et al.

2004). It is possible to identify correlations between

the use of specific codons and the resulting quantity of

correctly folded and active protein that accumulates in

a cell, reflecting the host’s codon preferences. Accord-

ingly, the yield of recombinant protein can be

improved by maximizing codon preference (replacing

each codon in the mRNA with the preferred codon in

the host), or harmonizing codon preference (replacing

each codon in the mRNA with an equivalent codon in

terms of usage frequency in the host). Even so, mRNA

meta-functions such as a 50 end ‘‘speed ramp’’ of a
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mRNA, codon autocorrelation and self-folding can

interfere with such optimization because features that

modulate the rate of translation may be necessary for

effective protein synthesis (Tuller et al. 2010; Can-

narozzi et al. 2010; Kozak 2001; Jackson et al. 2010).

For example, rarer codons at positions corresponding

to domain transitions in the protein can assist during

folding (Hanson and Coller 2018). When bone mor-

phogenetic protein (BMP) 2 was expressed in tobacco

plants, the two-fold accumulation advantage achieved

by codon optimization was nullified if a stronger

promoter was used (Suo et al. 2006).

The properties discussed above are largely product-

centered because they can be addressed by modifying

the mRNA sequence. However, the properties of the

expression host can also be modified as shown by the

augmentation of rare tRNA pools in Escherichia coli,

which increased the accumulation of proteins relying

on these codons (Tegel et al. 2010). Increasing tRNA

concentrations alone is unlikely to improve product

formation if it merely transfers the bottleneck else-

where or elicits new challenges. For example, rare

codons corresponding to smaller tRNA pools should

be able to maintain their function and slow down

translation to facilitate folding where appropriate

(Hanson and Coller 2018; Webster et al. 2017).

Therefore, when translating tRNA pool modifications

to PMF applications, it can be prudent to pursue a

harmonized approach that maintains the relative

abundance of natural tRNA pools rather than using

preferred codons throughout the coding sequence.

Codon harmonization requires information about

codon usage and the size of tRNA pools in the source

organism and the host. The magnitude of tRNA pools

is well-characterized in yeast (Bloom-Ackermann

et al. 2014; Shah and Gilchrist 2011) but not in plants,

although such information may become accessible

with recently developed methods, e.g. combined

treatment with the demethylating enzyme AlkB and

ligation with tRNA-specific adapters in order to

sequence tRNAs (Warren et al. 2020). In addition to

sequence modifications (Hopper and Nostramo 2019;

Hummel et al. 2019), the composition of tRNA pools

can change in response to stress (Torrent et al. 2018).

Recombinant protein overexpression can induce

stress, especially when triggered by bacterial infiltra-

tion (Grosse-Holz et al. 2017; Buyel et al. 2015a), and

the impact on tRNA pools should therefore be

investigated before adapting the expression host.

Advances in the detection and quantification of tRNAs

can facilitate the rapid and routine analysis of such

pools (Jacob et al. 2019) and thus contribute to an

enhanced understanding of mRNA translation, specif-

ically of recombinant proteins. Once in place, mod-

ified tRNA pools can also help to prevent protein

aggregation (Nedialkova and Leidel 2015). Such

modifications can be introduced by genome editing,

for example by removing or altering the stress

response pathway or modifying the expression of

tRNA genes.

Suppression of gene silencing

Sequence-dependent RNA degradation or silencing

can be directed against RNA transcribed from trans-

genes, thereby reducing the yield of recombinant

proteins (Brodersen and Voinnet 2006). However, this

mechanism can be prevented by the co-expression of

viral silencing suppressors. Several of these repressors

have been used alone or in combination for transient

co-expression in Nicotiana benthamiana (Arzola et al.

2011). For example, the p19 suppressor from tomato

bushy stunt virus (TBSV) binds to siRNA and prevents

RISC assembly, and has been widely used to boost the

expression of recombinant proteins, as shown by the

15-fold increase in antibody yields in tobacco plants

(Garabagi et al. 2012). Other silencing repressors

inhibit local and systemic RNA silencing by prevent-

ing the accumulation of siRNAs, interfering with

siRNA–AGO interactions, or triggering the degrada-

tion of AGO1 (Baumberger et al. 2007). These

approaches rely on the overexpression of silencing

repressors, but other strategies based on the repression

of endogenous genes have been reported. The DCL2

and DCL4 genes were simultaneously repressed in N.

benthamiana plants by RNA interference (RNAi) to

improve the production of recombinant proteins by

transient expression, although the repression levels

were somewhat unstable (Matsuo and Matsumura

2017). Gene knockouts generated using gene editing

technology provide a preferable alternative, and this

has been demonstrated in Medicago truncatula and

soybean by using TALENs and CRISPR/Cas9 to

modify DCL2, DCL3 and other genes involved in

small RNA processing (Curtin et al. 2018). AGO2 was

also inactivated in N. benthamiana using CRISPR/

Cas9, and infection with a viral vector encoding green
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fluorescent protein (GFP) resulted in higher expres-

sion levels in these plants (Ludman et al. 2017).

The CRISPR/Cas9 system has been used to knock

out RNA-dependent RNA polymerase 6 (RDR6) in N.

benthamiana. This enzyme is required for the synthe-

sis of dsRNAs that are subsequently processed into

siRNAs. During transient expression, the resulting

plants were defective in post-transcriptional gene

silencing and accumulated larger amounts of recom-

binant GFP than controls (Matsuo and Atsumi 2019).

Interestingly, the N. benthamiana LAB strain (http://

benthgenome.qut.edu.au/) carries a natural frameshift

insertion in the RDR1 gene that affects its response to

viral infection and makes it an ideal host for viral

expression vectors (Yang et al. 2004). Genome editing

may facilitate the transfer of these useful features of

the N. benthamiana LAB strain to other production

hosts, including other Nicotiana species (Bally et al.

2018).

Stress resilience and modified degradation

pathways

The expression of secreted recombinant proteins in

plants often causes an imbalance between the amount

of unfolded protein entering the secretory pathway and

the protein folding machinery of the endoplasmic

reticulum (ER), resulting in the induction of ER stress

and an unfolded protein response (UPR) in which the

cell increases its protein-folding capacity (Arcalis

et al. 2019; de Wilde et al. 2013; Oono et al. 2010;

Wang et al. 2015; Pastor-Cantizano et al. 2020). The

major UPR sensing system appears to be conserved in

all eukaryotes, although different organisms utilize

different subsets of ER-resident transmembrane sen-

sors. When these sensors are activated by unfolded

proteins, they initiate a cascade of events that even-

tually stimulates the synthesis of more chaperones and

other enzymes that promote protein folding, such as

protein disulfide isomerases (PDIs) that promote the

formation of disulfide bonds. The UPR also suppresses

the synthesis of secretory proteins to prevent further

overloading of the ER (Howell 2013).

Although some protective aspects of the UPR, such

as the activation of ERAF (ER-assisted folding)

pathways, are likely to encourage the production of

functional recombinant proteins, the associated qual-

ity control mechanisms, the induction of programmed

cell death (PCD), and the general downregulation of

secretory protein expression undoubtedly act against

protein accumulation. It is therefore necessary to

achieve the selective control of specific components of

the UPR signaling pathway for the permanent

improvement of recombinant protein synthesis in

plants. Selective partial UPR activation has also been

proposed for mammalian cells and yeast as a means to

optimize protein production and secretion (Raschma-

nová et al. 2019; Hussain et al. 2014). The design of

meaningful strategies to this effect requires a thorough

understanding of the processes needed to induce the

ERAF pathway while avoiding the general suppres-

sion of protein synthesis (Thomas and Walmsley

2015).

Inositol requiring enzyme 1 (IRE1) acts as a major

signaling hub and comprises an endoribonuclease

domain and a kinase domain. Whereas the ribonucle-

ase activity of IRE induces regulated IRE1-dependent

decay (RIDD) of mRNAs encoding secretory proteins

(Chen and Brandizzi 2013), and would therefore be an

obvious target for gene disruption, the complete

knockout of IRE1 is detrimental for plant development

because the kinase activity of IRE1 plays a key role

independent of the ribonuclease activity, as shown in

rice using a gene targeting system to replace genomic

IRE1 with two types of missense alleles leading to a

defect in either the kinase or ribonuclease domain

(Wakasa et al. 2012). Today’s genome editing tech-

nologies will allow even more efficient targeted

modifications, making it feasible to generate plant

expression hosts lacking the RNase domain of IRE1

while maintaining its kinase activity.

In addition to modulating individual pathways, it is

also important to identify key factors in plants that

suppress ER stress responses in order to prevent PCD.

This could be achieved by designing loss-of-function

genetic screens based on CRISPR/Cas9, as recently

demonstrated in mammalian cells (Panganiban et al.

2019).

Enhancing the protein storage capacity

of the endomembrane system

The ER—central hub for protein synthesis, folding,

modification and storage

Most complex recombinant proteins produced in

plants pass through the ER and acquire ER-specific

post-translational modifications; some are even
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retained in this compartment (Margolin et al. 2020).

Cells that secrete large amounts of protein tend to

feature a well-developed ER that accounts for a

substantial proportion of the cellular volume. For

example, antibody-secreting mammalian plasma cells

differentiate from B lymphocytes, and this process is

marked by a substantial expansion of the ER (Zhu

et al. 2019). In plants, a similar phenomenon is

observed in seed endosperm cells, which produce

large quantities of storage proteins (Arcalı́s et al.

2020). Not surprisingly, a positive correlation has also

been established between the effective volume of the

ER and the capacity of cells to secrete recombinant

proteins, and yeast strains with an expanded ER have

been shown to produce higher yields of such proteins

(Ruijter et al. 2016). UPR signaling is also linked to

ER membrane expansion driven by lipid biosynthesis,

and membrane expansion alleviates ER stress inde-

pendently of an increase in ER chaperone levels.

Therefore, expanding the ER by promoting membrane

synthesis is not only a means to increase the capacity

and productivity of the ER, but also an important

component of the cellular mechanism to overcome ER

stress (Schuck et al. 2009; Ruijter et al. 2016). In order

to increase ER capacity, cells can be engineered to

produce larger quantities of phospholipids, especially

phosphatidylcholine (PC). One way to boost intracel-

lular PC levels is to reduce or abolish the catalytic

activity of a cytosolic phosphatidic acid phosphatase

(PAP or PAH), which leads to ER proliferation, as

demonstrated by the double knockout of PAH1/2 in

Arabidopsis (Craddock et al. 2015). A similar effect

could be achieved in other plant species by genome

editing.

The vacuole—storage opportunity or dead volume?

Plant vacuoles account for up to 90% of the vegetative

cell volume and usually function as lytic compart-

ments (Marty 1999). In seeds and other storage organs,

vacuolar compartments are often specialized for the

long-term storage of stable protein reserves, serving as

a protein storage vacuole (PSV) for the stockpiling of

nutrients (Herman and Larkins 1999). The PSV is

therefore a favorable intracellular destination for

recombinant proteins produced in seeds (Takaiwa

et al. 2017; Arcalis et al. 2014).

In contrast, the deposition of recombinant proteins

in the central vacuole of leaf cells and undifferentiated

suspension cells is often considered undesirable

because, for many proteins, this compartment does

not provide a stable environment. However, there are

several examples of recombinant proteins (including

avidin, cellulolytic enzymes and endolysin) that

accumulate to high levels in the leaf central vacuole

(Marin Viegas et al. 2017). Vacuolar targeting has also

been reported in N. benthamiana for monoclonal

antibodies (Ocampo et al. 2016). Most notably, a

vacuolar targeting signal was used for the expression

of human glucocerebrosidase in carrot cells, the first

recombinant protein produced in plants that was

approved and marketed as a pharmaceutical product

for human use. In this case, vacuolar targeting was

used to achieve the desired N-linked glycan structure

with terminal mannose residues, resulting from the

activity of a vacuolar glycan-modifying enzyme

(Shaaltiel et al. 2007).

Despite the cases described above, the lytic char-

acter of the vacuole is often a disadvantage. However,

vacuoles of vegetative tissues are highly dynamic, and

their characteristics are affected by environmental

conditions, developmental programs and genetic cues,

and therefore culture conditions and genetic modula-

tion may be suitable tools for optimization. For

example, transient overexpression of the key tran-

scriptional regulator LEAFY COTYLEDON2 (LEC2)

alters leaf morphology and the lytic vacuole becomes

smaller in size and is replaced by PSVs (Feeney et al.

2013). The controlled transcriptional activation of

such regulators may allow the vacuolar compartments

to be modified or minimized in the context of PMF.

This could be achieved, for example, using the

CRISPR activation (CRISPRa) approach, in which a

mutant version of Cas9 with both nuclease domains

inactivated (known as dead Cas9 or dCas9) but

retaining its ability to bind specific DNA sequences

when directed by guide RNA (gRNA), is fused to a

transcriptional activator domain (Chavez et al. 2015).

In the long term, it may be possible to induce the

transformation of vacuoles into PSVs, for example

during transient expression, but this substantial inter-

vention in cellular metabolism may have negative side

effects that first have to be understood and addressed.

Modulating levels of endogenous chaperones

The folding and maturation of proteins in the ER is

mediated by chaperones, which are also involved in
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the stringent quality control of nascent proteins to

ensure that terminally misfolded proteins are targeted

for ERAD (Strasser 2018). The production of recom-

binant proteins frequently imposes stress on this

machinery, inducing the UPR and ultimately increas-

ing the expression of chaperones, thus providing

additional protein folding capacity. Not surprisingly,

this sparked the idea to overexpress selected chaper-

ones in order to support the production of endogenous

and recombinant proteins in larger amounts. However,

the substantial overexpression or suppression of BiP1

in rice triggered ER stress, altering the seed phenotype

and the intracellular structure of the endosperm, thus

reducing the seed protein content (Wakasa et al. 2011).

Interestingly, the highest recombinant protein yield

was achieved in rice seeds expressing slightly higher

than normal levels of BiP1, leading to the conclusion

that only judicious modification of BiP1 levels and a

well-balanced abundance of ER stress-related proteins

in transgenic rice would enhance the production of

secretory proteins (Wakasa et al. 2011). Similarly, in

yeast and mammalian cells, the overexpression of

single ERAF genes such as BiP and PDI had variable

success in terms of product yields (Klabunde et al.

2007; Damasceno et al. 2007; Kunert and Reinhart

2016). The more subtle modulation of the entire ERAF

pathway by targeting and editing key regulators may

be necessary for consistent host plant improvement.

An alternative approach is the co-expression of

chaperones and folding helpers from the source of the

recombinant protein. For example, in the presence of

human CRT, several human viral glycoproteins accu-

mulated to much higher levels in N. benthamiana

compared to hosts with the plant chaperone machinery

alone. Furthermore, the host ER stress response

induced by HIV Env gp140 expression was alleviated

in the presence of human CRT (Margolin et al. 2020).

It will be interesting to explore further combinations of

recombinant proteins and chaperones from different

origins to identify successful strategies for the opti-

mization of host secretory pathways for the production

of specific protein classes. Clearly, a combination of

genome editing and genetic modification will be

required to reach this goal.

Modulating endogenous protease activity

One of the major hurdles preventing the broader

adoption of PMF is the relatively low yield of intact

recombinant protein compared to established produc-

tion platforms. The low yields partly reflect the

presence of endogenous proteases, which can degrade

the product in planta, in the supernatant of cell

suspension cultures, or following the disruption of the

plant tissue for product extraction. This not only

reduces the yields, but can also interfere with DSP and

affect product quality because the degradation prod-

ucts are difficult to remove. For example, full-size IgG

antibodies, by far the largest class of biopharmaceu-

ticals, frequently suffer from proteolytic degradation

when expressed in plants (Donini et al. 2015; Puchol

Tarazona et al. 2020). The most straightforward

strategy to avoid proteolysis is to deplete or eliminate

the native plant proteases at their source. RNAi-

mediated gene silencing for the downregulation of

certain protease classes can boost the accumulation of

recombinant proteins in rice (Kim et al. 2008), tobacco

BY-2 cells (Mandal et al. 2014), and tobacco leaves

(Duwadi et al. 2015). Although this is a valid strategy,

RNAi triggers a more generalized gene silencing

response that could affect transgene expression, and is

certainly not compatible with transient expression

methods that involve the co-expression of silencing

inhibitors. RNAi is also sensitive to environmental

factors such as warm temperatures, which suppress

post-transcriptional gene silencing in Arabidopsis

(Zhong et al. 2013). The knockout of protease genes

by genome editing is a more effective approach.

Different proteases can contribute to the degradation

of a target protein by attacking different regions, so

multiplex editing would be required to remove all

relevant proteases (Schiermeyer 2020). In such cases,

the extraordinary versatility of the CRISPR/Cas9

system is a great advantage, particularly its compat-

ibility with multiplex editing. A specific subtilisin

family protease was knocked out by gene targeting in

the moss Physcomitrella patens, leading to a signif-

icant reduction in extracellular proteolytic activity and

a small increase in recombinant protein yields (Ho-

ernstein et al. 2018). Technically this was achieved by

HR, the predominant repair pathway in moss, which

occurs spontaneously in the absence of DSBs. In

higher plants, where HR is less efficient, the simplest

approach to inactivate protease genes would be SSN-

induced indel formation.

The engineered P. patens line lacking subtilisin

appeared phenotypically identical to wild-type moss,

but the overall effect of protease knockouts in higher
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plant development or defense cannot be predicted and

would need to be evaluated in each case (van der

Hoorn 2008). The use of inducible promoters to

achieve the spatiotemporal control of SSN expression

would allow the depletion or elimination of proteases

to be coupled with the time of production and harvest,

thus avoiding any interference with plant growth.

Recently, an estrogen-triggered CRISPR/Cas9 system

that conditionally generates targeted gene knockouts

in particular cell types has been reported in Arabidop-

sis (Wang et al. 2020). The dCas9 system discussed

above could also be used, this time with the inactive

SSN fused to a transcriptional repressor, to modulate

several protease families simultaneously with only

one regulatory protein (Lowder et al. 2017).

Alternatively, Cas13 could be used to downregulate

gene expression without triggering silencing. Cas13 is

a recent addition to the CRISPR toolbox that can

specifically degrade single-stranded RNA, and it is

easily reprogrammed to target any sequence of choice.

Cas13 has already been used for the post-transcrip-

tional regulation of gene expression in plants (Wolter

and Puchta 2018). In any case, when the co-expression

of additional proteins is required in PMF applications,

preliminary validation must be carried out to ensure

there is no impact on the yield of the primary

recombinant protein.

There are several hundred proteases with various

activities and expression profiles in different plant

species and subcellular compartments (van der Hoorn

2008), so there is no easy and one-size-fits-all solution

to solve the issue of proteolytic degradation. For each

production process and target protein, the genes of

relevant proteases should be identified and then

knocked out or downregulated. Genome editing offers

an excellent research tool to identify individual

proteases acting on a given protein, allowing anti-

protease strategies to be tailored for different PMF

processes. Given the high throughput of the CRISPR/

Cas9 system, it is now possible to conduct systematic

screens of large numbers of genes, for example to

identify protease inhibitors that enhance the accumu-

lation of pharmaceutical proteins in N. benthamiana

(Grosse-Holz et al. 2018). Such an approach can be

particularly useful to identify groups of proteases that

are relevant for the degradation of various recombi-

nant protein products, thereby facilitating their knock-

out and the establishment of a general-purpose

expression host plant line.

As an alternative to targeted protease inactivation,

the large number of proteases in plants can be

addressed by expressing broad-spectrum protease

inhibitors (PIs) together with the recombinant protein

of interest. PIs can be targeted to the same subcellular

compartment as the recombinant protein product, and

a single PI is often effective against several proteases

with redundant functions (Grosse-Holz and van der

Hoorn 2016). However, strict spatiotemporal control

of PI expression is important to avoid compromising

host plant development. This is easily achieved in

transient expression systems based on agroinfiltration

because the PI is only expressed in the infiltrated

tissues, avoiding unwanted effects elsewhere (Grosse-

Holz et al. 2018). For example, the tomato cysteine

protease inhibitor SlCYS8 boosted the accumulation

of antibodies transiently expressed in N. benthamiana

leaves (Jutras et al. 2016) and has also been used as a

stabilizing fusion partner for other recombinant pro-

teins (Sainsbury et al. 2013). More recently, two new

N. benthamiana PIs (NbPR4, NbPot1) and one of

human origin (HsTIMP) increased the accumulation

of a-galactosidase, erythropoietin, and a monoclonal

antibody in infiltrated N. benthamiana leaves (Grosse-

Holz et al. 2018). Other PIs that enhance the accumu-

lation of recombinant proteins have been expressed in

transgenic plants or plant cells either constitutively or

under the control of inducible or organ-specific

regulatory elements (Mandal et al. 2016; Pillay et al.

2012). Genome editing may provide a useful tool to

modify the promoters of endogenous PI genes to

achieve spatiotemporally regulated overexpression.

Modifying post-translational modifications

and product quality

Specific N-linked and O-linked glycosylation

profiles

Glycosylation is one of the most important post-

translational modifications in the context of PMF. The

presence and structure of sugar residues influences

protein homogeneity, assembly, immunogenicity and

functionality, such as the ability of mAbs to trigger

antibody dependent cellular cytotoxicity (Chenoweth

et al. 2020). Animals and plants produce complex N-

linked glycans with an identical core of two N-

acetylglucosamine (GlcNAc) residues followed by a
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bifurcating mannose, additional mannose residues on

each branch, and terminal GlcNac residues, a structure

described by the abbreviation GnGn (Montero-Mo-

rales and Steinkellner 2018). There are three main

differences between the complex glycans of plants and

humans: (1) plant glycans typically carry core a(1,3)-

fucose and b(1,2)xylose, which are not present in

humans; (2) some recombinant proteins produced in

plants, including human erythropoietin, are modified

by adding b(1,3)galactose and a(1,4)fucose to the

terminal GlcNAc residues, forming a structure known

as the Lewis a (Lea) trisaccharide (Weise et al. 2007;

Castilho et al. 2013) which occurs only rarely on the

glycoproteins of healthy adult humans (Parsons et al.

2013); (3) paucimannosidic-type glycans lack the two

terminal GlcNAc residues, which are trimmed off by

specific b-N-acetylhexosaminidases (HEXO). These

differences prevent the addition of homogeneous

human-like galactosylated N-linked and O-linked

glycans on recombinant glycoproteins produced in

plants (Kriechbaum et al. 2020).

Because the specific pattern of glycosylation may

affect a product’s performance, e.g. effector function,

modifying plant-specific glycosylation can be of

interest (Nagels et al. 2011). The elimination of

plant-specific b(1,2)xylose and a(1,3)fucose residues

in P. patens was achieved by HR (Koprivova et al.

2004). RNAi and chemical mutagenesis with ethyl-

methanesulfonate (EMS) have been used to generate

duckweed (Cox et al. 2006), alfalfa (Sourrouille et al.

2008) and N. benthamiana lines (Strasser et al. 2008)

with significantly depleted b(1,2)xylosylated and/or

a(1,3)fucosylated glycans, but residual amounts of

these structures remain. This is because RNAi does not

completely eliminate all target mRNAs, and EMS

mutagenesis was unable to simultaneously inactivate

multiple fucosyltransferase genes. In contrast, SSNs

can induce precise mutations in multiple target genes

ensuring complete enzyme inactivation. CRISPR/

Cas9 is particularly suitable for multiplex gene

editing, allowing the generation of N. benthamiana

plants (Jansing et al. 2018) and tobacco BY-2 cell

suspension cultures (Mercx et al. 2017; Hanania et al.

2017) completely devoid of b(1,2)xylose and a(1,3)-

fucose by knocking out up to seven genes

simultaneously.

Lea epitopes were eliminated in P. patens by HR-

mediated knockout of the b(1,3)galactosyltransferase

gene (Parsons et al. 2012) and it is only a matter of

time before the same is achieved using SSNs in higher

plants. Recently, the improved b(1,4)galactosylation

of proteins other than monoclonal antibodies (Strasser

et al. 2009) and at different glycosylation sites was

reported in N. benthamiana using an RNAi approach

to target the b-galactosidase 1 gene (Kriechbaum et al.

2020).

There is also much interest in simplifying the plant

glycosylation repertoire to generate a minimal glycan

core structure (GnGn) that can be exploited as an

acceptor substrate for further elongation and diversi-

fication (Montero-Morales and Steinkellner 2018).

Building such a platform requires that plant-specific

b(1,2)xylose and a(1,3)fucose residues are completely

removed and that the hydrolysis of GlcNAc from

complex glycans is prevented to provide homoge-

neous GnGn ‘‘acceptor’’ structures. RNAi targeting of

HEXO genes led to the depletion of paucimannosidic

N-linked glycans in N. benthamiana (Shin et al. 2017).

Because RNAi only downregulates genes and is

sensitive to variable experimental conditions, leading

to inconsistent and heterogeneous glycosylation pat-

terns (Kallolimath et al. 2020), it is important to

achieve stable gene disruption at the DNA level by

genome editing to generate a robust chassis. The full

integration of the different steps needed to generate a

plant with no plant-specific b(1,2)xylose and a(1,3)-

fucose and no degradation of terminal GlcNAc has yet

to be achieved (Fischer et al. 2018). Once such a

chassis is available, the enzymatic machinery for the

synthesis, transport and addition of galactosylated and

sialylated N-linked glycans (Kallolimath et al. 2016)

can be introduced by conventional transformation to

ultimately produce recombinant proteins with a

homogeneous, human-like glycosylation profiles.

A GlycoDelete strategy has been applied in

Arabidopsis, for which an EMS mutant lacking N-

acetylglucosaminyltransferase-I (GnTI) activity is

available (Piron et al. 2015). Overexpression of a

Golgi-targeted version of a fungal endo-N-acetyl-b-D-

glucosaminidase in this mutant background resulted in

a line producing recombinant proteins with homoge-

neous, single-GlcNAc N-linked glycans and without

any obvious phenotype. Such simplified N-glycosyla-

tion pathways could be useful for the production of

human proteins that benefit from mannosidic struc-

tures, such as glucocerebrosidase (Limkul et al. 2016),

without needing to modify their sequence for retention

in specific subcellular compartments. With genome
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editing technologies, it is now feasible to quickly

generate the GnTI mutants and extend the robust

GlycoDelete strategy to species other than

Arabidopsis.

Despite the importance of O-linked glycans for the

biological activity and pharmacological properties of

recombinant proteins, and the fact that plant-specific

O-linked glycans are IgE epitopes in allergy patients

(Gomord et al. 2010), these structures have received

far less attention than N-linked glycans. Whereas

mammalian proteins predominantly bear mucin-type

glycans added to serine and threonine, O-linked

glycosylation in plants starts with the conversion of

proline to hydroxyproline by enzymes of the prolyl-4-

hydroxylase (P4H) family, followed by decoration

with arabinose or arabinogalactan residues (Strasser

2016). The first step towards humanizing plant O-

linked glycans is therefore to knockout the P4H genes.

This was achieved by HR in P. patens, allowing the

production of recombinant human erythropoietin

devoid of non-human prolyl-hydroxylation and with-

out obvious phenotypic modifications in the host

(Parsons et al. 2013). Research is focusing on the

identification and elimination of P4H isoforms

involved in the synthesis of hydroxyproline in N.

benthamiana (Schoberer and Strasser 2018). The

multiplexing capability of the CRISPR/Cas9 system

makes it the most suitable tool to inactivate multiple

P4H paralogs.

The introduction of mucin-type O-glycosylation in

higher plants was achieved by overexpressing the

human GalNAc transferase 2 gene in Arabidopsis,

tobacco BY-2 cells and N. benthamiana (Montero-

Morales and Steinkellner 2018). Transient co-expres-

sion with constructs encoding enzymes required for

the initiation and elongation of human O-linked

glycans made it possible to generate disialylated

mucin-type core 1 O-linked glycans on IgA1 produced

inDXT/FT N. benthamiana plants (Dicker et al. 2016).

Targeted gene integration mediated by SSNs would

ensure co-segregation of the multiple genes required

to introduce human-like glycosylation pathways in

stable transgenic plants.

Modulating endogenous oxidase activity

All plants produce a combination of phenolic com-

pounds, which are released during the homogenization

step required to extract PMF products, especially from

green tissues. Polyphenol oxidases (PPOs) can form

covalent complexes between phenols and proteins that

can result in protein aggregation and precipitation,

substantially reducing the yield, purity and product

quality (Twyman et al. 2003).

Phenolic oxidation during extraction from leafy

materials can be reduced by supplementing the

extraction buffer with antioxidants (Buyel et al.

2015b), but this increases the complexity of the

extraction procedure and the overall costs of large-

scale production. RNAi targeting the PPO gene has

been shown to reduce the browning of potato tubers

and apples (Nadakuduti et al. 2018). Accordingly, the

elimination or reduction of PPO activity by genome

editing would provide an alternative and efficient

solution for phenolic oxidation in PMF applications.

Knocking out a single member of the potato PPO gene

family using CRISPR/Cas9 reduced PPO enzyme

activity in the tubers by up to 69% without other

phenotypic effects (González et al. 2019), and a

similar approach could be used in PMF hosts such as

tobacco. Because PPOs play an important role in plant

defense, the complete elimination of PPO activity

might interfere with normal plant growth, especially

during open-field cultivation, and the methods dis-

cussed above for spatiotemporal regulation should

therefore be considered to avoid negative effects.

Improved biomass yield and handling

Several parameters can be used to evaluate methods

intended to improve biomass yields and handling

properties from a biomanufacturing perspective. The

most prominent is the harvest index, which was

initially defined as the (grain) yield per mass of

aboveground dry matter (Hay 1995). This has been

adapted for leafy crops and is expressed either as the

ratio of leaf biomass to total biomass—the leaf mass

fraction (Robson et al. 1996), or the leaf dry mass as a

proportion of total plant dry mass (Poorter et al. 2012).

Other established metrics for leafy crops include the

leaf area index (total leaf area per unit cultivation area)

(Pierik et al. 2004), relative growth rate (increase in

plant mass per unit plant mass and time), and total dry

mass (Poorter et al. 2012). In tobacco, the youngest

leaves can accumulate up to tenfold more recombinant

protein than older leaves as a proportion of biomass

(Buyel and Fischer 2012; Sack et al. 2015), so we
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recommend that PMF performance measures also

accommodate factors such as delayed leaf senescence,

protein content and fertilizer consumption. These

parameters were used when assessing transgenic 9A4

tobacco (Cherry et al. 1991) and various other crops

(Hay 1995). Desirable properties may vary depending

on the specific application, process or species, but

some generalizations are possible (Table 1). In this

section, we will discuss how such properties can be

improved by genetic engineering and/or genome

editing.

Modulating HCP expression to simplify DSP

and increase synthesis capacity

The ability of plants and plant cells to produce

recombinant proteins can be improved if capacity is

diverted from non-product HCPs to the recombinant

protein product, at least during certain time periods

(e.g., shortly before harvest). Reducing the number or

abundance of HCPs can also facilitate subsequent

product purification, which otherwise requires com-

plex processing techniques that may not be compatible

with all target proteins (Buyel et al. 2016; Opden-

steinen et al. 2018), and that increase upfront equip-

ment costs in larger-scale processes (Buyel and

Fischer 2014). The steady-state synthesis of HCPs

and recombinant proteins in transgenic plants reflects

the relative abundance of the corresponding mRNAs

(Liu et al. 2016) and their translation rate. Strong

constitutive promoters such as the double enhanced

Cauliflower mosaic virus 35S promoter or endogenous

ubiquitin and actin promoters are used to maximize the

rate of transcription (Lessard et al. 2002; Liu and

Stewart 2016) and thus generate a large pool of

product mRNA for translation. However, substantial

cellular resources are still devoted to the synthesis of

HCPs, and proteins such as ribulose-1,5-bisphosphate

carboxylase/oxygenase (RuBisCO) can account for[
40% of the total soluble protein (TSP) in leaf cells

(Buyel 2015). An ideal chassis for PMF would feature

the time-controlled shutdown of abundant HCP syn-

thesis using inducible RNAi constructs or dCas9-

based transcriptional repressors. In transgenic plants,

the RNAi construct or dCas9 fusion would be placed

under the control of an inducible promoter, such as the

ethanol-inducible alc promoter from Aspergillus nidu-

lans described in more detail below. If the chassis

plant is designed for transient expression, the shut-

down constructs could be linked to endogenous

promoters that are activated by infiltration with A.

tumefacines (Grosse-Holz et al. 2017).

The shutdown strategy should focus on the most

abundant HCPs involved in photosynthesis and gen-

eral metabolism but should not target proteins required

for protein synthesis, associated energy metabolism or

supporting functions such as tRNA re-charging,

because the resulting negative impact on protein

synthesis would offset any positive effects of

increased capacity. RuBisCO is one of the key targets

because it is highly abundant in green biomass and

expendable at least in the days immediately before

harvest, when the plant has already accumulated

sufficient energy reserves (Robert et al. 2015). The

provision of energy reserves can be re-enforced by

genetic engineering, as shown for lipid accumulation

in tobacco leaves (Zhou et al. 2020). Some experi-

ments even suggest that a 25% reduction in RuBisCO

content can increase biomass accumulation by 10% if

the carbon dioxide partial pressure is increased to

Table 1 Features of leafy crops that affect productivity and handling properties for plant molecular farming

Parameter Unit Relevance Indicator for

Harvest indexa kg kg-1 Plant yield Relevant biomass

Leaf area index m2 m-2 Facility yield Cultivation density

Relative growth rate kg kg-1 d-1 Facility yield Batch time

Total dry mass kg plant-1 Plant yield Biomass

Accumulation homogeneity Log10 (youngest to oldest) Plant yield Biomass quality

Protein contentb g kg-1 Plant yield Biomass quality

aAlso referred to as leaf mass fraction
bThe protein content is often measured in terms of total soluble protein and thus depends on the selected extraction conditions
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120 Pa (Kanno et al. 2017). Other target proteins may

be related to photosynthesis, cell growth and cell

division, as has been suggested for engineering in

E. coli (Mahalik et al. 2014). Finally, HCPs related to

stress responses are also good targets (Sharma et al.

2020). In such cases, the regulatory proteins of

pathogens may be useful to suppress host defense

reactions as reported for viruses in various eukaryotic

cells (Gale et al. 2000; Urquidi Camacho et al. 2020)

and tested for proteins from phytopathogenic bacteria

(Buyel et al. 2015a).

For recombinant protein production in seed crops,

the concomitant reduction of endogenous storage

protein accumulation can lead to a 2–10 fold increase

in product yields, possibly because space is made

available in the storage organelles due to the absence

of endogenous seed proteins and/or because of com-

pensatory mechanisms to maintain total nitrogen and

sulfur levels in the seed (Takaiwa 2013; Takaiwa et al.

2017). Furthermore, this reduces competition with the

otherwise abundant storage proteins for translation,

folding and assembly in the ER. For example,

depleting the pool of 13-kDa prolamins in rice

endosperm increased the yield of recombinant pro-

teins such as cedar pollen allergen by rebalancing the

proteome (Kawakatsu and Takaiwa 2012). Thus far,

the suppression of endogenous seed storage proteins in

PMF applications has typically been achieved by

RNAi (Shigemitsu et al. 2012; Yang et al. 2012; Yuki

et al. 2012) or through the use of expression hosts

carrying conventionally-induced mutations in storage

protein genes (Tada et al. 2003). More recently,

CRISPR/Cas9 has been used to target storage protein

genes in camelina (Lyzenga et al. 2019), sorghum (Li

et al. 2018) and wheat (Sánchez-León et al. 2018).

Seed crops depleted for endogenous storage proteins

by genome editing could be developed as PMF

production hosts because their phenotype is consid-

ered stable and they do not contain RNAi constructs,

reducing the risk of interference between transgene

cassettes.

It is important to note that re-balancing the host cell

proteome can also be achieved by technical measures

such as exposing plants to methyl jasmonate, as shown

for transient expression in N. benthamiana (Robert

et al. 2015). However, such manufacturing-based

manipulations add additional levels of complexity

and can increase process variability.

Modifying existing pathways to avoid toxic

metabolites or other disadvantageous molecules

Non-food/feed plants like tobacco reduce the likeli-

hood of product contamination in the food/feed chain

(Breyer et al. 2012; Commandeur et al. 2003).

However, such plants nevertheless pose a risk because

they may produce toxic compounds, such as the

alkaloid nicotine in the case of tobacco. The purifica-

tion steps required for biopharmaceutical products

ensure that small molecules and protein-based impu-

rities are removed, so they fall below the limit of

detection (Ma et al. 2015). However, laborious

techniques based on organic solvents may be neces-

sary to deplete them in technical protein formulations

(Fu et al. 2010) or products that rely on minimal

processing such as antibacterial proteins (McNulty

et al. 2020). Developing a chassis for PMF that is

devoid of such potentially toxic compounds is there-

fore appealing. In tobacco, this goal has been achieved

by knocking out both alleles of all six genes coding for

berberine bridge enzyme-like (BBL) proteins, which

are responsible for the final oxidation step in the

synthesis of nicotine (Schachtsiek and Stehle 2019).

CRISPR/Cas9 was used for this approach, resulting in

a[ 99.6% reduction of nicotine levels. However, the

modulation of secondary metabolism may cause

unwanted side effects if key enzymes are targeted.

For example, when a homospermidine synthase was

overexpressed in tobacco to reduce spermidine levels,

the transgenic plants showed a stunted phenotype

(Kaiser et al. 2002). Instead of manipulating enzyme

expression directly by gene knockout or overexpres-

sion, corresponding transcription factors can be

targeted to control metabolite concentrations in a

spatiotemporally regulated manner (Hayashi et al.

2020).

The unattractive odor of residual plant biomass can

prevent subsequent use, for example as building

materials (Buyel 2018). Accordingly, modifying a

host plant so that odorous substances are not formed

even after primary product extraction can increase the

compatibility of the residual biomass with integrated

processing, and thus improve the economic viability of

the overall process. Thus far, research has focused on

the introduction of enzymes that enhance the produc-

tion of aromatics, for example by overexpressing a

monoterpene synthase in tobacco to increase limonene

levels (Lücker et al. 2004) and thus alter the smell of
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the plants (El Tamer et al. 2003). PMF applications

could be facilitated by introducing enzymes that

degrade odorous volatile organic compounds (VOCs)

(Hammerbacher et al. 2019; ul Hassan et al. 2015;

Agapiou et al. 2016), for example terpenes released

during harvest and biomass decomposition (Müller

et al. 2004; Schiavon et al. 2017), eliminating the odor

of residual biomass and increasing consumer accep-

tance if the bagasse is used as a byproduct (see below).

Genome editing could also be used to terminate

metabolic pathways at a point where interference with

other relevant metabolites is limited. Importantly,

cultivation conditions can also affect the metabolic

profile of plants, so the ideal outcome may reflect a

balance between technical and biotechnological

approaches (Matros et al. 2006; Buyel et al. 2015a).

Increased biomass accumulation

The yield of harvested biomass can be increased by

partitioning more assimilated carbon into the har-

vested, product-containing tissue (see below) or by

using enhanced agronomy practices and crop protec-

tion to realize the full genetic yield potential of a plant.

The efficiency of photosynthesis can be engineered to

increase the net conversion of visible solar energy into

biomass, and genes that can be targeted to improve the

photosynthetic efficiency of C3 crops have been

identified and comprehensively reviewed elsewhere

(Long et al. 2015). Efforts thus far to improve

photosynthetic efficiency and carbon gain have mainly

involved the conventional transformation of plants to

modulate endogenous genes or to introduce synthetic

pathways (Kromdijk et al. 2016; Głowacka et al. 2018;

South et al. 2019). Genome editing will expand this

toolbox, providing more precise methods for mutation,

transgene integration and the manipulation of regula-

tory sequences to boost or modulate the expression of

endogenous genes. The resulting plants would be

useful PMF hosts because although plants show

remarkable metabolic flexibility to accommodate high

levels of recombinant protein (Schmidt et al. 2019b)

the demand for protein synthesis capacity can com-

promise growth and biomass production (Oey et al.

2009). On the other hand, although the speed and

extent of biomass accumulation is an important factor

for PMF applications, improvements to energy con-

version, carbon assimilation and growth must not

affect the yield of recombinant protein per unit of

biomass. In this context, concentrating the recombi-

nant protein within a specific fraction of biomass that

has been targeted for preferred carbon partitioning,

such as the seeds, can achieve the simultaneous goals

of higher biomass accumulation and higher product

yields (Takaiwa et al. 2017).

Modification of plant habits to increase space–time

yield and safety

The shape and stature of plants not only affects

biomass accumulation but can also be adapted to

facilitate bioprocessing. For example, stunted growth

can increase the volumetric productivity of vertical

farms, and a high leaf-to-stem mass ratio can limit the

processing of biomass with a low product content, as

reported for tobacco (Buyel and Fischer 2012). These

properties can be modified to a limited extent by

controlling the cultivation conditions, especially light-

ing (Poorter et al. 2012). However, the optimal

conditions are species-dependent (Park and Runkle

2018), which increases process development costs and

necessitates the inclusion of more sophisticated

equipment in production facilities, such as wave-

length-adjustable LED modules or inter-lighting (Te-

wolde et al. 2018). This increases the upfront

infrastructure costs and adds new layers of process

complexity that need to be calibrated, documented and

maintained. Furthermore, controlling plant stature by

modulating light and other cultivation conditions can

have unintended side effects, such as influencing the

production of secondary metabolites that interfere

with DSP (Buyel et al. 2015a; Darko et al. 2014).

Genetic modifications can also be used to control

plant shape and stature, thus avoiding the need for

additional technical installations. For example, the

Rht1 and Rht2 genes control the wheat dwarfing

phenotype responsible for * 60% of the increased

grain yield during the Green Revolution in the 1960s

(Khush 2001). However, such phenotypes may not be

ideal for leafy crops such as tobacco because they

reduce the overall plant biomass (Langridge 2014).

Alternatively, overexpressing recombinant proteins

can inhibit stem elongation. For example, transgenic

tobacco line 9A4 produces an oat phytochrome

protein, and is 80% shorter than wild-type controls

(Cherry et al. 1991). Phytochromes can trigger addi-

tional desirable effects (stress tolerance and fewer

lateral branches) as well as unwanted phenotypes
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(precocious seed germination) as reported in tomato

(Ganesan et al. 2017). Genes such as PHYA and PHYB

have been identified as prime targets for modifying

plant stature, and a detailed analysis of phytochromes

in tobacco has shown that low levels of phyB1 reduce

leaf size whereas low levels of phyB2 increase stem

length (Fragoso et al. 2017). However, intra-batch

variability may increase and plants can become more

sensitive to environmental factors such as light (Pierik

et al. 2004; Robson et al. 1996). Because it can be

difficult to fine tune transgene expression, a gene

editing approach may be more prudent than genetic

engineering (Buyel et al. 2013).

Genes controlling flowering and senescence can

also improve the properties of PMF hosts by influenc-

ing stem elongation and biomass quality. For example,

CRISPR/Cas9 was used to inactivate the tobacco FT5

gene, which encodes a floral activator, allowing

flowering in a short-day setting but preventing it

under long-day conditions (Schmidt et al. 2019a).

Therefore, homozygous ft5– plants would remain in

the vegetative state indefinitely and continue to

accumulate biomass under long-day conditions, pro-

viding twin advantages for PMF applications: high

biomass production and an enhanced biosafety profiles

due to the absence of pollen and seed dispersal.

Similar results were achieved when three other FT

genes (FT1, FT2 and FT3) were overexpressed in

tobacco because the corresponding proteins are floral

repressors, causing the plants to remain in the

vegetative growth phase under long-day conditions

(Harig et al. 2012).

Even though many aspects of the genetic regulation

of plant growth are still poorly understood (Fankhau-

ser and Christie 2015), there are large databases of

genes and corresponding phenotypes available for

several plants including tobacco (Lein et al. 2008),

which can be used to identify further genes suitable for

gene editing.

Self-catalyzed processing of residual biomass

Regardless of the product type and even if the product

accumulates to very high levels ([ 5 g kg-1 biomass)

there will be residual plant biomass that often accounts

for[ 90% of the total plant mass (Buyel 2018). Using

this mass and the substances within it as a cascade

biorefinery to generate additional products can

improve the overall economic viability of a PMF

process. This can be facilitated by endowing plants

with the ability to self-catalyze the initial preprocess-

ing and processing steps, including biopolymer degra-

dation and, as stated above, the removal of VOCs that

generate unpleasant odors. This can be achieved by

expressing the corresponding enzymes alongside the

primary PMF product.

The most abundant molecules in residual plant

biomass are carbohydrates, including cellulose, which

accounts for * 30% of the solid matter in tobacco

(Sheen 1983). Cellulose is degraded by exoglucanases

and endoglucanases to form oligosaccharides and

monosaccharides (Bornscheuer et al. 2014). This

process is supported by proteins such as expansins,

which loosen the cell wall and improve accessibility

(Yoon et al. 2016). Biomass-modifying proteins can

be produced in large quantities in transgenic plants

(Brandon and Scheller 2020), even in the open field

(Schmidt et al. 2019b). Plants can be more suitable for

the production of exocellulases than microorganisms

due to the higher enzyme activity (Klinger et al. 2015).

Endoglucanases can be secreted to the apoplast (Xiao

et al. 2018), but targeting to the ER (Klose et al. 2015)

or plastids (Schmidt et al. 2019b; Fumagalli et al.

2019) helps to prevent the enzymes degrading essen-

tial cellulose structures before plants are harvested and

homogenized for product extraction. Alternatively,

enzyme expression can be restricted to specific organs,

such as maize kernels (Vicuna Requesens et al. 2019),

or can be induced at a particular time, such as just

before harvest, thus reducing the fiber content and

rigidity, which can facilitate primary product extrac-

tion. Methods to analyze the spatiotemporal activity of

regulatory elements in plants are well-established,

allowing the most appropriate promoters to be selected

(Xiong et al. 2016). For example, the ethanol-

inducible alc promoter has been used to induce the

expression of recombinant enzymes in tobacco (Salter

et al. 1998) and other plants (Roslan et al. 2001), and

can even be used to restrict expression to specific plant

tissues (Schaarschmidt et al. 2004). The method is

compatible with large-scale applications because

ethanol vapor can be used for induction (Sweetman

et al. 2002). This inducible promoter system has been

used successfully to mitigate the adverse of effects of

cellulase expression in tobacco caused by a constitu-

tive promoter (Klose et al. 2013). Enzymes can also be

expressed transiently to avoid any impact during

biomass accumulation, as shown for glucanases
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expressed in N. benthamiana using a pepper mottle

virus vector (Song and Ryu 2017). However, genome

editing can now be used to modify endogenous

cellulase promoters directly, allowing strict spatiotem-

poral expression.

Whole fibers from PMF processes can also be used

to manufacture by-products, including building mate-

rials (Revuelta-Aramburu et al. 2020). As discussed

above, the removal of odors and potentially harmful

metabolites from such materials will increase their

acceptability. Instead of laborious technical processes

such as those used in the juice industry (Iyer et al.

2010) the same outcome can be achieved by express-

ing enzymes in the plant biomass, as shown by the

removal of odorous compounds from garlic (Mirondo

and Barringer 2016) and the removal of alkaloids from

tobacco (Lin et al. 2016). Genome editing could also

be used to prevent the transformation of precursors

into odorous compounds by inactivating or removing

the corresponding enzymes.

It is likely that successful biomass processing will

require the activity of more than one enzyme, as

discussed for the conversion of lignocellulosic bio-

mass into sugars (Adsul et al. 2020). Enzymes

suitable for such reactions have already been found

in plants (Huang et al. 2019), mesophilic microorgan-

isms (Jacomini et al. 2020), and thermophiles (Han

et al. 2020), and have been identified via the metage-

nomic analysis of relevant microbial consortia, such as

those found in biogas facilities (Klippel et al. 2019).

Outlook

In this review, we discuss the properties of plants at the

molecular, cellular and organism levels that are most

relevant for PMF applications, and highlighted the

complementary roles of genetic engineering and

genome editing to address remaining challenges.

Genome editing has the potential to alleviate many

of the shortcomings of earlier genetic manipulation

methods because it potentially facilitates the precise

rather than random modification of genomes and

allows the direct modulation of genes rather than the

incomplete or variable outcomes of methods such as

RNAi (Table 1). Targeted transgene integration at a

safe-harbor locus in plants could also represent a

groundbreaking advance from the regulatory perspec-

tive. Independently-derived transgenic lines are cur-

rently not directly comparable due to position effects

and copy number variation, and regulators therefore

consider every transgenic plant line as a completely

different event that must be evaluated separately. If the

site of DNA integration is known and the transgene

itself is the only new aspect of the transgenic line, this

may reduce the regulatory burden for new transgenic

production lines and substantially accelerate their

approval and utilization. Additional work is necessary

to understand the physiological mechanisms of growth

and secondary metabolism that interact with PMF

applications, allowing us to translate this knowledge

into an ideal chassis for the production of recombinant

proteins.. Ultimately, the choice between technical

and biotechnological approaches for PMF should

integrate multiple factors, including long-term devel-

opment efforts, operational costs, process repro-

ducibility, product safety, regulatory approval and

customer acceptance.
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