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Abstract

Brain age estimated by machine learning from T1-weighted magnetic resonance images (T1w 

MRIs) can reveal how brain disorders alter brain aging and can help in the early detection of such 

disorders. A fundamental step is to build an accurate age estimator from healthy brain MRIs. We 

focus on this step, and propose a framework to improve the accuracy, generality, and interpretation 

of age estimation in healthy brain MRIs. For accuracy, we used one of the largest sample sizes 

(N=16,705 samples). For each subject, our proposed algorithm first explicitly splits the T1w 

image, which has been commonly treated as a single-channel 3D image in other studies, into two 

3D image channels representing contrast and morphometry information. We further proposed a 

“fusion-with-attention” deep learning convolutional neural network (FiA-Net) to learn how to best 

fuse the contrast and morphometry image channels. FiA-Net recognizes varying contributions 

across image channels at different brain anatomy and different feature layers. In contrast, multi-

channel fusion does not exist for brain age estimation, and is mostly attention-free in other medical 

image analysis tasks (e.g., image synthesis, or segmentation), where treating channels equally may 

not be optimal. For generality, we used truly lifespan data 0–97 years of age for real-world utility; 

and we thoroughly tested FiA-Net for multi-site and multi-scanner generality by two phases of 

cross-validations in discovery and replication data, compared to most other studies with only one 

phase of cross-validation. For interpretation, we directly measured each artificial neuron’s 

correlation with the chronological age, compared to other studies looking at the saliency of 
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features where salient features may or may not predict age. Overall, FiA-Net achieved a mean 

absolute error (MAE) of 3.00 years and Pearson correlation r=0.9840 with known chronological 

ages in healthy brain MRIs 0–97 years of age, comparing favorably with state-of-the-art 

algorithms and studies for accuracy and generality across sites and datasets. We also provide 

interpretations on how different artificial neurons and real neuroanatomy contribute to the age 

estimation.
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1. Introduction

Estimating brain age based on MRIs provides an important biomarker for brain health 

(Gaser and Franke, 2019). A common practice is a two-stage process known as “built on 

normal, applied to abnormal”. The accuracy of age estimation is decided in the first stage, 

which starts from healthy brain MRIs. This first stage builds a machine learning model to 

predict the brain age as close as possible to the actual chronological age in healthy brain 

MRI. The model is then applied, in the second stage, to estimate the brain age in abnormal 

brain MRIs, which usually appear normal but indeed are subtly altered by neuropsychiatric 

or neurological diseases. The difference between the predicted age and the actual 

chronological age, often referred to as the “brain age gap (BAG)”, can reveal accelerated or 

delayed aging. In recent examples, studies in this fashion have found abnormal aging 

associated with psychosis (Chung et al., 2018), HIV (Cole et al., 2017b), Alzheimer’s 

Disease (Franke and Gaser, 2012; Gaser et al., 2013), schizophrenia (Koutsouleris et al., 

2014; Schnack et al., 2016), epilepsy (Pardoe et al., 2016), traumatic brain injury (Cole et 

al., 2015) and other brain diseases (Gaser and Franke, 2019; Cole and Franke, 2017). 

Machine-learning-powered age estimation also revealed subtle early changes in brain health 

as a result of certain environmental exposures (Steffener et al., 2016). Comprehensive 

surveys can be found in works (Cole and Franke, 2017; Sajedi and Pardakhti, 2019; Gaser 

and Franke, 2019).

This paper focuses on the first stage – building an age estimator from healthy brain MRIs. 

This is because that increasing the accuracy of age estimation in healthy MRI (i.e., the first 

stage) can improve the algorithm’s sensitivity to detect subtle abnormal aging in diseased 

populations (i.e., the second stage). Recent studies focusing on the first stage are 

summarized in Table 1. Compared to them, we aimed to improve (a) accuracy; (b) 

generality; and (c) interpretation of age estimation in healthy MRIs. We developed a novel 

algorithm and designed a novel study with several features toward each of these three 

criteria.

Accuracy, the first criterion, refers to how algorithm-estimated brain ages approach the 

actual chronological ages in healthy subjects. An algorithm is more accurate if it scores a 

lower mean absolute error (MAE) than other algorithms in a common dataset. In studies that 

spanned ages from youth (15 years) up to 97 years (light gray rows in Table 1) or studies 
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that spanned ages from preschoolers (3–5 years) up to 97 years (dark gray rows in Table 1), 

the current MAE is around 3.5–5.5 years. In these studies, the errors (MAEs) from 

traditional or deep learning algorithms are surprisingly comparable (Part I versus Part II of 

Table 1). Nevertheless, deep convolutional neural networks (CNNs) have led to significantly 

better results than traditional machine learning methods in many other analysis tasks on 

natural images (Krizhevsky et al., 2012; He et al., 2016) and medical images (Shen et al., 

2017; Litjens et al., 2017). This motivated us to further improve the accuracy of deep 

learning CNN for age prediction, with three contributions toward accuracy in this paper.

• We used a larger sample size to fuel deep learning toward higher accuracy. 
Studies in 2017–2018 typically used one to two thousand healthy subjects. Very 

recently, the sample size has increased to close to, or over, ten thousand. This is 

done by merging many publicly-available datasets on healthy brain MRIs. As 

shown in the third column of Table 1, our study used one of the largest sample 

sizes (N=16,705 by merging 11 datasets).

• We explicitly split one 3D T1-weighted (T1w) image into contrast and 
morphometry channels (two 3D images) to improve age estimation accuracy. 
Some studies used diffusion or functional MRI in addition to T1w for age 

estimation. However, diffusion or functional MRI sequences are usually available 

for only hundreds to lower thousands of healthy subjects (Richard et al., 2018; 

Niu et al., 2020; Li et al., 2018). As recent studies mentioned, when the sample 

size increases to over ten thousand, T1w is usually the only MRI sequence 

available to all subjects (Feng et al., 2020; Pomponio et al., 2020). While T1w 

MRI is the only image used at this sample size, T1w MRI offers not just contrast 

information, as other studies used. Morphometry information, for example, can 

be extracted from segmented regions of interest (ROI) or tissue types and is 

highly related to age (Sowell et al., 2003; Pomponio et al., 2020; Gilmore et al., 

2018). Explicit segmentation is more often used in age estimation studies using 

non-deep learning models (Cole et al., 2017b; Aycheh et al., 2018; Becker et al., 

2018; Chung et al., 2018; Kwak et al., 2018; Lewis et al., 2018; Hu et al., 2020). 

It may not fit a 3D CNN framework as the handcrafted features often reduce the 

power of deep features. One novelty of our work is that we derived a 3D 

RAVENS image, characterizing voxel-wise morphometry in addition to the 3D 

intensity contrast image. The RAVENS value (regional analysis of volumes 

examined in normalized space) at a voxel quantifies volumetric expansion or 

shrinkage ratio compared to the corresponding anatomy in a common atlas, and 

is suitable to study brain development (Erus et al., 2015). In other words, we 

explicitly split the single 3D T1w image into two 3D images representing 

contrast and morphometry channels of information. We will show that using the 

T1w image as two channels with two 3D images, as we proposed, reduces errors 

of age estimation compared to existing studies treating the T1w image as only 

one 3D image, for two motivations. One motivation is that intensity/contrast 

information is relative in T1w, does not carry physical meanings, and can be 

arbitrary. In contrast, a morphometry channel with RAVENS maps is naturally 

normalized, has a physical meaning (voxel-wise expansion/shrinkage ratio), and 
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is relatively stable when intensities change. The second motivation is the 

potential to avoid deep neural networks from being dominated by the salient 

information in the contrast channel while overlooking more implicit information 

in the morphometry channel.

• We designed attention fusion networks to further improve the accuracy over 
current attention-free fusion algorithms. Explicitly splitting the T1w image 

into two 3D image channels opened up the opportunity to fuse them at the image 

and feature levels. Multi-channel fusion has not yet been used for brain age 

estimation. The state-of-the-art multi-channel MRI fusion algorithms were 

proposed for medical image synthesis (Zhou et al., 2020) or segmentation (Zhou 

et al., 2019). However, they treated different channels equally, which may not be 

optimal. To address this, we proposed attention mechanisms and hence a Fusion-

with-Attention neural network (FiA-Net) to fuse multi-channel information. The 

proposed FiA-Net included hard and soft attention and mutual attention, and 

their combinations, to recognize and learn how different channels could 

contribute differently at different anatomic locations and different feature levels. 

This is important because attention mechanisms allow the fusion network to 

perform feature recalibration (Hu et al., 2019) and encourage the aggregation of 

multi-channel information in the presence of useless or redundant information 

from two channels (Li et al., 2019b). Attention has been widely used in machine 

translation (Vaswani et al., 2017), image classification (Wang et al., 2017; Hu et 

al., 2019) and medical image segmentation (Schlemper et al., 2019), but not yet 

for multi-modal MRI fusion, especially for brain age estimation.

Generality, the second criterion, refers to how an algorithm can be applied to data from 

different imaging sites, imaging scanners, and different age groups, while still achieving a 

consistent accuracy. We proposed two modules to promote generality.

• We built our algorithm on truly lifespan data (0–97 years) for age generality 
and real-world utility. As Table 1 shows, those studies that constrained 

themselves to a narrow age range usually have a lower estimation error. For 

example, knowing that a healthy brain is 0–2 years of age, the estimated age 

would be bounded in this age range and the error of estimation will be no more 

than 2 years. However, in real-world applications, this assumption does not 

always hold. Indeed, the age estimator built from healthy MRIs will be 

ultimately used to quantify how brain disorders accelerate or delay brain aging in 

patients. For patients, we do not know the boundary of their brain ages even 

though the chronological ages are known. For example, a 2-year-old patient’s 

brain may look like a 3–5 or even 5–10-year-old brain, and vice versa. Therefore, 

we cannot just build a model from healthy subjects 0–2 years of age and apply it 

to patients 0–2 years of age. Lifespan studies that do not pose an arbitrary 

constraint on the range of the estimated ages are highly preferable (Pomponio et 

al., 2020; Becker et al., 2018; Bashyam et al., 2020). Lifespan studies emerged 

very recently with data in 5–90 (Becker et al., 2018) or 3–96 years of age 

(Pomponio et al., 2020; Bashyam et al., 2020) (see Table 1). We used subjects 0–

97 years of age, so far the widest age range, which also covered 0–3 years of age 
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when the brain develops most rapidly (Ou et al., 2017; Sotardi et al., 2021). This 

will largely increase the across-age generality and real-world utility of our 

algorithm.

• We designed two phases of cross-validations, thoroughly testing the multi-
site/scanner generality. The first phase of cross-validation was in the discovery 

cohort (N=6,049). In this phase, the training and testing data were not 

overlapping but some of them came from the same datasets with the same 

imaging site and scanners. This phase is the same as other age estimation studies 

(Feng et al., 2020; Peng et al., 2020). The new second phase used completely 

unseen data from completely different datasets, with different imaging sites, 

scanners, or protocols. This second phase has been rarely done in other studies, 

but may thoroughly reflect the multi-site/scanner generality of our algorithm.

Interpretation, the third goal, is also important for real-world utility. It is non-trivial, 

though, and thus not studied in many deep learning age estimation studies (Cole and Franke, 

2017; Jónsson et al., 2019; Bashyam et al., 2020; Peng et al., 2020; He et al., 2020). Very 

few deep learning age estimation studies included interpretation. They computed the age 

activation map (Feng et al., 2020; Shi et al., 2020) on the brain MRIs on test subjects. An 

activation map is an indirect interpretation that may be useful for classification since the 

decision is made by maximizing the class probability (Zhou et al., 2016). However, an 

arbitrary testing subject may or may not represent the average response map in healthy 

subjects of the same age. Moreover, features with high activation/response, also known as 

salient features, may not necessarily possess a high predictive power. Saliency could 

indirectly imply predictive power but not always (Rudin, 2019). Motivated by very recent 

progress indirectly interpreting each artificial neuron’s role in CNNs recognizing objects in 

natural images (Bau et al., 2020), we used a different interpretation strategy.

• We directly measured the predictive power of hidden neurons in our deep 
neural network model by its correlation with age. For the brain age CNN, the 

last artificial neuron usually represents the predicted age, which is highly 

correlated to the chronological age on the test set. Thus, the correlation between 

the last neuron’s activation and the chronological age in a cohort can be used to 

understand the performance of the artificial neuron in the algorithm (Hu et al., 

2020; Peng et al., 2020). Similarly, this strategy can be generalized to understand 

every hidden neuron in the CNN, by computing the correlation between the 

artificial neuron’s response and the chronological ages on the evaluated cohort. 

The advantage of this interpreting method is that it evaluated an artificial 

neuron’s ability to extract age-related features over a cohort with different ages, 

instead of an arbitrary subject’s response (Shi et al., 2020). We used this method 

to measure the importance of different neurons in different layers and different 

attention methods. Further, it can be used to understand how the learned features 

in different layers correlated to the target task (e.g. age prediction). Besides, the 

salient regions in the brain related to normal aging could be captured by the CNN 

for each anatomic position, shedding light on the neuroanatomic interpretation.
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Overall, we assumed that amassing one of the largest cohorts of lifespan healthy brain MRI 

data (Section 2 for Data), coupled with the proposed attention-driven multi-channel fusion 

neural network (Section 3 for Methods, Section 4), as well as comprehensive and thorough 

validation designs (Section 5 for Study Design), could help promote (a) accuracy, (b) 

generality, and (c) interpretation in brain age estimation among healthy brain MRIs (Section 

6 for Results).

2. Data

2.1. Gathering lifespan healthy MRIs from 16,705 samples in 11 datasets

Our data includes a discovery cohort for the first phase of cross-validation and a replication 

cohort for the second phase of validation (see the two-phase validation in Fig. 5). As Table 2 

shows, our discovery cohort included 8 datasets containing T1w MRIs from 6,049 healthy 

scans aged 0–97 years (47.7% males). Seven of these datasets are publicly available, and we 

supplemented them with a proprietary normal cohort (the MGHBCH dataset (He et al., 

2020; Ou et al., 2017; Weiss et al., 2019) in Table 2) to add more subjects in the 0–6 years 

age range. This way, our data spans 0–97 years of age whereas other lifespan studies only 

used data 3–96 years of age (Pomponio et al., 2020; Bashyam et al., 2020) or 5–97 years of 

age (Becker et al., 2018). The discovery cohort was used for the first phase 5-fold cross-

validation. Our replication cohort included 3 other independent and publicly-available 

datasets, with T1w MRI from 10,656 healthy samples 5–60 years of age (54.2% males). The 

replication cohort was used as additional but completely-unseen data for the second phase of 

validation of our algorithm (Fig. 2). The median age and the detailed sex ratio in each 

dataset and in the overall discovery and replication cohorts are all listed in Table 2.

T1w MRIs were scanned in different sites and on different scanners (1.5T or 3T, Siemens, 

Philips, or GE MRI scanners). Details can be found in the cited references or webpages for 

each dataset. Please see the next sub-section for pre-processing and harmonization. Some of 

these datasets also contain MRIs of diseased brains, but we only included subjects with 

healthy brains. These strategies were commonly adopted in other brain age estimation 

studies that merged multiple datasets for larger sample sizes (Cole et al., 2017a; Pomponio 

et al., 2020; Bashyam et al., 2020; Feng et al., 2020).

2.2. Minimum pre-processing and harmonization

Each T1w MRI underwent N4 bias correction (Tustison et al., 2010), field of view 

normalization (Ou et al., 2018), and Multi-Atlas Skull Stripping (MASS) (Doshi et al., 2013; 

Ou et al., 2015). The pipeline has been extensively validated in children as young as 

newborns (Zöllei et al., 2020; Morton et al., 2020) and adults as old as 100 years of age 

(Pomponio et al., 2020). No regional segmentation, tissue segmentation, or surface 

construction was used, because deep learning could receive as input the whole image and 

does not require these hand-crafted regional or surface features (Cole and Franke, 2017; 

Bashyam et al., 2020; He et al., 2020). Keeping the pre-processing minimum could also 

reduce the accumulations of errors, and could encourage the generality of the developed 

algorithm.
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For the same token, harmonization of multi-site data was also kept minimum, similar to 

other age estimation studies using deep learning (He et al., 2020; Cole and Franke, 2017; 

Feng et al., 2020; Jiang et al., 2020; Bashyam et al., 2020). Specifically, the histogram of 

each skull-stripped T1w image was matched to the histogram of the SRI24 T1w atlas 

(Rohlfing et al., 2010). This atlas was used to split the T1w image into two channels, as the 

next section will describe. Then, the intensities in each skull-stripped and histogram-

matched T1w image were normalized into 0–1, by subtracting the mean intensity and 

dividing the standard deviation intensity in each brain. The histogram matching and intensity 

normalization steps served as harmonization across datasets. More sophisticated scanner- or 

site-specific harmonization could be used but were not used. This was similar to other age 

estimation studies, because the purpose was for the algorithm to generalize well to other 

datasets with unforeseen sites, scanners, or imaging protocols, not just for the algorithm to 

have a super good performance in our dataset (Cole and Franke, 2017; Feng et al., 2020; 

Bashyam et al., 2020).

3. Methods

3.1. Overview of the proposed network architecture

Fig. 1 shows the overall architecture of our proposed attention-driven multi-channel fusion 

neural network (FiA-Net). Two channel-specific networks FiA-Netcon and FiA-Netmor, 

shown as the two blue paths in Fig. 1, provide intermediate results. They learn from the 

contrast and morphometry channels independently. One attention-driven fusion network 

FiA-Netfus, shown in the orange middle path in Fig. 1, offers the final brain age estimation 

results.

The following sub-sections detail our algorithm. Splitting a 3D T1w image into two 3D 

images, the first novelty of our framework, will be described in Section 3.2. It led to 

channel-specific neural networks in Section 3.3 and multi-channel fusion. Our proposed 

multi-channel fusion is a layer-level fusion (Section 3.4) driven by the proposed attention 

mechanisms (Section 3.5).

3.2. Splitting T1w into two channels

The skull-stripped and harmonized 3D T1w image was non-rigidly registered to the SRI24 

atlas (Rohlfing et al., 2010) by the Deformable Registration via Attribute-Matching and 

Mutual-Saliency weighting (DRAMMS) algorithm (Ou et al., 2011), which has been 

extensively validated for across-subject registration over the lifespan (Ou et al., 2014). The 

publicly-available SRI24 atlas has a voxel size of 1×1×1mm, and was constructed from T1w 

of 24 healthy brains (12 young subjects 25.5±4.3 (19–33) years of age and 12 old subjects 

77.7±4.9 (67–84) years of age).

As shown in Fig. 2a, registering to the SRI24 atlas space led to the split of a single 3D T1w 

image into two 3D images representing two channels of information. One channel is the 3D 

registered intensity image, having the same anatomy as the SRI24 atlas and representing the 

contrast information (top row in Fig. 2a). The other channel is the 3D RAVENS map 

(regional analysis of volumes examined in normalized space (Davatzikos et al., 2001)), also 
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in the SRI24 atlas space. The 3D RAVEN image encoded the density, or relative volume 

ratio, at each voxel of this subject with regard to its corresponding voxel in the atlas space 

(bottom row in Fig. 2a). This channel quantified voxel-wise morphological information. 

RAVENS map was used because it preserves the whole-brain volume (Davatzikos et al., 

2001), because of its extensive use as a 3D quantitative morphometric map in brain 

development studies related to cognition and aging (Erus et al., 2014; Da et al., 2014; 

Truelove-Hill et al., 2020), and because RAVENS map is a by-produce of the registration 

step (hence no additional pre-processing is needed).

We chose the SRI24 atlas for two reasons. One, in our previous work with a smaller sample 

size (N=1,640, ages 0–22 years) (He et al., 2020), we found that the age estimation errors 

were statistically equivalent using the SRI24 or using a 6-year-old pediatric brain atlas (Ou 

et al., 2017). A second reason was to encourage real-world utility. Using a fixed SRI24 atlas, 

our framework could be applied to subjects of all ages without needing to know a rough age 

range beforehand.

3.3. Channel-specific network

For each channel, we used a 3D version of the residual network (He et al., 2016) to extract 

deep features. ResNet is a widely used neural network architecture for many computer 

vision and medical image analysis tasks. A typical residual network has four stages, in 

which the small convolutional kernels with a size of 3×3×3 is typically used in the 

convolutional layers, and another kernel with a size of 1×1×1 is used in the shortcut paths. 

Our residual block Resi as shown in Fig. 1 contained two 3D convolutional layers with a 

short connection. This was the same as the ResNet in He et al. (2016). The spatial resolution 

was reduced to half after each stage, by a convolutional layer with a stride of 2, while the 

number of features was doubled. Therefore, the Resi+1 block in Fig. 1 had a half of the 

resolution and doubled feature size than the Resi block. This way, the spatial information 

was converted gradually to the semantic information of brain age from Res1 to Res4.

In this paper, we used ResNet-18 as the backbone and we removed the first max-pooling 

layer to keep the spatial resolution at the beginning. The number of channels on each block 

was the same as the number of channels on the ResNet. Thus, each Resi block in Fig. 1 

contained two residual blocks. The kernel size of the convolutional layer was 3×3×3 with a 

padding of 1. After each convolutional layer, instance normalization (Ulyanov et al., 2016) 

was used to remove instance-specific contrast information, followed by a Rectified Linear 

Unit (ReLU) layer.

3.4. Layer-level fusion without attention - current state-of-the-art

There are three strategies to fuse information from multiple channels. Input-level fusion 

concatenates input images from different channels (Fig. 3a). layer-level fusion merges deep 

features from different channels (Fig. 3b). Decision-level fusion makes a collective decision 

from multiple decisions independently drawn from different channels (Fig. 3c). Among 

them, layer-level fusion often outperforms the other two fusions strategies, although at a cost 

of higher computational burdens (Zhou et al., 2019; Feichtenhofer et al., 2016; Zhou et al., 
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2020). Therefore, our multi-channel fusion was a layer-level fusion, for each of the four 

layers as shown in Fig 1.

Let us use fi
m1 to denote the deep features extracted by the residual block Resi at ith 

resolution level (i.e., ith layer) from the contrast channel image xm1. Similarly, let us use fi
m2

to denote the deep features extracted by the residual block Resi at the ith layer from the 

morphometry channel image xm2. Here, four levels are used, i.e., i = 1,2,3,4, following the 

standard ResNet settings (He et al., 2016). The state-of-the-art layer-level fusion algorithm 

used in medical image analysis (primarily for medical image synthesis (Zhou et al., 2020) 

and medical image segmentation Zhou et al. (2019)) is to fuse these intermediate feature 

maps without the attention mechanism. That is, they treated deep features fi
m1 and fi

m2 from 

two channels equally, by taking the maximum of them with equal weights (hence the fused 

maximum deep feature fi
1) or by adding them with equal weights (hence the fused additive 

deep feature fi
2), or by multiplying them with equal weights (hence the fused multiplicative 

deep feature fi
3).

fi
1 = max fi

m1, fi
m2

fi
2 = fi

m1 + fi
m2

fi
3 = fi

m1 * fi
m2

(1)

where fi
1, fi

2 and fi
3 are three fusion outputs (maximum, additive and multiplicative 

operations). This layer-level fusion algorithm does not consider the relative importance 

between the two-channel inputs (Zhou et al., 2020, 2019). We will use this attention-free 

layer-level fusion algorithm as a baseline algorithm later in our algorithm validation.

3.5. Fusion with attention - our proposed algorithm

We proposed to add attention mechanisms into Eq. 1. Specifically, we proposed to introduce 

“hard attention” into the maximum fusion fi
1, turning it to fi

u1; we introduced “soft 

attention” into the additive fusion fi
2, turning it into fi

u2; and, we introduced “mutual 

attention” into the multiplication fusion fi
3, turning it into fi

u3 and fi
u4. Fig. 4a shows the 

overview of these four attention mechanisms. Then Fig. 4b–c show each one of them.

Hard attention kept features from only channel at a specific location and feature element. 

This is shown in Fig. 4(b). The weights of the hard attention was binarized to 1 or 0, 

controlled by the max operation by:

fi
u1 = λ ⊗ C fi

m1 + (1 − λ) ⊗ C fi
m2

λ = 1 if C fi
m1 > C fi

m2

0 otherwise

(2)
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where fi
m1 and fi

m2 were deep features from different channels m1 and m2 in the ith residual 

block in Fig. 1. λ was a binarized weight of the two channels. ⨂ was the element-wise 

multiplication, “C” was the convolutional layer with a kernel size of 3 × 3 × 3 and fi
u1 were 

the fused features of the hard attention.

Soft attention combined features from different channels with learnable weights (Schlemper 

et al., 2019; Hu et al., 2019). The weights were continuously valued between 0 and 1, and 

had a sum equal to 1. It is shown in Fig. 4(c) and formulated as follows:

fi
u2 = λ ⊗ fi

m1 + (1 − λ) ⊗ fi
m2

λ = σ C fi
m1, fi

m2 (3)

where σ(x) = 1/(1 + e−x) was the Sigmoid function with the output λ [0, 1], “[.,.]” was the 

concatenate operation and i ϵ [1, 4] was the index of the block.

Mutual-attention fusion applied the attention mechanism cross different channels. It 

assumed that deep features from one channel should be emphasized if the feature responses 

in the other channel were strong. In other words, it mutually emphasized the important 

features and suppressed the irrelevant features (Xu et al., 2018). Mutual-attention fusion is 

sketched in Fig. 4(d) and defined as:

fi
u3 = σ C fi

m2 ⊗ fi
m1

fi
u4 = σ C fi

m1 ⊗ fi
m2 (4)

where σ C fi
m2  was the attention computed from the deep feature fi

m2 and the same strategy 

applied to σ C fi
m1 . The definitions of σ and C were the same as in above.

Finally, these four fusion outputs were combined by:

fi
uc = C([fi

u1, fi
l2, fi

u3, fi
u4]) (5)

where the outputs were concatenated as fi
u1, fi

u2, fi
u3, fi

u4 , followed by a convolutional layer 

C, a normalization layer and an activation layer. We obtained the fused features Fi on the ith 

block shown in Fig. 1. Note that when i = 1, there was no previous input, and the output of 

the first convolutional layer was simply fed into the second convolutional layer. If i > 1, the 

previous output Fi−1 was concatenated, followed by another set of convolutional, 

normalization, and activation layers.

Fi =
fi

u − c if i = 1

C Fi − 1, fi
u − c if i > 1

(6)
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4. Algorithm implementation

We used the global average pooling at the end of the convolutional layers, followed by a 

fully-connected layer for brain age regression. For network training, we used the mean 

absolution error (MAE) as the loss function, which was defined by:

ℒ = 1
N ∑

n = 1

N
pn − pn (7)

where N was the number of samples, pi was the known chronological age of the subject and 

pi was the estimated brain age from the neural network. Since there were three outputs of the 

proposed fusion network: FiA-Netint, FiA-NetRAV, FiA-Netfus (as shown in Fig. 1), the total 

training loss ℒtotal was defined as:

ℒtotal = ℒFiA‐Netint + ℒFiA‐NetRAV + ℒFiA‐Netfus (8)

The network was trained from a random weight initialization using the Adam optimizer with 

β1 = 0.9, β2 = 0.999. The learning rate was set to 0.0001 and the total training epochs was 

20. The training of the 3D neural network required a large memory, thus the batch size was 

set to 1 for saving the GPU memory and the instance normalization is applied. The network 

was trained on a single NVIDIA Titan V GPU with 24G memory, using the PyTorch deep 

learning libraries. The source code is available: https://github.com/shengfly/FiAnet.

5. Experimental setup

In this section, we first present our experiments to understand the effects of the key modules 

in our algorithm (Section 5.1). Then, we describe our experimental settings to (a) evaluate 

accuracy (Section 5.2); (b) assess generality (Section 5.3); and (c) visually interpret the 

proposed framework (Section 5.4).

5.1. Experiments to understand our algorithm

We used 5-fold cross-validation in the discovery cohort to quantify the effects of three major 

modules in our algorithm. The accuracy metrics include mean absolute error (MAE) and 

cumulative score (CS), which can be found in a later Section 5.2.

The first key module in our algorithm is splitting the 3D T1w image into two channels for 

multi-channel fusion, as detailed in Section 3.2 and Fig. 2. We compared the cross-validation 

accuracy in the discovery cohort, for (i) using the contrast channel alone; (ii) using the 

morphometry channel alone; and (iii) fusion of two channels at the simplest form: input-

level fusion (see Fig. 3). For each of these three branches, we computed the mean and 

standard deviation values of the mean MAE and CS in the 5-fold cross-validation. We 

expected that two channels, even in the simplest form of fusion (namely, the input-level 

fusion), would lead to a smaller error than each channel alone. This would justify the 

explicit split of T1w into two image channels in our algorithm.
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The second key module in our algorithm is the layer-level fusion of two channels, as 

described in Section 3.4 and Fig. 3. Given two input channels, we compared (i) input-level; 

(ii) layer-level (without attention yet); and (iii) decision-level fusions. We recorded the mean 

and standard deviation values of the mean MAE and CS in the 5-folder cross-validations in 

the discovery cohort. We expected that layer-level fusion, even without attention, would have 

a lower error than the other fusion strategies. This would justify the use of layer-level fusion 

in our algorithm.

The third key module in our algorithm is the attention mechanisms to drive the layer-level 

fusion, as described in Section 3.5 and Fig. 4. We compared (i) layer-level fusion without 

attention, which is the state-of-the-art multi-channel medical image fusion strategy (Zhou et 

al., 2020); and (ii) layer-level fusion with attention, which is the proposed FiA-Netfus. We 

expected that attention mechanisms would further reduce the errors in age estimation.

One other question would also help better understand our algorithm. Question: given the 

four proposed attention models (hard attention f4
u1 in Eq. 2, soft attention f4

u2 in Eq. 3, and 

two mutual attention models f4
u3 and f4

u4 in Eq. 4, and their concatenation f4
uc in Eq. 5, 

which attention model played a more important role? For this, we computed the Pearson 

correlation coefficients between features after each of the attention model (in the 4th layer) 

and the known chronological ages across subjects in the discovery cohort. An attention 

mechanism was considered more effective if the features after that attention mechanism had 

an overall higher level of correlation with the age information.

5.2. Experiments to evaluate the accuracy of our algorithm

Before we describe the experiment setup for evaluating accuracy, let us first define two 
accuracy metrics: the mean absolute error (MAE) (defined in Eq. 7) and the cumulative 

score (CS) (Geng et al., 2007). The MAE is a widely used measurement for brain age 

estimation (Feng et al., 2020; Pomponio et al., 2020) and CS is used to evaluate the 

performance of the system with different error levels (Geng et al., 2007; He et al., 2020; 

Chen et al., 2013). In our work, the CS was defined as:

CS(α) = Ne ≤ α/N × 100% (9)

where Ne≤α was the number of test MRI samples on which the age estimation made an 

absolute error e no higher than the error threshold α years. A higher CS(α) meant better 

performance. The CS was a function of the error threshold α, thus, results with this metric 

were given as curves, as α increased. We also recorded the performance of CS with certain 

error thresholds, such as α = 2 and α = 5 years.

We designed two experiments to evaluate the accuracy of our algorithm.

(a) Validate accuracy among state-of-the-art algorithms in the same data.—
Using the 5-fold cross-validation strategy in the discovery cohort, we evaluated the accuracy 

of our algorithm (FiA-Netfus) with two state-of-the-art algorithms. The whole discovery 

cohort was randomly split into 5 folds of equal sample size. Each time, 4 folds were used for 
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training and the left-out one fold was used for testing, until each fold had been used once 

and only once. The average and standard deviation of MAEs in cross-validations are 

reported in this paper. One algorithm we compared against was the widely-used 3D CNN 

single-channel (T1w image) for age estimation (Cole and Franke, 2017). Splitting the T1w 

image into two or more channels does not exist for age estimation, but using multi-channel 

MRI exists for MRI synthesis in an algorithm named Hi-Net (Zhou et al., 2020). It is a layer-

level fusion method, but without attention (i.e., equal weights across channels). Hi-Net 

(Zhou et al., 2020) with two of our input channels (contrast and morphometry) was therefore 

used as the second competing algorithm in our validation.

(b) Validate accuracy among other studies that used different datasets.—
Various brain age estimation studies exist, with the growing sample sizes and wider age 

ranges in recent studies (see Table 1). Different studies used different datasets, different pre-

processing, different algorithms, and different cross-validation schemes. We know that the 

error of age estimation is largely dependent on the age range of the datasets. For example, 

building an estimator for subjects ages 0–2 years would have bounded the error to be within 

2 years. Therefore, we could only list studies for their age ranges and reported MAEs. 

Among them, we closely compared our MAE with MAEs in other studies with similar age 

ranges.

5.3. Experiments to assess the generality of our algorithm

We designed two experiments to assess the generality of algorithms.

(a) Evaluate generality across different datasets.—An ideal algorithm should be 

generally applicable to various datasets and should score low MAEs across datasets, despite 

datasets coming from different sites, scanners, and imaging protocols. From this perspective, 

we recorded the MAEs in all 11 datasets in our data, to compare three algorithms ResNetfus 

(He et al., 2016), Hi-Netfus (Zhou et al., 2020), and our proposed FiA-Netfus. Of those 11 

datasets (see Table 2), 8 were used in the discovery cohort for cross-validation, and the other 

3 were used as completely-unseen replication cohort for the second-phase more challenging 

validation (see Fig. 5). An algorithm was considered more general if it scored lower MAEs 

in more datasets, especially among those 3 datasets in the replication cohort.

(b) Evaluate generality when the training samples changed.—As the red blocks 

in Fig. 5 show, we had 5-fold cross-validations in the discovery cohort. They let us build five 

age estimators, each using 80% of the samples in the discovery cohort. The five age 

estimators are shown as the blue boxes in the middle of Fig. 5. We obtained five predicted 

ages, from the five age estimators, for each subject in the replication cohort (green box in 

Fig. 5). By this setting, we not only had an average among the five absolute errors (AE) for a 

subject n in the replication cohort, denoted as μAE(n), but also a standard deviation among 

the five absolute errors for this subject, termed as σAE(n). Indeed, the MAE of an algorithm 

was MAE = ∑n = 1
N μAE(n), where N is the total number of subjects. Here, σAE(n) quantified 

how general or stable the algorithm was when the training samples changed. Or, in short, it 

reflected the uncertainty of the age estimation on this subject n in the replication cohort. 

Therefore, we could quantitatively compare the generality among ResNetfus (He et al., 
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2016), Hi-Netfus (Zhou et al., 2020), and our proposed FiA-Netfus. An algorithm was 

considered more general/stable when training samples changed, if its uncertainties across 

subjects in the replication cohort, i.e., σAE(n) n = 1
N , were lower than those by other 

algorithms.

5.4. Experiments to visually interpret our algorithms

Currently, one widely-used method to interpret deep neural network is through the class 

activation map (CAM) (Zhou et al., 2016). CAM localizes the salient features on the last 

layer of the deep neural network and maps them back to the original input image. Here, 

salient features are defined as those with higher magnitudes of responses from convolutions 

than other features. Grad-CAM (Selvaraju et al., 2017) can further map the salient features 

on any target layers of the neural network for visualization in the input image. Along this 

line, recent age estimation studies created age activation maps (Feng et al., 2020; Shi et al., 

2020) on brain MRIs. However, features with high responses may not always be those 

features that predict age. Conversely, features strongly correlated with age may not always 

have strong responses to convolutions, and may not always be salient features. This is very 

similar to the situations in medical image segmentation, registration, and prediction tasks, 

where the salient features may not always the best features for classifying voxels (Sharif et 

al., 2020), finding voxel correspondences (Ou et al., 2011), or predicting outcomes (Sun et 

al., 2019).

To address this issue, we explicitly quantified the correlations between features from each 

artificial neuron in the deep neural network and the chronological ages. A neuron in the deep 

neural network with a high correlation with age was considered of a higher predictive value. 

This way, features that may not be salient but were strongly correlated with age could be 

identified. This was also similar to very recent progress in interpreting neurons in deep 

neural networks for natural image recognition (Bau et al., 2020).

Our interpretation strategy is illustrated in Fig. 6. Once the age estimation model was trained 

(shown as the ”Network” in Fig. 6), the predictive value ri of every voxel uin the ith neuron 

was computed using a forward pass

ri(u) = F( p , vi (u)) (10)

where p  was the vector of chronological age across subjects (the big vertical box containing 

chronological ages at the left side of Fig. 6), v i(u) was the vector of features in at voxel u of 

the ith neuron (the big vertical box containing neuron response features at the right side of 

Fig. 6). F  was the calculated Pearson correlation (the circled correlation number in the 

bottom middle of Fig. 6).

The calculation was done at every voxel in every neuron, but due to space limitations, we 

could not display them all. We will show in the Results Section 6.4, the voxel-wise 

correlation with chronological ages for four neurons with the largest weights in the last layer 

of FiA-Netfus. These were the four most heavily used neurons in FiA-Netfus. Besides 

visualization, we also segmented the SRI24 into 62 regions (Doshi et al., 2016; Sotardi et al., 
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2021; Morton et al., 2020), and calculated the average correlation coefficients in each ROI 

for each of those four highest-ranked neurons. This would quantify which neuroanatomic 

regions were more involved in the age estimation in FiA-Netfus.

6. Experimental results

Here we report the results corresponding to each of these sub-sections in Experimental setup 

(Section 5). Results to understand three key modules and two key choices in our algorithm 

are in Section 6.1, and then results for accuracy, generality, and interpretation are in Sections 

6.2, 6.3, and 6.4, respectively.

6.1. Results to understand our algorithm

Parts a,b,c in Table 3 show the effect of the three key modules in our algorithm.

(a) Effect of splitting the T1w image into two channels.—The first three rows 

(Part a) in Table 3 show that explicitly splitting the T1s image into two channels and fusing 

the two channels provided better results than each channel alone.

(b) Effect of layer-level multi-channel fusion.—The third to the fifth rows (Part b) 

in Table 3 show the results of different fusion strategies. Layer-level fusion, even without 

attention mechanisms, provided better performance than the input-level and decision-level 

fusion strategies.

(c) Effect of attention mechanisms.—The fifth and sixth rows (Part c) in Table 3 

show that the proposed attention mechanisms further improved the accuracy of layer-level 

fusion compared with the one without attentions.

Overall, results in Table 3 help us better understand the three key modules in our algorithm. 

Splitting the T1w image into two channels reduced the average MAE from 4.09 to 3.31 

years. On top of that, layer-level fusion further reduced the average MAE to 3.12 years. 

Then on top of that, attention mechanisms reduced the average MAE even further to 3.00 

years. These three modules in our algorithm also led to more subjects having errors less than 

2 years (from the initial 44.2% to 49.1%, then to 53.0%, and finally to 54.8%), and more 

subjects having errors less than 5 years (from the initial 73.7% to 78.4%, then to 80.5%, and 

finally to 81.8%). Therefore, the three key modules in our algorithm were all necessary and 

effective.

When it came to which of the four proposed attention mechanisms was more effective, Fig. 

7 shows such a comparison in the last layer. The soft attention f4
uc was more informative of 

age, while the other three attention models all contributed, and the concatenation of all 

features f4
u2 was most informative than each attention mechanism alone. Therefore, the 

proposed hard, soft, and mutual mechanisms (sketched in Fig 4a and defined in Eq. 5) were 

all needed and their concatenation outperformed every single mechanism.
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With the justification of these major modules and choices in our algorithms, the next 

subsections will present results for the accuracy, generality, and interpretation of FiA-Netfus.

6.2. Results for accuracy

Section 5.2 introduced two experiments to validate the accuracy of our algorithm. The 

results of these two experiments are shown below.

(a) Accuracy compared to state-of-the-art algorithms in the same data.—Fig. 

8 compares the accuracy of three algorithms on the same data, by the same 5-fold cross-

validation in our discovery cohort. FiA-Netfus had the lowest MAE, the highest Pearson and 

Spearman correlations between the predicted and actual chronological ages than the other 

two algorithms (ResNetcon (He et al., 2016) and Hi-Netfus (Zhou et al., 2020)). Similarly, 

when we measured the accuracy by CS(α) values at different thresholds of α, Fig. 9 shows 

that FiA-Netfus led to a larger percentage of subjects having errors lower than a certain error 

level α, for all possible error levels. By both metrics, FiA-Netfus scored the highest accuracy 

among the three algorithms in the same data (our discovery cohort) and by the same cross-

validation strategy.

(b) Accuracy compared to other studies that used different datasets.—Fig. 10 

shows 14 studies conducted in 2018–2020. The red dots show the MAEs in each study and 

follow the red scale on the left side of the figure. The blue boxes show the age ranges of the 

study and follow the blue scale on the right side of the Figure. The first observation is that 

errors are highly related to the age ranges in studies. For example, Hu et al. (2020) reported 

an MAE at 0.09 years for 251 healthy brains scanned during 0–2 years of age. Plus, unlike 

other studies that used cross-sectional images (MRI at a visit), Hu et al. (2020) used 

longitudinal brain MRIs of the same subjects scanned repeatedly at 1, 3, 6, 9, 12, 18, and 24 

months of age. In other studies with age ranges 3–22 years (Chung et al., 2018; Lewis et al., 

2018), the MAEs were around 1.5 years. But, that does not necessarily mean their algorithm 

was more accurate because the effect of age ranges should be considered (Jiang et al., 2020). 

A more fair comparison is in studies of roughly the same range. For this purpose, we 

highlight four studies on the rightmost of the figure, as within a black box. These four 

studies were: Becker et al. (2018) with MAE=3.86 years using 6,362 healthy brains 5–90 

years of age; Pomponio et al. (2020) and Bashyam et al. (2020) with MAEs at 5.35 and 

3.702 years using 10,477 and 11,729 healthy brains 3–96 years of age, and ours with 

MAE=3.00 years using 16,705 healthy brains 0–97 years of age. Among these four studies 

using very similar age ranges and similar sample sizes, our study had the lowest MAE. 

Although, it is difficult to conclude whether our lower MAE came from the algorithm, the 

sample size, or the dataset themselves. Therefore, comparison in this figure is just a 

reference, and the most rigorous comparison excluding the effect of sample size, age range, 

and data samples should be those results using the same data, as we presented in the 

previous paragraph and in Fig. 8.

6.3. Results for generality

Section 5.3 introduced two experiments to evaluate the generality of our algorithm. Below, 

we show the results of these two experiments.
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(a) Generality across datasets.—Table 4 shows the MAE and CS values for each 

dataset in the discovery and replication cohorts. The proposed FiA-Netfus had the lowest 

MAE and the highest CS values in 6 out of 8 datasets in the discovery cohort where 5-fold 

cross-validation was done. When the model that was trained in the discovery cohort was 

applied to the completely-unseen replication cohort, FiA-Netfus scored the lowest MAE and 

the highest CS values among three algorithms in all three replication datasets. More 

importantly, the margins between the MAEs of FiA-Netfus and the MAEs of the other two 

competing algorithms were wider in the replication cohort than in the discovery cohort. 

Overall, the results in Table 4 clearly show that the proposed FiA-Netfus algorithm could not 

only generalize among the discovery datasets in cross-validations, but even more 

generalizable than the other two algorithms in completely-unseen replication data. This 

suggests that the proposed FiA-Netfus could better capture the true age information from 

brain MRI and less contaminated by imaging sites, scanners, or parameters. In other words, 

the model resulted from FiA-Netfus was found more generalizable to different datasets.

(b) Generality when the training samples changed.—In the second experiment 

(See Section 6.3 for more detail), the five age estimators, each trained using 80% of the 

discovery data, led to five estimated ages and hence five errors for each of the subjects in the 

replication cohort. These five estimated ages should be ideally identical (i.e., zero standard 

deviation among these five estimated ages for each replication subject). In reality, a standard 

deviation closer to zero is preferred. Table 5 shows the mean of the standard deviations 

among the five estimated ages for each subject in the replication cohort. The proposed FiA-

Netfus algorithm had the lowest standard deviation overall, suggesting the highest stability/

generality when the training samples varied.

6.4. Results for interpretation

We computed the Pearson correlation coefficients between chronological age and feature 

responses at every voxel in every neuron on the last layer of FiA-Netfus. Note that a neuron 

contains features at every voxel in the brain, therefore the correlation or the predictive value 

was calculated at each voxel in a neuron. The correlation map for a neuron was then resized 

to the space of the original image (SRI24 space) by the 3D trilinear interpolation. Fig. 11 

shows the voxel-wise correlation maps for four neurons with the largest weights (in absolute 

values) among all neurons in the last layer of our deep neural network. In other words, these 

four neurons were the most important driving forces in the last layer of FiA-Netfus. Fig. 

11(a)–(d) show voxel-wise correlations with chronological ages in these four neurons on 

different age groups (with 10-year interval) and Fig. 11(e) shows the voxel-wise correlation 

with chronological ages in these four neurons over 0–97 years. Visual observation from 

these figures shows that the occipital, parietal, and frontal lobes were all driving forces for 

age estimation. ROI analyses, in Fig. 11(f), found that the neuroanatomic regions mostly 

involved age estimation in FiA-Netfus were: occipital and temporal white matter, parietal 

lateral, temporal inferior, and temporal lateral gray matter, insula, basal ganglia, ventricle, 

amygdala, hippocampus, and cerebellum. Deep features from these anatomic regions in the 

last layer of FiA-Netfus had an average 0.55–0.75 Pearson correlation coefficients with the 

chronological ages.
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Besides, the saliency maps in Fig 11 show a central-to-peripheral and posterior-to-anterior 

pattern of “activated” brain regions transitioning from 0–10 to 10–20 and 20–30 years. This 

echoes our recent findings of myelination maturation in a similar neuro-development pattern 

but on a larger age scale (Sotardi et al., 2021). Neuroanatomy for age estimation stayed 

relatively stable during 30–40, 40–50 and 50–60 years of age intervals. The activated regions 

in later adulthood were almost inverse of those in early childhood. Our future study will dive 

into a higher spatiotemporal granularity of such patterns and statistically compare how this 

agrees with computational neuroscience findings across the lifespan.

7. Discussion and Conclusion

Machine-learning-based brain age estimation from T1-weighted MRI has gained growing 

attention. Key to the sensitivity and utility of such age estimation is how to build an 

accurate, generalizable and interpretable age estimator from healthy brain MRIs before it 

can be applied to abnormal cases. To this end, we present in this paper an attention-driven 

multi-channel fusion algorithm named FiA-Net. Specifically, we gathered data with one of 

largest scales and widest age ranges (Table 2), we proposed a novel algorithm that split T1w 

into two channels (Section 3.2) and that conducted layer-level fusion (Section 3.4) with 

attentions (Section 3.5), and, we used direct interpretation at neurons in the deep neural 

network (Section 5.4).

The higher performance of our algorithm was rooted in our algorithm designs. The explicit 

split of the T1-weighted intensity image into two channels (contrast and morphometry) 

opened up the opportunity for multi-channel fusion. Existing studies just used the T1w 

image as an intensity image, or just extracted features from segmented regions or 

reconstructed surfaces, where the hand-crafted features are not optimal for 3D CNN (see 

Table 1). Another key module was the proposed attention mechanisms for multi-channel 

fusion at the layer levels. Existing multi-channel fusion in medical image analysis was 

primarily for MRI synthesis (Zhou et al., 2020) or MRI segmentation (Zhou et al., 2019). 

Table 3 clearly showed the contributions of these three modules in our algorithm (splitting 

T1w into two channels, having layer-level fusions, and designing attention mechanisms). 

Fig. 7 further confirmed that the concatenation of the four proposed attentions mechanisms 

in the last layer of FiA-Netfus led to better results than no attention or each attention alone.

We showed the accuracy and generality of the proposed algorithm. For accuracy, our 

algorithm achieved a lower error than two other state-of-the-art algorithms for multi-channel 

fusion: ResNetfus (He et al., 2016) and Hi-Netfus (Zhou et al., 2020). The higher accuracy 

reflected when using the same data (Figs. 8 and 9), and when comparing across studies using 

different data (Fig. 10). For generality, showed the generality across datasets (Table 4) and 

when training samples changed (Table 5).

For neuroanatomic interpretation, Fig. 11 showed a few anatomic regions that match with 

neuroscience findings on typical brain development (Sotardi et al., 2021; Gilmore et al., 

2018). However, we would like to emphasize that these regions were informative regions 

used in the proposed FiA-Netfus. When the algorithms, datasets, and even the age range 

change, the informative anatomic regions may be found differently. Therefore, it is difficult 
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to compare the informative anatomic regions across studies. Adding to this difficulty is the 

lack of ground truth on which set of anatomic regions really determines age. Perhaps the 

anatomic regions informative of age will also change as the brain grows from infancy to later 

life. This should be further studied, in the context of sex and race/ethnicity. Another future 

work is in the interpretation of the neural network itself. We studied neurons, and voxels in 

the neurons, that correlated with age, which we think is an extension of reporting salient 

neuroanatomic regions. However, it is not completely clear how the features across neurons 

and features across different voxels in the same neurons interact to jointly drive the 

combinatorial decision. Interpreting neural networks is, in itself, an actively studied topic 

that is non-trivial and is within our future work. Recent progress includes regression 

activation map (Wang and Yang, 2017) and network dissection (Bau et al., 2020).

Many of the algorithm and study designs in our work were toward real-world utility. We 

used the T1w image as it is usually the only MRI sequence available to every subject when 

thousands of subjects are used (Feng et al., 2020; Peng et al., 2020; Pomponio et al., 2020). 

Second, we used lifespan data, also aiming for real-world utility. A patient’s brain age may 

be quite different from the chronological age. Therefore, we cannot assume a narrow range 

of brain age. From this angle, our algorithm capable of predicting lifespan age should be 

more practical than many studies in Table 1 that constrain the predicted ages in a narrow age 

range. Besides, we kept the pre-processing and data harmonization minimum (Section 2), 

because it would reduce the risk of accumulations of failures or errors in pre-processing 

steps. Despite that, the data came from very different sites and scanners, and our results 

show generality in two phases of cross-validations.

Brain age estimation studies have several common limitations, and they can also be seen in 

our study. First, this paper does not use the age estimators in patients. Developing an 

accurate age estimator is a critically important first step before it can be used in patients. We 

focused on this step, just like others (Cole and Franke, 2017; He et al., 2020; Pomponio et 

al., 2020; Feng et al., 2020; Hu et al., 2020). Our next step is to apply the model in various 

diseased populations. Second, our data distribution was unbalanced. Fig. 12 shows that the 

errors of age estimation increased in ages where sample sizes were relatively smaller. This 

trend was the same for different algorithms. Balancing sample distribution across ages could 

further improve the accuracy of age estimation Feng et al. (2020), and is one of our future 

efforts. Third, we did not use sex or race information. Sex differences may exist on normal 

brain aging (Goyal et al., 2019), but the findings are being debated in the literature (Tu et al., 

2019; Biskup et al., 2019). So far, sex and race have rarely been used as covariates in brain 

age estimation studies (e.g., these studies in Table 1). Yet, our future work can add them as 

additional features to the neural network. Fourth, we only used T1w MRI as it is almost the 

only MRI sequence available at this scale of sample size. Other studies have combined T1w 

with diffusion or functional MRI for age estimation, although often on smaller sample sizes 

(Richard et al., 2018; Niu et al., 2020; Li et al., 2018). Our multi-channel attention-driven 

fusion network can be used to integrate structural, diffusion, and functional MRI channels. 

Fifth, while we compared the overall accuracies across studies (Fig. 10, where algorithms 

vary and database vary), and we compared the overall and dataset-specific accuracies across 

algorithms (Table 4, where only the algorithms vary), future work should ideally compare 
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different studies on each dataset they have used in common. This will highlight how 

different algorithms generalize across datasets. Currently it is difficult as studies typically 

did not report their accuracy in each constituting dataset. We reported our errors in each of 

our datasets in Table 4, so future studies can compare. Sixth, while interpretations were 

provided in our study and in other age estimation studies (Shi et al., 2020; Lewis et al., 

2018; Kwak et al., 2018), a comparison is difficult. Ages vary among studies (fetal (Shi et 

al., 2020), elderly (Kwak et al., 2018), and ours on lifespan). Datasets vary, and algorithms 

and features in studies also vary. The interpretation methods also vary. Worse, ground truth 

is largely unknown. Seventh, using lifespan data, despite its real-world utility, may 

introduce larger errors in healthy brains. For example, as Table 1 shows, when constraining 

the estimated age of subjects 3–22 years old to be within 3 and 22 years, the errors can be as 

lows as around 1.5 years (Chung et al., 2018; Lewis et al., 2018). However, having such 

constraints limit the algorithm’s use to be only in healthy subjects but not in patients, 

because patients aged 3–22 years may exhibit a brain age beyond this range. One future 

direction is to further reduce the errors in narrow age ranges using the currently estimated 

age to initialize a refined search in nearby ages. This strategy has been done in age 

estimation studies using facial image (Guo et al., 2008; Lai et al., 2017; Li et al., 2019a).

Explicitly splitting the T1w images into two channels is technically feasible and has 

potential clinical usage. Technically, almost all MRI-based age estimation studies in Table 1 

used some pre-processing steps, including at least three steps (bias correction, skull 

stripping, and registration to the atlas (either affine or deformable)), some even including 

additional pre-processing steps such as structural segmentation or cortical surface 

reconstruction, etc. Our work only included the three minimum pre-processing steps, no 

segmentation or cortical surface reconstruction was needed. The RAVENS map in the 

morphometry channel was a byproduct of deformable registration in this minimum pre-

processing pipeline. It was based on our open-source and publicly-released DRAMMS 

registration algorithm with a validated high accuracy in a fully-automated fashion. 

Therefore, our pre-processing was minimum compared to those in Table 1, and was based on 

automated, validated, and public software tools. Clinically, splitting T1w into contrast and 

morphometry channels is to increase the specificity of age estimation biomarkers. When age 

estimators are used to quantifying accelerated or delayed aging in diseases, the specificity 

issue arises – how to differentiate among diseases that are associated with similar levels of 

abnormal aging (Cole and Franke, 2017; Kaufmann et al., 2019). While some brain 

disorders change MRI contrast (e.g., multiple sclerosis), others change morphometry (e.g., 

hydrocephalus). Therefore, splitting T1w into contrast and morphometry opens opportunities 

to quantify which channel is the source of abnormal aging, and thereby has the potential to 

increase the specificity of age estimation biomarkers, which we leave for future studies to 

verify.

In conclusion, we have studied the brain age estimation on a large cohort using our proposed 

3D attention-driven multi-channel fusion convolutional neural network. We showed 

accuracy, generality, and interpretation. Future work includes using larger-scale, multi-site, 

more balanced data; using demographics as covariates; developing hierarchical estimation 
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strategies (lifspan as the initialization and piecewise narrower age groups as refinement); and 

applying the model in various diseased cohorts.
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Highlights

1. A “fusion-with-attention” convolutional neural network (FiA-Net) is proposed 

to fuse the contrast and morphometry image channels split from T1-weighted 

MRI for brain age estimation.

2. The proposed method is evaluated on a large cohort with 16,705 healthy MRI 

scans over lifespan (0–97), achieving the mean absolution error of 3.00 years.

3. We evaluate the proposed method based on accuracy, Generality, and 

Interpretation.
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Figure 1: 
Overview of the proposed network architecture. It has three branches: two channel-specific 

networks (FiA-Netcon and FiA-Netmor, top and bottom paths in blue colors) provide 

channel-specific age estimation results, and one attention-driven fusion network (FiA-Netfus, 

middle path in orange) provides the final age estimation results. In channel-specific 

branches, the Resi(i = 1, 2, 3, 4) boxes are residual network blocks, and fi
mi are the 

intermediate deep features of channel image mi after the ith residual block. In the fusion 

branch, the Fi boxes are the fusion blocks. GAP is the global average pooling.
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Figure 2: 
Explicit split of a 3D T1w image into two 3D images representing two channels of 

information (contrast and morphometry). (a) A subject’s T1w image was registered to the 

SRI24 atlas, leading to a 3D registered intensity image (the first channel, contrast 

information) and a 3D RAVENS image (the second channel, morphometry information), 

both residing in the SRI24 atlas space. (b) Randomly-chosen subjects in every ten years of 

the age range for their two channels of images. Each column shows the MRI slices in the 

axial (top row), sagittal (middle row), and coronal (bottom row) planes. All images resided 

in the SRI24 atlas space.
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Figure 3: 
Three different fusion strategies. Orange arrows represent the fusion.
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Figure 4: 
The proposed attention-driven fusion block in the ith layer. (a) Overview of the fusion block, 

which contains four attention mechanisms: hard attention, illustrated in (b) and the output 

features are denoted as fi
u1; soft attention, illustrated in (c) and the output features are 

denoted as fi
u2; and two mutual attentions, illustrated in (d) and the output features are 

denoted as fi
u3 and fi

u4.
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Figure 5: 
Our two-phase validation strategy. The first cross-validation happened in the discovery 

cohort, which was split in five folds of equal sample sizes (Test i) for five cross-validations. 

In each cross validation, the set ”Test i” (dark orange box) was used for evaluation and the 

rest four folds (light orange box) were used for training ”Model i” (blue boxes). In the 

second phase of validation, each trained ”Model i” (blue box) was applied on the 

completely-unseen replication cohort (green box) to evaluate accuracy and generality.
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Figure 6: 
Strategy to interpret the predictive value of each neuron in the deep neural network.
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Figure 7: 
Further understanding of the important choices in our algorithm. The predictive value of the 

four attention mechanisms and their concatenations (f4
u1, f4

u2, f4
u3, f4

u4, and f4
uc ) at the last 

layer of the fusion branch FiA-Netfus.
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Figure 8: 
Accuracy comparisons among three algorithms using the same data and the same 5-fold 

cross-validation strategies, using MAE as the accuracy metric. The solid red line in each 

panel describes the ideal predictions where the predicted ages are identical to the 

chronological ages. Each green dot represent a subject.
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Figure 9: 
Accuracy comparisons among three algorithms using the same data and the same 5-fold 

cross-validation strategies, using CS as the accuracy metric. The CS curve of brain age 

estimation using the different networks in cross validation.
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Figure 10: 
Accuracy comparison among different studies that used different datasets. Each column is 

one study. They used different datasets and had different age ranges. Red dots, following the 

red scale bar on the left, are the Mean Absolution Error (MAE) in each study. Blue bars, 

following the blue scale bar on the right, are the age ranges in each study. Our proposed 

study is represented by the blue bar on the most right part of the figure. The gray rectangle 

box highlights four studies, in the right part of the figure, which used > 6,000 subjects and 

lifespan data. Therefore, these studies in the gray rectangle box are more comparable, and 

among them, our study had the lowest MAE.
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Figure 11: 
Interpretation of four most-weighted neurons in the last layer of FiA-Netfus. (a)-(d): voxel-

wise correlations with chronological ages in the four neurons on different age groups. (e): 

voxel-wise correlations with chronological ages in each neuron over 0–97 years. The 

neurons were ranked by their weights in the last layer of FiA-Netfus in descending order. (f): 

average correlations in 62 auto-segmented brain structures.
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Figure 12: 
Age estimation errors (MAE) as a function of sample size at each age. The color curves are 

the MAEs of different algorithms, and they comply with the scales in the left y axis. The 

gray bars are the numbers of samples at each age, and they follow the scales in the right y 

axis.
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Table 1:

A list of machine learning studies about estimating brain age using healthy brain MRIs. Light gray rows are 

studies that included subjects spanning from youth (15 years) up to 97 years old. Dark gray rows are studies 

with ages spanning from pre-schoolers (3–5 years) up to 97 years old, or, in the current proposed work, from 0 

to 97 years old. (Abbreviations: MAE - mean absolute error; WM - White matter; GM - Gray matter; CSF - 

Cerebrospinal fluid; ROI - regions of interest; CNN - Convolutional Neural network; ResNet - Residual neural 

network; LSTM - Long-short Term Memory;. Fus-CNN - our proposed attention-modulated multi-channel 

fusion CNN.)

Study Algorithm #Subjects Ages (years) MAE (years) Channels/feature

Part I. Studies using traditional machine learning

Cole et al. (2017b) Gaussian process regression 2,001 18–90 5.01 T1w WM/GM/CSF maps

Chung et al. (2018) Ridge regressionR 1,373 3–21 1.41 T1w ROI features

Kwaket al. (2018) Partial least square regression 666 40–94 6.795 *% Tiw ROI features

Lewis et al. (2018) Linear regression 1,592 3–22 1.52 T1w GM image

Aycheh et al. (2018) Gaussian process regression 2,911 45–91 4.05 T1w ROI features

Becker et al. (2018) Gaussian process regression 6,362 5–90 3.86 T1w ROI features

Pomponio et al. (2020) Generalized additive model 10,477 3–96 5.35 T1w ROI features

Hu et al. (2020) Logistic regression 251 0–2 0.09 
† T1w ROI features

Part II. Studies using deep learning

Cole et al. (2017a) 3D CNN 2,001 18–90 4.16 T1w image

Jónsson et al. (2019) 3D ResNet 1,264 15–80 3.63 T1w image

Feng et al. (2020) 3D CNN 10,158 18–97 4.06 T1w image

Jiang et al. (2020) 3D CNN 1,454 18–90 5.55 T1w image

Bashyam et al. (2020) 2D ResNet 11,729 3–95 3.702 T1w image

Peng et al. (2020) 3D CNN 14,503 42–82 2.14 T1w image

He et al. (2020) 2D ResNet+LSTM 1,640 0–20 0.96 T1w image

Proposed 3D Fus-CNN 16,705 0–97 T1w split into contrast and 
morphometry images

*
: This study reported root mean square error (RMSE) instead of mean absolute error (MAE).

†
: While all other studies used cross-sectional data (MRI from only 1 visit), this study used longitudinal data, where each subject had 7 MRIs, 

scanned every 3 months until 1 year old and every 6 months until 2 years old.
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Table 2:

Demographics of datasets used in this paper, sorted by median age (years).

Dataset Nsamples Age range [Median] Male/Female Scanners

Discovery Cohort

MGHBCH (He et al., 2020) 428 0–6 [1.7] 226/202 3T Siemens

NIH-PD (Evans et al., 2006) 1,211 0–22.3 [9.8] 585/626 1.5T Siemens,GE

ABIDE-I (Di Martino et al., 2014) 567 6.47–56.2 [14.8] 469/98 3T Siemens,Philips, GE

BGSP (Holmes et al.,2015) 1,570 19–53 [21] 665/905 3T Siemens

BeijingEN 
1 180 17–28 [21] 73/107 3T Siemens

IXI 
2 556 20.0–86.3 [48.6] 247/309 1.5T/3T Philips,GE

DLBS (Parket al.,2012) 315 20–89 [54] 117/198 3T Philips

OASIS-3 (LaMontagne et al., 2018) 1,222 42–97 [69] 750/472 1.5T/3T Siemens

Total 6,049 0–97 [22.8] 3,132/2,917 -

Replication Cohort

ABCD (Volkow et al., 2018) 8,639 9–11 [9.91] 4,508/4,131 3T Siemens,Philips, GE

CMI (Alexander et al., 2017) 1,765 5–21.9 [10.1] 1,117/648 1.5T/3T Siemens

CoRR (Zuo et al., 2014) 252 6–60 [20.4] 148/104 3T Siemens,Philips, GE

Total 10,656 5–60 [12] 5,773/4,883 -

All 16,705 0–97 years 8,905/7,800 -

1
, http://fcon_1000.projects.nitrc.org/indi/retro/BeijingEnhanced.html

2
, https://brain-development.org/ixi-dataset/
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Table 3:

Quantification of the effects of the three key modules in our algorithm. Results are obtained by 5-fold cross-

validations in the discovery cohort.
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Table 4:

Generality comparisons among three algorithms across datasets. Here, the generality as measured by the 

MAEs in each dataset in the discovery and replication data, as mentioned in Section 5.3(a).

ResNetfus (He et al., 2016) Hi-Netfus (Zhou et al., 
2020)

FiA-Netfus

Dataset Nsubjects Age 
range 
(years)

MAE 
(years)

CS 
(α=2 

years)

CS 
(α=5 

years)

MAE CS 
(α=2 

years)

CS(α=5 
years)

MAE CS 
(α=2 

years)

CS 
(α=5 

years)

Discovery 
Data

BeijingEN 180 17–28 2.14 59.4% 91.7% 1.86 68.3% 95.0% 1.73 65.0% 96.7%

DLBS 315 20–89 5.95 22.5% 50.8% 6.29 20.3% 47.9% 5.58 23.8% 54.6%

MGHBCH 428 0–6 1.81 72.7% 92.8% 0.90 91.8% 98.4% 0.99 90.0% 98.4%

IXI 556 20–86 6.10 24.3% 51.4% 6.28 22.3% 47.7% 6.3 20.5% 46.3%

ABIDE-I 567 6–56 3.51 42.0% 79.9% 3.22 49.0% 82.2% 3.07 49.9% 84.6%

NIH-PD 1,211 0–22 1.59 69.3% 96.6% 1.44 75.1% 97.6% 1.31 80.9% 97.8%

BGSP 1,570 19–53 2.03 64.3% 91.4% 1.93 65.9% 93.5% 1.88 66.8% 93.7%

OASIS-3 1,222 42–97 4.70 29.9% 62.3% 4.42 32.2% 67.0% 4.22 35.0% 70.4%

All 6,049 0–97 3.31 49.1% 49.4% 3.12 53.0% 80.5% 3.00 54.8% 82.1%

Replication 
Datal

ABCD 8,639 9–12 3.17 34.8% 81.7% 3.55 37.0% 76.4% 2.86 48.8% 92.3%

CMI 1,765 5–22 3.29 38.7% 80.4% 3.79 37.4% 74.1% 2.97 44.1% 83.8%

CoRR 252 6–60 6.43 32.6% 60.6% 5.47 37.5% 66.7% 5.35 41.0% 66.6%

All 10,656 5–60 4.29 35.4% 74.3% 4.27 37.3% 72.4% 3.72 44.6% 80.9%
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Table 5:

Generality comparisons among three algorithms when the training samples vary. Here, generality was 

measured by the mean of the standard deviations among the 5 estimated ages for each subject in the three 

replication datasets, as detailed in Section 5.3(b).

mean of stdev among 5 models ResNetfus (Heetal., 2016) Hi-Netfus (Zhou et al., 2020) FiA-Netfus (Proposed)

ABCD 1.66 2.11 1.75

CMI 1.83 1.82 1.52

CoRR 2.84 2.56 2.34

Average 2.11 2.17 1.86
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