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Abstract

Post-prostatectomy radiotherapy requires accurate annotation of the prostate bed (PB), i.e., the 

residual tissue after the operative removal of the prostate gland, to minimize side effects on 

surrounding organs-at-risk (OARs). However, PB segmentation in computed tomography (CT) 

images is a challenging task, even for experienced physicians. This is because PB is almost a 

“virtual” target with non-contrast boundaries and highly variable shapes depending on neighboring 

OARs. In this work, we propose an asymmetric multi-task attention network (AMTA-Net) for the 

concurrent segmentation of PB and surrounding OARs. Our AMTA-Net mimics experts in 

delineating the non-contrast PB by explicitly leveraging its critical dependency on the neighboring 

OARs (i.e., the bladder and rectum), which are relatively easy to distinguish in CT images. 
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Specifically, we first adopt a U-Net as the backbone network for the low-level (or prerequisite) 

task of the OAR segmentation. Then, we build an attention sub-network upon the backbone U-Net 

with a series of cascaded attention modules, which can hierarchically transfer the OAR features 

and adaptively learn discriminative representations for the high-level (or primary) task of the PB 

segmentation. We comprehensively evaluate the proposed AMTA-Net on a clinical dataset 

composed of 186 CT images. According to the experimental results, our AMTA-Net significantly 

outperforms current clinical state-of-the-arts (i.e., atlas-based segmentation methods), indicating 

the value of our method in reducing time and labor in clinical workflow. Our AMTA-Net also 

presents better performance than the technical state-of-the-arts (i.e., the deep learning-based 

segmentation methods), especially for the most indistinguishable and clinically critical part of the 

PB boundaries.

Keywords

Segmentation; prostate bed; computed tomography; deep learning; multi-task; attention 
mechanism

1. Introduction

Prostate cancer is a common type of men cancer. According to the latest cancer statistics 

(Siegel et al. (2020)), there would be more than 190, 000 newly diagnosed cases and 33, 000 

deaths associated with the prostate cancer in the United States this year, accounting for more 

than 1 in 5 new diagnoses and the second cancer mortality (after lung cancer) in men. 

Radical prostatectomy, i.e., a surgical operation to resect the prostate gland, is one of the 

most effective treatments when the cancer is believed to be confined to the prostate. 

However, after the radical prostatectomy, a few cancerous tissues may yet remain in the 

residual part of the prostate gland, as well as the surgical bed and some adjacent tissues. This 

region is clinically defined as prostate bed (PB) or prostatic fossa, which would develop a 

recurrence even metastasis without additional treatment. To eliminate the residual cancerous 

tissues, postoperative radiotherapy on the PB is commonly carried out as a standard adjuvant 

or salvage setting for the radical prostatectomy. Precisely delineating the target volume of 

PB in planning computed tomography (CT) images is a prerequisite for the efficacy of 

postoperative radiotherapy.

However, accurate PB segmentation in CT images is a unique task of great difficulty. As the 

example shown in Fig. 1, the PB is an anatomical region situated between the bladder and 

rectum in the male pelvis. It mainly consists of the residual prostatic tissues and some 

adjacent volumes of the bladder, bordering on the anterior surface of the rectum. In contrast 

to the prostate gland, whose boundary can be distinguished by the intensity change, the PB 

is not an intact structure with practical boundaries. This makes it often referred to as a 

“virtual” volume or “invisible” target in the literature (Hwee et al. (2011); Delpon et al. 

(2016); Latorzeff et al. (2017)). In clinical practice, physicians typically follow a set of 

complicated consensus guidelines (Poortmans et al. (2007); Wiltshire et al. (2007); Sidhom 

et al. (2008); Michalski et al. (2010)) to delineate the contour of PB. The recommended 

protocols are normally based on the PB’s spatial dependency on the surrounding organs-at-
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risk (OARs), i.e., the bladder and rectum. In other words, it is almost impossible to annotate 

PB in CT images merely relying on the intensity contrast. Furthermore, since the PB mainly 

consists of soft tissues, its size and shape could be significantly different across patients, 

highly affected by the status (full or empty) of the neighboring bladder and rectum. These 

reasons make PB segmentation fundamentally different from and much harder than the 

segmentation of other pelvic organs.

Although automated workflows are highly desired in the clinic, there are only a few such 

kind of methods (Hwee et al. (2011); Delpon et al. (2016)) proposed for PB segmentation. 

All these studies involve the atlas-based segmentation (ABS) method, which is a general 

methodology widely used in medical image analysis (Mohamed et al. (2006); Zhan et al. 

(2007); Wu et al. (2011); Jia et al. (2012); Iglesias and Sabuncu (2015)). Capitalizing on 

image registration techniques, these methods typically align the input image to the labeled 

atlas images, by which the segmentation contours of the atlases are further mapped to the 

unlabeled input image. According to the experimental results reported in the literature Hwee 

et al. (2011) and Delpon et al. (2016), the ABS methods are efficient for the delineation of 

high-contrast organs (e.g., the femoral heads), while cannot work well for the non-contrast 

PB. In recent years, benefiting from the task-oriented representation learning and end-to-end 

combination of local-to-global information, the fully convolutional network (FCN) (Long et 

al. (2015)) and its variants (Ronneberger et al. (2015)) have witnessed enormous progress in 

semantic segmentation. Although there is no yet research on deep learning-based method for 

PB segmentation, we hypothesize that FCN can be a good candidate solution for our 

problem, considering its compelling performance on some related applications such as the 

pelvic organ segmentation (Xu et al. (2018); He et al. (2019); Nie et al. (2019); Wang et al. 

(2019, 2020b,a)). However, the challenge is that general network architectures without 

explicit modeling of the dependency of PB to the adjacent OARs may fail to delineate this 

“virtual” target with non-contrast boundaries.

In this paper, we propose an asymmetric multi-task attention network (AMTA-Net) for the 

segmentation of PB in CT images. Mimicking the clinical workflow for manual PB 

delineation, our AMTA-Net is designed as an asymmetric multi-task model, in which the 

segmentation of OARs (i.e., bladder and rectum) serves as a low-level (or prerequisite) task 

providing guidance to the high-level (or primary) task of PB segmentation. Specifically, we 

first exploit a U-Net as the backbone network for the low-level task of OAR segmentation. 

Upon the backbone U-Net, we then build an attention sub-network for the high-level task of 

PB segmentation. The attention sub-network consists of a series of cascaded attention 

modules, which can hierarchically transfer the relevant OAR features from the backbone U-

Net and adaptively learn discriminative representations for accurate PB segmentation. In 

addition, the output of the backbone is skip-connected as the initial input of the attention 

sub-network, which provides contextual information to refine the segmentation of the non-

contrast PB.

In summary, the main contribution of this work is four-fold:

1. We leverage the power of deep learning to handle the challenging problem of PB 

segmentation in CT images, in which the target suffers from non-contrast 
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boundaries and highly irregular shapes. To the best of our knowledge, this is the 

first exploration using a deep learning-based method to deal with this unique 

problem.

2. Inspired by the clinical workflow for manual PB delineation, we explicitly 

formulate the PB segmentation as a high-level task depending on the low-level 

task of OAR segmentation. Accordingly, a novel asymmetric multi-task network 

architecture, i.e., the AMTA-Net, is proposed to infer the PB mask from the 

structural information of the bladder and rectum.

3. We design a series of attention modules in the proposed AMTA-Net, which can 

learn task-oriented feature representations for accurate PB segmentation by 

transferring the relevant OAR features from the backbone network.

4. As a by-product of PB segmentation, our AMTA-Net can simultaneously 

segment the bladder and rectum, whose contour is also required in the post-

prostatectomy radiotherapy to protect the OARs.

To evaluate the performance of the proposed AMTA-Net for PB segmentation, we conduct 

extensive experiments on a clinical dataset consisting of 186 CT images acquired from 

different patients. According to the experimental results, our AMTA-Net not only 

outperforms the clinical state-of-the-arts (i.e., the ABS methods) by a significant margin, but 

also achieves better performance in comparison to the technical state-of-the-arts (i.e., the 

deep learning-based methods for general image segmentation), especially for the most 

indistinguishable and clinically critical part of the PB boundaries.

It is worth noting that, this work is an extension of a preliminary conference publication (Xu 

et al. (2020)). In addition to a more detailed literature review, other major extensions in this 

journal paper include 1) more state-of-the-art deep learning-based methods are included in 

comparison with the proposed AMTA-Net, 2) more systematic evaluations are performed to 

verify the significance of the improvement achieved by the proposed AMTA-Net when 

compared with the state-of-the-arts, 3) a set of ablation studies are conducted to justify the 

effectiveness of the essential designs in the proposed AMTA-Net, 4) comprehensive 

discussions are presented to analyze network design and some other factors that contribute 

to accurate PB segmentation, and 5) further investigations on the issues related to inter-

observer variability and radiotherapy dose distribution.

The rest of the paper is organized as follows. Section 2 gives an overview of previous works 

related to the PB segmentation and multi-task deep learning for medical image analysis. 

Section 3 presents the detailed designs of the proposed AMTA-Net. In Section 4, we conduct 

extensive experiments on a clinical dataset to evaluate the performance of our AMTA-Net 

and verify the efficacy of our designs. Some specific issues are discussed in Section 5. 

Finally, we conclude this work in Section 6.

2. Related Works

In this section, we briefly review previous works on automatic PB segmentation and multi-

task deep learning for medical image analysis.
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2.1. Prostate bed segmentation

In clinical workflow, the segmentation of PB in CT images is commonly carried out by the 

physicians using manual contouring tools. A set of complicated consensus guidelines have 

been proposed as professional support (Poortmans et al. (2007); Wiltshire et al. (2007); 

Sidhom et al. (2008); Michalski et al. (2010)). However, due to the divergence in physicians’ 

experience and knowledge, the manually delineated contours may present significant inter-

observer variabilities, despite the use of rigorous contouring protocols and guidelines 

(Latorzeff et al. (2017)). Although automatic methods could be more robust in delineating 

PB with relatively higher efficiency, there are only a few ABS methods proposed for this 

challenging problem. Leveraging image registration techniques, the ABS methods typically 

align an input image to the labeled atlas images and then map the atlas segmentations to the 

unlabeled input image. Hwee et al. (2011) proposed to use a commercial ABS software with 

75 atlas images to segment the PB. According to their experimental results, the ABS method 

is significantly faster than the manual contouring procedure, while the segmentation 

accuracy on PB is far from the requirement for clinical use (with the mean dice similarity 

coefficient around 0.47). A similar conclusion was drawn in a later research by Delpon et al. 

(2016). They compared five commercial ABS systems for the segmentation of PB and 

surrounding OARs. The results showed that these ABS methods consistently perform well in 

the segmentation of high-contrast targets such as the femoral heads but cannot reliably 

delineate the non-contrast PB. Overall, the limited performance of the conventional ABS 

method is mainly caused by two reasons: (1) they typically rely on intensity information for 

image registration, while the PB is a “virtual” object with non-contrast boundary; (2) they 

cannot effectively model the geometric correlation between the PB and surrounding OARs, 

which is critical for the segmentation of the non-contrast PB.

2.2. Multi-task deep learning for medical image analysis

As a popular machine learning strategy, multi-task learning (MTL) aims to improve the 

performance of multiple tasks by jointly learning a unified model, under the assumption that 

these tasks can be complementary to each other (Zhang and Yang (2017)). The strategy of 

MTL has been successfully applied to developing deep convolutional neural networks 

(CNNs) for various medical image analyzing tasks. For example, Moeskops et al. (2016) 

used a single CNN to perform the simultaneous segmentation of different tissues from 

different imaging modalities, achieving equivalent performance to that of multiple CNNs 

individually trained for each task. Xue et al. (2018) proposed a multi-task relationship 

learning method for full left ventricle quantification in cardiac MR images. This method can 

automatically learn the relationship between different tasks in an end-to-end fashion to 

improve the generalization capacity of the entire deep network. Bragman et al. (2018) 

combined uncertainty model with multi-task learning to rebalance the weights of CT 

synthesis task and OAR segmentation task for MR-only radiotherapy treatment planning. 

Lian et al. (2020) proposed a hierarchical FCN for the joint localization of brain atrophy and 

diagnosis of Alzheimer’s disease with the whole-brain MR images. Most of these existing 

multi-task CNNs for medical image analysis were designed to perform symmetric 

knowledge transformation between any two coupled tasks, i.e., different tasks are placed at 

the same level and learned equally. However, this is not always the real case in practice, e.g., 

the segmentation of PB relies on the surrounding OARs, while non-contrast PB is hard to 
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bring additional information for the OARs, which are much easier to annotate. This 

challenge features that our task of automatic PB segmentation desires an asymmetric multi-

task learning model (Lee et al. (2016)), which can leverage the inter-task dependency to 

perform better in some specific tasks.

3. Method

The schematic diagram of our AMTA-Net is shown in Fig. 2. It mainly consists of two sub-

networks: (1) a backbone with the U-Net architecture for the low-level task of OARs (i.e., 

bladder and rectum) segmentation, and (2) an attention sub-network built upon the backbone 

for the high-level task of PB segmentation. The attention sub-network consists of a series of 

Attention Modules (AMs), with the inner structure specified in Fig. 3.

3.1. Backbone network for OAR segmentation

In post-prostatectomy radiotherapy, accurate contouring of the bladder and rectum is not 

only a prerequisite for the OAR definition to minimize side effects on normal tissues, but 

also provides an essential reference for the physicians to delineate the clinical target volume 

(CTV) of PB. Based on this observation, in our design, we consider OAR segmentation as a 

foundation for the PB segmentation. To achieve accurate OAR segmentation in CT images, 

our AMTA-Net adopts a U-Net (Ronneberger et al. (2015)) as the backbone network to 

predict pixelwise OAR masks, considering that this classical FCN architecture and its 

variants have shown promising results in the task of CT pelvic organs segmentation. As 

shown in the bottom of Fig. 2, the backbone network mainly consists of an encoding path, a 

decoding path, and the skip connections between them. Both the encoding path and the 

decoding path are composed of four cascaded convolutional blocks. The numbers labeled on 

each convolutional block denote its output channel and kernel size (e.g., “512ch 3×3” 

denotes a convolutional layer with 3×3 kernels and 512 output channels). All the 

convolutional layers are followed by a batch normalization layer (Ioffe and Szegedy (2015)) 

and a rectified linear unit (ReLU) (Nair and Hinton (2010)) except for the last 1×1 

convolutional layer, which is followed by a softmax layer. Notably, the backbone U-Net not 

only outputs the probability maps for the OAR segmentation, but also shares its intermediate 

feature maps with the subsequent attention sub-network. These shared intermediate feature 

maps can be seen as a feature pool containing both image spatial details and OAR structural 

information. From this feature pool, the attention sub-network can learn discriminative 

representations for the PB segmentation with the guidance of the OAR structures.

3.2. Attention sub-network for PB segmentation

Since the PB boundary largely depends on the shape of the bladder and rectum, it is intuitive 

to assume that the feature representations for the PB segmentation are highly correlated with 

those for the OAR segmentation, although they are not exactly the same. Therefore, inspired 

by the attention mechanism proposed in symmetric multi-task learning (Liu et al. (2019)), 

we build an attention sub-network upon the backbone U-Net to adaptively learn the PB 

features from the OAR features. As shown in the top of Fig. 2, the attention sub-network 

mainly consists of a series of cascaded attention modules (AMs). Besides the serial 

connection with the preceding AM, each AM laterally connects to a convolutional block in 
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the backbone network. As mentioned before, the intermediate feature maps shared by each 

convolutional block of the backbone form a feature pool, from which the AMs can select the 

most relevant features to learn task-oriented representations for accurate PB segmentation.

The inner structure of the AM is illustrated in Fig. 3, by which the PB feature 

representations in a stage of the attention sub-network are jointly determined by the 

backbone and the preceding stage of the attention sub-network. Specifically, for the n-th AM 

(i.e., AMn) in the attention sub-network, there are two inputs: 1) the features generated by 

the preceding AMn−1 (the cascaded input denoted as Yn−1), and 2) the features from the n-th 

convolutional block of the backbone (the lateral input denoted as Xn). The AM first adopts a 

light-weight block (namely mask generator) consisting of two cascaded 1×1 convolutional 

layers to learn an adaptive attention mask from the input Yn−1 and Xn. Let the mask 

generator be a function Fn(·), the adaptive attention mask An (with the value of each 

element·between [0, 1]) can be denoted as:

An = Fn Yn − 1 ⊕ Xn (1)

where the symbol ⊕ denotes the concatenation of two tensors by channel. The attention map 

An has the same size as the input Yn−1 ⊕ Xn. It is then used to tailor the input Yn−1 ⊕ Xn by 

element-wise multiplication. After that, a 3×3 convolutional layer followed by a 2×2 

pooling/deconvolutional layer is employed as a feature extractor Gn(·) to further generate 

discriminative feature representation Yn for the PB segmentation:

Yn = Gn An ⊗ Yn − 1 ⊕ Xn (2)

where the symbol ⊗ denotes the element-wise multiplication. The final pooling/

deconvolutional layer is used in the encoding/decoding path of the attention sub-network to 

down-/upsample the output feature maps, ensuring the spatial consistency with the 

corresponding convolutional layers in the backbone network. For the first attention module 

AM1, its cascaded input Y0 is connected to the output of the second last convolutional layer 

of the backbone network, while the lateral input X1 comes from the first convolutional block 

of the backbone. Similar to the auto-context strategy, the combination of these two inputs 

provides both strong semantic information and rich image details to assist the construction 

of the attention sub-network.

3.3. Loss function

In the training stage, the model parameters are optimized by minimizing the following multi-

task loss function:

L = λpbLpb + λoarLoar (3)

where Lpb and Loar are the PB segmentation loss from the attention sub-network and the 

OAR segmentation loss from the backbone network, respectively. λpb and λoar are the 

corresponding loss weights. In our experiments, we set λpb = 1 and λoar = 1 to get optimal 

results on PB segmentation. We will show experimental results in Section 5.2 to justify this 
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setting. Considering the class imbalance between the foreground and background pixels, we 

define Lpb and Loar as the dice loss function (Milletari et al. (2016)):

LDice(P, P) = 1
C ∑

c

C
1 −

2∑i pcipci

∑i pci2 + ∑i pci
2 (4)

where P and P denote the C-channel predicted mask and the ground-truth mask, respectively. 

pci and pci are the values of the i-th pixel in the c-th channel of the predicted mask P and the 

ground-truth mask P, respectively.

3.4. Implementation details

The proposed AMTA-Net takes 2D CT slices as the input. We combine three adjacent slices 

to compose a 3-channel input image, which provides more spatial context to infer the 

segmentation mask of the center slice. For the effect of the input adjacent slice number, we 

will investigate it in Section 5.1. All the CT slices are center-cropped and resampled to a 

uniform size of 128×128 with a spatial resolution of 2×2 mm2 through bi-linear 

interpolation. Pixel intensities are rescaled from [−200, 800] Hounsfield Unit (HU) to [0, 1] 

by linear mapping. The intensities below −200 HU (beyond 800 HU) are clipped to 0 (1). To 

mitigate overfitting, in the training stage, we randomly translate and rotate the input CT 

slices in a range of [−5.00, 5.00] mm and [−0.05, 0.05] rad, respectively.

We train the model for 100 epochs with a base learning rate of 10−3 and a batch size of 144 

(a mini-batch size of 24 on six graphic cards). The model achieving the highest accuracy 

(i.e., a weighted average dice similarity coefficient on the PB, bladder, and rectum with the 

weights of 0.5, 0.25, and 0.25, respectively) on the validation set is stored as the final model, 

which is then used to perform the inference on the testing set. We implement the model 

using the PyTorch framework on Ubuntu 16.04 (x64) operating system. All the training 

procedures are conducted on a server computer equipped with two Intel(R) Xeon(R) E5–

2650 CPUs working at 2.20GHz and six NVIDIA TITAN Xp graphic cards with 12 GBytes 

of memory each. Model parameters are initialized using the Xavier algorithm (Glorot and 

Bengio (2010)) and optimized using the back-propagation algorithm (LeCun et al. (1998)) 

and Adam optimizer (Kingma and Ba (2014)). The implementation of the proposed method 

is publicly available on GitHub1.

4. Experiments

4.1. Dataset

In this study, all the experiments are conducted on a clinical dataset composed of 186 post-

prostatectomy patients collected in one hospital (i.e., the Radiation Oncology Department, 

UNC-Chapel Hill, U.S.) from year 2009 to 2019. Each case has one planning CT image and 

the corresponding segmentation masks of PB, bladder, and rectum. All these masks are 

manually delineated by one of three expert physicians and modified/verified by the rest two 

physicians to mitigate the inter-observer variability. We use these masks as ground-truth for 

1https://github.com/superxuang/amta-net
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training and evaluation. The slice number of each CT image varies from 98 to 270, resulting 

in a total of 26, 133 slices. All these slices have a uniform size of 512×512. The slice in-

plane spacing ranges from 0.81 mm to 1.37 mm, and the slice thickness varies in two values 

of 3.00 mm (184 cases) and 1.50 mm (2 cases). We randomly divide the dataset into five 

folds in terms of patients and conduct 5-fold cross validation to evaluate the performance of 

different models (three folds for training, one fold for validation, and one fold for testing in 

each iteration). Five cases with severe metal artifact caused by artificial femoral heads are 

excluded when used for testing.

4.2. Metrics

We compute the mean value and standard deviation of Dice Similarity Coefficient (DSC) 

and Average Symmetric Surface Distance (ASD) on all cases for PB, bladder, and rectum as 

the metrics to quantitatively evaluate the model performance. Specifically, we use the DSC 

as the primary metric to quantify the overlap ratio between the predicted mask and the 

ground-truth mask:

DSC = 2 V p ∩ V g
V p ∪ V g

(5)

where Vp and Vg denote the volume of the predicted mask and the ground-truth mask, 

respectively. The ASD is used as a secondary metric to measure the shape conformity 

between the predicted mask and the ground-truth mask:

ASD =
∑a ∈ Spd a, Sg + ∑b ∈ Sgd b, Sp

Sp + Sg
(6)

where Sp and Sg denote the surfaces of the predicted mask and the ground-truth mask, 

respectively. d(a, S) is the minimum distance between point a to surface S.

4.3. Competing methods

The competing methods evaluated in the experiments can be categorized into two classes: 1) 

the ABS methods which represent the clinical state-of-the-art for PB segmentation, and 2) 

the deep learning-based segmentation methods which represent the technical state-of-the-art 

for general image segmentation.

4.3.1. Atlas-based segmentation methods—As we introduced in Section 1, 

automatic PB segmentation has been rarely studied before except for a few explorations that 

use commercial software integrating the atlas-based segmentation (ABS) methods. 

Therefore, to demonstrate the clinical value of our AMTA-Net, we conduct a comparison 

with the commercial ABS software. In this experiment, we not only list the results of five 

commercial ABS software reported in literature to perform a qualitative comparison, but 

also apply one representative ABS software (i.e., the MIM Maestro® with a recently 

released version of 6.9.6) on our dataset to conduct a quantitative comparison. We apply the 

same 5-fold cross validation to evaluate the ABS software as our method. In each iteration of 

the cross validation, four folds of cases are used to build the atlas database and one fold of 
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cases are used for testing. The major hyper-parameter of the ABS software is the number of 

the matched case used to aggregate the output segmentation. We determine this parameter by 

grid-search strategy and finally set it to an optimal value of eight. In the result of the ABS 

software, the segmentation fails in one case, whose DSC and ASD dramatically deviate from 

the average. We find this failed case has an exceptionally full bladder and rectum, which is 

not common for radiotherapy. Therefore, to avoid introducing bias, we exclude this failed 

case from the result of the ABS software but still count it in the result of other competing 

methods (including ours).

4.3.2. Deep learning-based segmentation methods—To demonstrate the technical 

novelties in our design, we compare our method to the state-of-the-art deep networks for 

general image segmentation and the variants of them, including:

1. U-Net (Ronneberger et al. (2015)), V-Net (Milletari et al. (2016)), and 

VoxResNet (Chen et al. (2018)): Three single-task FCN models for medical 

image segmentation, which typically consist of an encoding (downsample) path 

and a decoding (upsample) path.

2. Multi-task U-Net (MT-U-Net): A symmetric multi-task model derived from U-

Net. It consists of one encoding path shared by two sibling decoding paths, 

which are used for PB segmentation and OAR segmentation, respectively.

3. Multi-task Attention U-Net (MTA-U-Net) (Liu et al. (2019)): A symmetric 
multi-task model integrating attention mechanisms. A backbone U-Net extracts 

task-shared features while two sibling attention sub-networks built upon the 

backbone U-Net extract task-specific features for PB segmentation and OAR 

segmentation, respectively.

Both MT-U-Net and MTA-U-Net have symmetric network architectures where the PB 

segmentation task and OAR segmentation task are equally learned. It means that the learning 

of the PB segmentation task takes no explicit reference from the neighboring OAR structures 

but implicit reference by feature sharing with the OAR segmentation task. All the competing 

networks are implemented in 2D manners and trained using the same configurations as our 

method introduced in Section 3.4. We also apply the same 5-fold cross validation as ours to 

evaluate the competing networks. Although this experimental setting ensures that the 

network architecture is the sole variable in the comparison between different competing 

methods, it may not guarantee all of these methods to reach the full potential since they 

might need different hyper-parameters to further optimize their performance.

4.4. Comparison with other methods

4.4.1. Comparison with ABS methods—The experimental results of the commercial 

ABS software are summarized in the top part of Table 1. According to the reported data in 

literature (the top six rows in Table 1), all the ABS software show relatively low accuracy on 

PB (with a mean DSC lower than 70%), indicating the inherent difficulty in PB 

segmentation. Among these ABS software, MIM has relatively better performance and 

wider application in the clinic. Thus, we adopt a recently released version of the MIM ABS 

software on our dataset to conduct a direct comparison with our method. According to the 
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experimental results shown in the last row of the top part of Table 1, the proposed AMTA-

Net significantly outperforms the MIM ABS software on both PB segmentation and OAR 

segmentation. Our mean DSC on PB is 8.55% (75.67% v.s. 67.12%) higher than that of the 

MIM ABS software. This superior performance demonstrates that the proposed AMTA-Net 

can largely reduce the labor and time costs in clinical workflow, justifying the application 

value of our method.

4.4.2. Comparison with deep learning-based methods—The experimental results 

of the deep learning-based methods are summarized in the bottom part of Table 1. 

According to the results, we can have the following observations:

1. For all the competing methods, the deep learning-based methods outperform the 

conventional ABS methods by a significant margin in both PB and OAR 

segmentation tasks. This result demonstrates the superiority of the deep learning 

methodology in dealing with the pelvic organs that have variable shapes and 

low-/non-contrast boundaries.

2. For the deep learning-based methods, the multi-task networks (MT-U-Net, MTA-

U-Net, and ours) generally outperform the single-task networks (U-Net, V-Net, 

and VoxResNet). This result indicates that, by jointly learning the PB 

segmentation task and the OAR segmentation task, the multi-task networks can 

leverage the knowledge used for the OAR segmentation to facilitate the PB 

segmentation, thus achieve higher accuracy than the single-task networks that 

learn the PB segmentation task individually.

3. For the multi-task networks (MT-U-Net, MTA-U-Net, and ours), our method 

achieves the highest accuracy on PB and comparable performance on OARs 

when compared with the other two competitors. This result indicates the superior 

performance of our method for the specific problem of PB segmentation.

According to the experimental results shown in Table 1, the improvement margin of our 

method over other deep learning-based methods is smaller than that over the ABS methods. 

Therefore, we conduct paired t-test to check whether our improvement margin is statistically 

significant or not. Specifically, we calculate two-sided p-value between the results of our 

method and the deep learning-based competitors. The significance level is defined as a 

thresholding p-value of 0.05. In Table 2, we list the p-values along with the corresponding 

DSC and ASD of all the deep learning-based methods. We can see our result is significantly 

different with most of the competing results except for the ASD against the MTA-U-Net (see 

the top part of Table 2, Whole PB volume). To investigate which part of the PB volume our 

method gain the most, we separate the CT slices of the PB volume into two parts, according 

to whether the ground-truth PB contour is overlapped or non-overlapped with the OAR 

contour. As a result, we get 2,190 OAR-overlapped slices and 1,108 non-OAR-overlapped 

slices in the entire dataset, respectively. For the OAR-overlapped slices, our result is 

significantly better than all the competing results with p-value < 0.05 (see the middle part of 

Table 2, PB contours overlapped with OARs). Meanwhile, for the non-OAR-overlapped 

slices, our result is also better than most of the competitors. But the difference within the 

multi-task deep learning-based methods is not statistically significant (see the bottom part of 
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Table 2, PB contours non-overlapped with OARs). This result indicates that the superior 

performance of our method mainly comes from the OAR-overlapped slices where the PB 

boundaries are usually non-contrast and highly correlated with the OAR shape. This 

improvement is especially meaningful to the post-prostatectomy radiotherapy, where the PB 

contour accuracy in the OAR-overlapped slices has more impact than that in the non-OAR-

overlapped slices. This is because the therapeutic dose has high chance to hurt the 

surrounding healthy tissues in the region where the PB is overlapped with the OARs. 

Therefore, the physicians often need extra efforts to carefully define the PB boundary in the 

OAR-overlapped slices.

Fig. 4 visualizes some results on the OAR-overlapped slices. In these slices, the PB shows 

non-contrast boundary. Less intensity information can be leveraged to infer the contour. We 

can see the proposed method performs better than the competing methods, demonstrateing 

the effectiveness of our design towards the non-contrst PB boundary.

4.5. Ablation experiments

Overall, there are three key designs contributing to the superior performance of the proposed 

AMTA-Net: (i) the multi-task learning strategy jointly considering PB segmentation and 

OAR segmentation, (ii) the asymmetric network architecture explicitly modeling the one-

sided structural dependency between PB and OARs, and (iii) the attention mechanisms 

flexibly selecting and transferring discriminative features for PB segmentation. In this 

section, we will conduct a set of ablation experiments on our AMTA-Net to justify the 

efficacy of these three designs.

4.5.1. Effectiveness of multi-task learning strategy—In our AMTA-Net, the multi-

task learning strategy is realized by simultaneously training the backbone network for OAR 

segmentation and the attention sub-network for PB segmentation. When we mute the output 

of the backbone network by removing its last convolutional layer, the AMTA-Net 

degenerates to a single-task model focusing on PB segmentation. As the experimental results 

shown in Table 3, this ablation single-task model (Table 3, Ours w/o OAR prediction) 

achieves lower accuracy than the proposed AMTA-Net, demonstrating the effectiveness of 

the multi-task learning strategy in facilitating accurate PB segmentation.

4.5.2. Effectiveness of asymmetric network architecture—According to the 

clinical experience of the physicians, the delineation of PB highly relies on the neighboring 

OARs’ contour, while the non-contrast PB hardly bring additional information for the OAR 

segmentation. Inspired by this experience, our AMTA-Net is designed in an asymmetric 

architecture to explicitly leverage the one-sided dependency between PB and OARs. To 

justify the efficacy of this design, we re-organize our AMTA-Net to a symmetric architecture 

and compare this symmetric counterpart with our AMTA-Net. Specifically, we clone a 

sibling attention sub-network in our AMTA-Net to specially segment the OARs, and mute 

the original output of the backbone network. The number of feature maps in the backbone 

network is also cut in half to keep the network capacity (the number of trainable parameters) 

equivalent to our AMTA-Net. According to the experimental results shown in Table 3, this 

symmetric variant (Table 3, Ours w/o asym-architecture) achieves lower accuracy than our 
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AMTA-Net, demonstrating the effectiveness of the asymmetric network architecture for PB 

segmentation.

4.5.3. Effectiveness of attention mechanisms—In our AMTA-Net, the attention 

mechanisms are implemented through the element-wise multiplication between the input 

feature maps and the self-learned soft attention masks. If we fix all these attention masks to 

an identity map, the attention mechanisms in our AMTA-Net will become invalid, and all the 

original features input to the attention sub-network will be directly used for the PB 

segmentation. According to our experimental results (Table 3, Ours w/o attention), 

disabling the attention mechanisms in our AMTA-Net leads to a decrease in final accuracy. 

This result indicates that, benefiting from the attention mechanisms, the proposed attention 

sub-network can focus on the discriminative parts of the input features, thus producing 

higher accuracy in PB segmentation.

5. Discussion

5.1. Effects of input adjacent slice number

The proposed AMTA-Net is fully implemented using 2D convolutional neural networks. To 

take more spatial context into consideration, we combine the adjacent slices with the center 

slice to compose a multi-channel image as the input. The number of the input slices is a 

hyper-parameter, which could affect the results of our method. To investigate this effect, we 

conduct an experiment on this hyper-parameter and list the experimental results in Table 4. It 

can be seen that the model using multi-slice input can achieve higher segmentation accuracy 

than the model using single-slice input. However, when we increase the number of the input 

adjacent slices further, the model performance does not get more improvement. We attribute 

this result to the highly variable shapes of the target organs along the axial direction. It is 

ideal for implementing the proposed method fully in a 3D manner. However, the large 

memory footprints of the 3D networks make it infeasible to directly expand our model to 3D 

structures without any compromise in image size and resolution, which would affect the 

segmentation accuracy. The training set in terms of 3D CT volumes is also much smaller 

than that in terms of 2D CT slices. This may increase the risk of over-fitting. To this end, we 

choose to implement our AMTA-Net in 2D manners.

5.2. Task balance between PB and OAR segmentation

As mentioned in Section 3.3, the contribution from the PB segmentation task and the OAR 

segmentation task to the final training objective is weighted by two hyper-parameters, 

i.e.,λpb and λoar. To determine the optimal balance between these two tasks, we separately 

train our AMTA-Net using different value combinations of λpb and λoar. The experimental 

results are listed in Table 5 and plotted in Fig. 5. It can be seen that the PB segmentation task 

reaches the highest accuracy when it is learned with equal importance to the OAR 

segmentation task (λpb : λoar = 1 : 1). This can be explained that, since the PB segmentation 

highly relies on the OAR segmentation, a larger ratio of λpb : λoar would bring worse results 

on OAR segmentation thus degrade the PB segmentation, while decreasing the ratio of λpb : 

λoar would directly degrade the PB segmentation. Therefore, we set λpb = 1 and λoar = 1 in 

our training stage.
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5.3. Differences to multi-task attention U-Net

It is worth mentioning that, although our AMTA-Net and the competing method MTA-U-

Net (Liu et al. (2019)) both leverage attention mechanisms to construct multi-task networks, 

the methodological designs of these two methods are fundamentally different. First, our 

network uses an asymmetric architecture to explicitly leverage the one-sided dependency 

between PB and OARs, while MTA-U-Net is a general symmetric multi-task network that 

treats all tasks equally. Second, the attention mechanisms in these two methods are 

implemented through different attention modules (AM). The AM used in our method pays 

attention to both the PB features extracted by the preceding AM and the OAR features from 

the backbone, while the AM in MTA-U-Net only considers the shared features in the 

backbone network. Third, our AMTA-Net has fewer trainable parameters than MTA-U-Net 

(about 75% of MTA-U-Net), implying higher parameter efficiency and better generalization 

capacity of our network.

5.4. Results discussion in clinical context

The absolute DSC of PB (75.67%) is not as high as that of the bladder (88.40%) and rectum 

(80.35%), indicating the inherent difficulty in PB segmentation compared with other organs. 

We attribute this to the fact that the PB has a large part of non-contrast boundaries which 

highly rely on the shape of surrounding organs and expert opinion rather than local 

intensities.

The proposed AMTA-Net outperforms the conventional ABS method by a significant 

margin. The superior performance demonstrates its clinical value since it can largely reduce 

the labor and time costs in the clinical workflow. The proposed method also outperforms the 

technical state-of-the-arts (i.e., the deep learning-based methods for general image 

segmentation), verifying the application-oriented methodological novelties in our design. It 

is worth noting that, our AMTA-Net achieves a statistically significant improvement in the 

most clinically critical part of the PB volume (i.e., the region overlapped with the 

neighboring OARs), where the physicians often need extra efforts to fine-tune the contours. 

This improvement has clinical benefits in the context of radiotherapy since the dose 

distribution in these regions needs to be made very sharp (about 10% of prescription dose 

per mm) to protect the normal tissues.

5.5. Effects of inter-observer variability

As discussed in the previous literature, the inter-observer variability in target contouring may 

be the most significant contributor to the uncertainty in radiation treatment (RT) planning 

(Hwee et al. (2011)). However, it is an inherent difficulty that always exists in the manual 

contouring procedure for PB, a “virtual” target, even with the use of consensus guidelines 

(Latorzeff et al. (2017)). To mitigate the effect of the inter-observer variability, in our 

clinical practice, the planning PB contour is defined by three experienced physicians 

following a two-step workflow: Step 1) One of the three physicians will manually delineate 

an initial contour following some pre-defined protocols. Step 2) The other two physicians 

will make further modification and verification on the initial contour to reach a consensus. 

Therefore, the resulting PB annotation in our study can be seen as a consensus opinion from 

the expert group. Since we use this consensus annotation as our training target (ground-
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truth), the trained deep network is expected to be able to behave as similar as the expert 

group, whose opinion suffers less inter-observer variability.

To demonstrate the significant inter-observer variability in the PB segmentation, we conduct 

an experiment to compare the contouring result of the individual observers (i.e., the contour 

delineated by one physician in Step 1 or by some other resident physicians) with that of the 

expert group (i.e., the consensus contour in Step 2, also the ground-truth annotation we used 

for training and evaluation). We conduct this comparison on a subset of our dataset, which 

contains 24 cases2. The comparison result is shown in Table 6. We also provide the result of 

other methods yielded from the same sub dataset.

It can be seen that, even for the human observer, the manual segmentation by individuals 

only achieves a mean dice of 72.22% when compared with the expert group opinion, 

demonstrating the severe inter-observer variability and the inherent difficulty in the PB 

segmentation. On the other hand, our method achieves a mean dice of 74.46%. This result 

proves the clinical value of our study, especially given the fact that the proposed method is 

fully automatic, which can significantly save the time and labor cost in manual delineation. 

Furthermore, this experiment also demonstrates the effectiveness of our method in 

alleviating the inter-observer variability, which is meaningful to mitigating the uncertainty in 

RT planning (Hwee et al. (2011)).

5.6. Impact on radiotherapy dose distribution

In the workflow of RT planning, PB and OAR segmentation act as a prerequisite for the 

subsequent radiation dose optimization. The accuracy of PB and OAR contour could directly 

affect the quality of the dose distribution, which is correlative to the treatment efficacy. As 

we have demonstrated that our method achieves higher PB segmentation accuracy than other 

competitors, it would be desired to know how much gain could this improvement bring to 

the RT dose distribution. Therefore, we investigate the RT dose of 10 cases in our dataset, 

where our method achieves higher PB contour accuracy than other methods. We calculate 

the dose-volume histograms (DVHs) using the PB and OAR contours generated by different 

segmentation methods. Fig. 6 shows the DVHs of two example cases. For brevity, we only 

evaluate the DVH associated with the multi-organ segmentation methods (including the ABS 

method, MT-U-Net, MTA-U-Net, and our method) in this experiment since the multi-organ 

segmentation methods generally present better performance than the single-organ 

segmentation methods.

According to our observation, we generally find that higher segmentation accuracy can 

contribute to a better shaped DVH, which is closer to the ground-truth. To quantify the 

quality of the dose distribution, we calculate the prescription dose coverage on the PB 

volume and list the corresponding PB segmentation DSC in Table 7. The prescription dose 

coverage is a criterion widely used in radiotherapy to measure the planning dose quality, 

which is defined as the percentage volume of the target getting the dose higher than the 

2Because the contour delineated by an individual physician is a temporary intermediate product of the final planning contours, it is not 
necessarily archived in all cases. We only recalled this kind of contour in 24 cases in our dataset.
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prescription dose. Ideally, we want 100% volume of the PB to get covered by the 

prescription dose.

From Table 7 we can see the segmentation accuracy shows a positive correlation with the 

prescription dose coverage on PB, which is consistent with our observation on the DVH. On 

the other hand, it seems the coverage is less sensitive to the PB segmentation accuracy since 

the PB contour with a mean DSC of 77.37% can still achieve a mean coverage of 93.51%. 

Similar phenomenons also exist in some DVHs (see the top DVH in Fig. 6(b)), where the 

DSC of PB contours generated by different methods varies in a large range, but the 

corresponding DVHs are almost the same as the ground-truth. We attribute this insensitivity 

to the fact that both the DVH and the coverage criterion only care about the dose distribution 

inside the evaluated contour. If the PB segmentation is smaller than the ground-truth (under-

segmented), although the segmentation accuracy is low, the DVH and coverage could still 

look good.

Since the uncertainties in PB segmentation of radiotherapy plan will directly impact on 

bladder irradiation, it will be highly clinically relevant to study the correlation between 

urinary toxicity and accuracy of PB segmentation. However, this topic is out of our current 

research design, and we leave it for the readers who work in related domains.

6. Conclusion

In this work, we propose an Asymmetric Multi-Task Attention Network (AMTA-Net) to 

address the challenging problem of PB segmentation in CT images. The proposed AMTA-

Net mainly consists of two parts: The first part is a backbone network with U-Net 

architecture used to conduct the low-level (or prerequisite) task of OAR segmentation. Based 

on the backbone network, the second part is an attention sub-network used to perform the 

high-level (or primary) task of PB segmentation. The attention sub-network consists of a 

series of cascaded attention modules, which hierarchically select and transfer the most 

relevant OAR features in the backbone network to generate discriminative feature 

representations for accurate PB segmentation. Three key properties of the proposed AMTA-

Net (i.e., the multi-task learning strategy, the asymmetric network architecture, and the 

attention mechanisms) contribute to the PB segmentation. We comprehensively evaluate the 

proposed AMTA-Net on a clinical dataset composed of 186 CT images. The experimental 

results show that the proposed AMTA-Net significantly outperforms the clinical state-of-the-

art methods (i.e., the ABS methods) and also presents better performance in comparison to 

the technical state-of-the-art methods (i.e., the deep learning-based methods for general 

image segmentation), especially for the most indistinguishable and clinically critical part of 

PB boundaries, demonstrating the clinical value and technical novelty of our method.
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Highlights

• The first exploration using deep learning methods to segment prostate bed in 

CT image

• Asymmetric multi-task network taking reference from OAR to facilitate PB 

segmentation

• Attention mechanisms selecting discriminative features for accurate PB 

segmentation

• Concurrent segmentation of bladder and rectum for OAR definition in 

radiotherapy
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Fig. 1: 
A representative sample of the post-prostatectomy case visualized in 3D (a) and 2D (b,c,d) 

views. The prostate bed, bladder, and rectum are displayed in red, yellow, and cyan color, 

respectively.
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Fig. 2: 
Schematic diagram of the AMTA-Net. It consists of a backbone U-Net (bottom) and an 

attention sub-network (top). The attention sub-network consists of a series of cascaded 

attention modules (AM). The inner structure of the AM is illustrated in Fig. 3.
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Fig. 3: 
Inner structure of the n-th attention module (AM) in the attention sub-network.
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Fig. 4: 
Results visualization. From left to right columns: contours generated by ABS method, U-

Net, MT-U-Net, MTA-U-Net, and the proposed AMTA-Net. The ground-truth contours are 

shown in the rightmost column. The prostate bed, bladder, and rectum are displayed in red, 

yellow, and cyan color, respectively.
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Fig. 5: 
Mean DSC and ASD of the proposed AMTA-Net trained with different weights of PB 

segmentation task and OAR segmentation task.
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Fig. 6: 
Two example cases (a) and (b) showing dose-volume histograms (DVHs) calculated on PB 

(top), bladder (middle), and rectum (bottom) contours generated by different methods. The 

DSC of corresponding segmentation is indicated in the legend.
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Table 3:

Quantitative results of ablation experiments.

Models DSC of PB [mean(std) %] ASD of PB [mean(std) mm]

Ours w/o OAR prediction 74.20(7.40) 2.65(1.25)

Ours w/o asym-architecture 74.93(7.21) 2.51(1.18)

Ours w/o attention 75.15(6.62) 2.46(0.99)

Ours 75.67(6.56) 2.42(1.03)
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Table 6:

Comparison with the individual human observer.

Segmentation performed by DSC of PB [mean(std) %] ASD of PB [mean(std) mm]

Individual human observer 72.22(12.76) 3.03(1.86)

ABS 65.88(9.52) 3.84(1.54)

U-Net 71.06(9.76) 3.32(1.82)

V-Net 71.46(10.72) 3.08(1.69)

VoxResNet 73.24(9.23) 2.88(1.50)

MT-U-Net 72.56(9.57) 2.98(1.74)

MTA-U-Net 73.12(10.06) 3.03(1.89)

Ours 74.46(8.86) 2.67(1.37)
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Table 7:

Correlation between segmentation accuracy and prescription dose coverage on PB.

PB contour from DSC [mean(std) %] Coverage [mean(std) %]

ABS 61.78(10.77) 83.83(13.10)

MT-U-Net 71.96(12.49) 88.68(14.04)

MTA-U-Net 73.28(11.55) 91.90(14.77)

Ours 77.37(10.01) 93.51(11.09)

Ground-truth 100.00 99.50(0.92)
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