
Vol.:(0123456789)1 3

Biomedical Engineering Letters (2021) 11:273–286 
https://doi.org/10.1007/s13534-021-00196-7

ORIGINAL ARTICLE

Gaussian process‑based kernel as a diagnostic model for prediction 
of type 2 diabetes mellitus risk using non‑linear heart rate variability 
features

R. Shashikant1 · Uttam Chaskar1 · Leena Phadke2 · Chetankumar Patil1

Received: 22 February 2021 / Revised: 3 May 2021 / Accepted: 20 June 2021 / Published online: 25 June 2021 
© Korean Society of Medical and Biological Engineering 2021

Abstract
The main objective of the study was to develop a low-cost, non-invasive diagnostic model for the early prediction of T2DM 
risk and validation of this model on patients. The model was designed based on the machine learning classification technique 
using non-linear Heart rate variability (HRV) features. The electrocardiogram of the healthy subjects (n = 35) and T2DM 
subjects (n = 100) were recorded in the supine position for 15 min, and HRV features were extracted. The significant non-
linear HRV features were identified through statistical analysis. It was found that Poincare plot features (SD1 and SD2) can 
differentiate the T2DM subject data from healthy subject data. Several machine learning classifiers, such as Linear Discrimi-
nant Analysis (LDA), Quadratic Discriminant Analysis, Naïve Bayes, and Gaussian Process Classifier (GPC), have classified 
the data based on the cross-validation approach. A GP classifier was implemented using three kernels, namely radial basis, 
linear, and polynomial kernel, considering the ability to handle the non-linear data. The classifier performance was evaluated 
and compared using performance metrics such as accuracy(AC), sensitivity(SN), specificity(SP), precision(PR), F1 score, 
and area under the receiver operating characteristic curve(AUC). Initially, all non-linear HRV features were selected for 
classification, but the specificity of the model was the limitation. Thus, only two Poincare plot features were used to design 
the diagnostic model. Our diagnostic model shows the performance using GPC based linear kernel as AC of 92.59%, SN 
of 96.07%, SP of 81.81%, PR of 94.23%, F1 score of 0.95, and AUC of 0.89, which are more extensive compared to other 
classification models. Further, the diagnostic model was deployed on the hardware module. Its performance on unknown/test 
data was validated on 65 subjects (healthy n = 15 and T2DM n = 50). Considering the desirable performance of the diagnostic 
model, it can be used as an initial screening test tool for a healthcare practitioner to predict T2DM risk.

Keywords  Type 2 diabetes mellitus · Diagnostic model · Heart rate variability · Electrocardiogram · Poincare plot · 
Detrended fluctuation analysis · Gaussian process classifier

1  Introduction

Heart rate variability (HRV) is a basic, non-invasive proce-
dure that measures the interval oscillations between succes-
sive heartbeats (RR intervals) that are associated with the 
autonomous nervous system (ANS) influence [1]. Several 
pathological conditions such as acute myocardial infarction, 

hypertension, coronary artery disease, type 1, and type 2 
diabetes altered the ANS. Alterations in autonomic activ-
ity may be attributed to autonomic neuropathy in people 
with T2DM [2]. The T2DM subjects have high chances of 
cardiac autonomic neuropathy (CAN) development, which 
induces abnormalities in heart rate regulation and cardio-
vascular dysfunction [3]. In T2DM, CAN has been reported 
as a significant complication strongly linked with cardiac 
ischemia, cardiovascular diseases, and mortality [4–7]. HRV 
has been evaluated as an ECG-derived RR sampling inter-
val for detailed information about cardiovascular disease. It 
assesses the relationship between the sympathetic and para-
sympathetic activity of the ANS [7].

In the T2DM condition, linear HRV analysis has shown 
a considerable reduction in parasympathetic activity that 
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indicates a lack of autonomic cardiac regulation [8]. It has 
been suggested that the cardiac signal is non-linear time 
series, so a non-linear analysis is needed to determine minor 
variations in the signals [9]. The non-linear analysis was also 
favored with its robustness and indicated better results than 
the time and frequency domain analysis. The autonomic var-
iations begin at the early stages of T2DM; hence the reduced 
HRV features have been prominent markers for early diabe-
tes prediction [10]. The individual with T2DM has become 
a coronary disorder because coronary artery disease is prob-
ably following diabetes development. Thus HRV analysis 
is an important consideration to analyze the progression or 
risk of T2DM to avoid further cardiac complications [11].

The author Ahsan et al. demonstrated the use of non-
linear HRV features like SD1, SD2, and Sample entropy 
(SampEN) for detecting Cardiac Autonomic Neuropathy 
(CAN) presence in patients using heart rate complexity 
analysis. The results of this investigation show that SampEN 
of non-linear HRV was used to differentiate between mild 
CAN and severe CAN [12]. Author Roy et al. effectively 
used Poincare plot features and detrended fluctuation analy-
sis (DFA) component to study differences in HRV patterns 
of control and diabetes subjects [8].

In this study, non-linear HRV features predict the T2DM 
risk using the machine learning technique. The Gaussian 
process (GPC) based classification model adapts the Laplace 
approximation method, and it was implemented using a 
cross-validation technique with three kernels. Further, the 
GPC model, which shows the highest classification accuracy 
with the respective kernel, was used for all experimentation. 
The key contributions of the study are as follows-

1.	 Gaussian Process-based kernel was proposed as a low-
cost, non-invasive diagnostic model to predict the T2DM 
risk using non-linear HRV features.

2.	 The proposed model was designed based on the real 
diagnostic non-linear HRV features data.

3.	 The present model considerably required only two non-
linear HRV features. Moreover, it attained a 92.59% 
peak accuracy after ten trials of tenfold cross-validation.

4.	 Highly accurate, concise, and interpretable classification 
results were obtained using the diagnostic model under 
a physician’s observation.

Following are the novelties of the proposed work-

1.	 A portable, non-invasive, machine learning-based hard-
ware module of the diagnostic model was developed for 
real-time automated classification of healthy and T2DM 
risk subjects.

2.	 Clinically acquired 15 healthy subjects and 50 T2DM 
subjects data were validated using a diagnostic model, 
and results are presented.

This paper is organized as follows: Sect. 2 explains the 
proposed system, including demographic information of 
subjects, feature extraction and pre-processing, LDA, QDA, 
NB, and GPC model with kernel optimization. The results 
are discussed in Sect. 3. Section 4 is concerned about the 
design implementation. Section 5 represents the discussion 
and performance comparison in detail. The limitation and 
future directions of the proposed model are discussed in 
Sect. 6. Finally, Sect. 7 concludes the work with concluding 
remarks.

2 � Material and methods

2.1 � Design of proposed system

The proposed block diagram of the system is shown in 
Fig. 1. The first step in the proposed system is to acquire the 
ECG signal from a patient using a standard ECG acquisition 
tool. From the acquired ECG signal, HRV features have been 
extracted. The normalization of extracted features can be 
done in pre-processing step. Further, the statistical signifi-
cance between the non-linear HRV features of healthy and 
T2DM subjects was studied using a statistical test. The most 
significant features were selected in the feature engineer-
ing step. Afterward, the hyperparameters of the machine 
learning models were optimized to get optimal results before 
training the model. The inner fivefold Grid search cross-
validation approach was used to select the hyperparameters. 
The kernel is the main hyperparameter of the machine learn-
ing algorithm employed in this analysis. So before training 
the machine learning model, kernel optimization was per-
formed using the k-fold cross-validation strategy. Finally, the 
optimized machine learning model is used for prediction. Its 
performance was evaluated using performance metrics. The 
unknown/test data will be given as input to the optimized 
model to predict T2DM risk.

2.2 � Workflow of proposed methodology

2.2.1 � Subjects and ECG recording

The ECG signals were acquired from 135 subjects (35 
healthy subjects and 100 T2DM subjects) between 20 to 
70 years age of both genders in a relaxed supine position 
for 15 min. The last 5-min segment was used for HRV 
analysis [13]. The ECG was recorded using the Chronovi-
sor HRV DX system, and time series RR interval signals 
were analyzed in Chronovisor HRV software 1.1.487. A 
standard lead II procedure was used for ECG recording at 
a sampling frequency of 1000 Hz (Fig. 2). All the subjects 
were instructed about the aim, objective, procedure of the 
study, and their informed consent was obtained. The study 
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received approval from the Institutional Ethical Committee 
(IEC) of Smt. Kashibai Navale Medical College and Gen-
eral Hospital, Pune, India (SKNMC&GH). The subjects 
were selected from the OPD of SKNMC&GH by following 
the protocol of the American Diabetes Association [14]. 
The present study followed the guidelines given by the 
Taskforce of the European Society for Cardiology and the 
North American Society of Pacing and Electrophysiology 
[15].

The subjects free from any other type of illness were 
considered as healthy, and their pathological test was also 
performed for confirmation. ECG of such healthy subjects 
was recorded. In regards to the T2DM subjects, the ECG 
data was recorded when the patient is full-blown suffered 
from diabetes after concerning the pathological reports of 

blood glucose level. The sample size of 135 subjects was 
used as training data.

The ECG of another 65 subjects (15 healthy subjects and 
50 T2DM subjects) between 20 to 70 years age of both gen-
ders were recorded, and their HRV features extracted. This 
data is used as unknown/test data to validate the diagnostic 
model. This data is not included for training the diagnostic 
model.

2.2.2 � Non‑linear HRV features extraction

The feature extraction process is one of the essential steps in 
biomedical signal analysis and interpretation. Filtered ECG 
signals were used to calculate the RR intervals, and a tacho-
gram was calibrated to extract the information of non-linear 
HRV features. The non-linear HRV features that have been 
studied include Poincare plot (PP), Detrended fluctuation 
analysis (DFA), Approximate entropy (AppEN), and Sample 
entropy (SampEN).

The Poincare plot is a geometric technique used to quan-
tify and visualize the time series data points [1, 16]. It is a 
recurrence plot used to quantify the self-similarity process in 
a time-series signal. In the RR tachogram context, the Poin-
care plot is the graph between each RR interval influenced 
by the previous RR interval. It is a plot between RR(i) versus 
RR(i+1) where RR(i) is the present time interval between two 
adjacent R peaks, and RR(i+1) is the time interval between 
the successive two adjacent R peaks [17]. The Poincare plot 
gives three features: (1) Standard deviation of short term 
beat to beat variability or short term variability (SD1), (2) 
Standard deviation of long term beat to beat variability or 
long term variability (SD2), and (3) Ratio of SD1 and SD2 
or standard deviation ratio (SDR).

Fig. 1   Proposed block diagram

Fig. 2   ECG recording
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DFA is a stochastic autoregressive process that determines 
the self-similarity in the signal. It quantifies the correlation 
properties of the RR time-series signal. The root mean square 
fluctuation of the RR time series signals was measured on the 
log–log scale [18]. The RR time-series signals autocorrelation 
properties are described by the scaling exponent alpha (α). In 
this study, short-term scaling exponent DFA- α1 and long-
term scaling exponent DFA- α2 were calculated. DFA- α1 and 

DFA- α2 ratio is referred to as an alpha ratio that is used as a 
validation feature. Both DFA-α1 and DFA-α2 is a good indi-
cator of the pathological condition. The lower value of these 
features indicates abnormalities.

Approximate entropy and sample entropy quantify com-
plexity and lack of regularity in the RR time-series signal. It 
has been used to characterize the irregularity in physiological 
signals [19]. The probability of conditional similarity between 
the specified data sample of a given length and the next collec-
tion of the same length samples is determined. It represents the 
probability of n data samples, similar to the n + 1 data samples 
[20]. In healthy subjects, AppEN and SampEN are higher and 
decreased in pathological conditions [1].

2.2.2.1  Significance of  non‑linear features  The non-linear 
method has proven to be more helpful in analyzing quasi-
periodic, non-stationary, and non-linear signals [21, 22]. As 
HRV is itself nonlinear in nature. Thus, the non-linear method 
can extract minute information from signals that could not be 
possible with linear techniques like the time domain and fre-
quency domain. Hence we have used the non-linear method to 
extract the features in the HRV signals.

2.2.3 � Data pre‑processing

The extracted features cannot always be used directly for 
analysis. The first and significant step to be done in any data 
analysis is data pre-processing. The data includes the follow-
ing attributes/features: SD1, SD2, SDR, DFA- α1, DFA- α2, 
Alpha ratio, AppEN, SampEN, and outcomes (Healthy-0, 
T2DM-1). The pre-processing steps involve the outlier rejec-
tion and data normalization.

2.2.3.1  Outlier rejection  The outlier can be rejected using the 
standard deviation method and interquartile range method. 
The first criterion to find outlier is that the data that falls out-
side of the third standard deviation is considered an outlier. 
The mathematical representation is as follows-

Let y be the feature vector of n dimensional space

Another criterion to identify the outlier is the interquar-
tile range (IQR). The data that falls below the first quartile 
range, outside of 1.5 times of IQR and above the third quar-
tile range, is depicted as an outlier and can be removed using 
manual processes.

2.2.3.2  Data normalization  Data normalization is a pre-
processing procedure used to rescale the values of attrib-
utes/features to fit specific ranges. It converts all values to 
a standard range scale with a mean of zero and a standard 
deviation of one. Various data normalization techniques can 
be employed to perform data normalization, such as stand-
ard deviation, decimal scaling, and min–max normalization 
techniques [23]. In this study, we have used the min–max 
normalization technique for rescaling the HRV features. The 
data normalization is done as follows,

where n and m are the upper and lower limit values of the 
feature vector y , respectively.

2.2.4 � Statistical analysis

In order to know the significant differences between the non-
linear HRV features of healthy and diabetic subjects, a non-
parametric Mann–Whitney test at #p < 0.05 was conducted. 
Data is presented in the form of mean ± standard deviation 
(Mean ± SD) (Table 2). Epi Info open-source statistical tool 
was used for statistical analysis.

2.2.5 � Feature engineering

Feature engineering is the process of selecting the appropri-
ate features that require to get an accurate prediction. The 
dataset includes multiple features, and sometimes it may 
affect the model performance due to overfitting. So impor-
tant features are selected in the feature engineering step. 
In this study, the important non-linear HRV features were 
selected through the individual features performance.

2.2.6 � Machine learning classification model

The proposed system uses a supervised machine learning 
classification technique that takes input as non-linear HRV 

y feature vector =

{
y, if > ȳ ± 3𝜎

reject, otherwise

y feature vector =

{
y, if Q1 − 1.5 × IQR × ≤ y ≤ Q3 + 1.5 × IQR

reject, otherwise

Z(y) =
y − ymin

ymax − ymin
× (m − n) + n
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features and detects the patients belong to the healthy or 
T2DM risk category. Following are the machine learning 
classification algorithm used in this study.

2.2.6.1  Linear discriminant analysis (LDA)  LDA is mainly 
used as a dimensionality reduction technique in the pre-
processing step for classification and machine learning 
applications [24]. The aim is to project data to a lower-
dimensional space with good class separability to avoid 
overfitting due to dimensionality. Ronald Aylmer Fisher 
formulated LDA in 1936 that has a practical use as a clas-
sifier [25]. Initially, LDA was described for a two-class 
problem, and later it was generalized as a multiclass linear 
discriminant analysis by C R Rao in 1948 [26]. Principal 
component analysis (PCA) and LDA are two classifica-
tion techniques for data classification and dimensionality 
reduction. PCA finds the most accurate data representa-
tion in lower-dimensional space. It projects data in the 
direction of maximum variance. However, the direction of 
maximum variance may not be helpful for classification. 
LDA projects a line that inherently preserves a direction 
that is useful for data classification. The main idea of LDA 
is to find a projection to a line so that the samples from 
different classes are well separated. LDA is a supervised 
algorithm and computes a linear discriminant direction 
representing the axis that will maximize the separation 
between the multiple classes. LDA is superior to PCA for 
a multiclass classification task. The steps to implement 
the LDA algorithm are as follows-

The first step to implement LDA is to calculate the sep-
arability between different classes, the distance between 
the means of different classes called between-class vari-
ance, or class matrixes.

where Xb represents the between-class variance of the ith 
class, Ni is the sample size of the class, ȳi is the mean of the 
ith class, and ȳ is the total mean.

The second step is to calculate the distance between 
each class mean and samples called within-class variance 
or within the class matrix.

where Xw represents the within-class variance of the ith 
class, Xi is scatter matrix of every class, yi,j represents the 
ith sample of the jth class.

The third step is to construct a lower-dimensional space 
projection that maximizes the between-class variance and 
minimizes the within-class variance. After calculating the 

(1)Xb =

d∑

i=1

Ni

(
ȳi − ȳ

)(
ȳi − ȳ

)T

(2)Xw =

d∑

i=1

Xi =

d∑

i=1

Ni∑

i=1

(
yi,j − ȳi

)(
yi,j − ȳi

)T

between-class variance ( Xb ) and within-class variance 
( Xw ), the transformation matrix ( P ) of the LDA algorithm 
that is called Fisher’s criterion is given in Eq. (4). In order 
to train the model, the cost function or loss function is 
defined as-

2.2.6.2  Quadratic discriminant analysis (QDA)  QDA is 
formulated by Smith in 1947 [27]. QDA is similar and 
extension to LDA, where it is assumed that each variable 
of the dataset is normally distributed. However, there is no 
such assumption in QDA that the covariance of each vari-
able is similar. The final quadratic discriminant equation 
is written as-

where X is the values of vectors, X̄T
n
(n = 1, 2) is the trans-

pose values of a mean of nth group, the inverse of the sample 
covariance matrix is R−1

n
(n = 1, 2) . The classification rule of 

QDA is similar to LDA.

2.2.6.3  Naive Bayes (NB)  Naïve Bayes is a statistical clas-
sifier formulated based on the Bayes theorem, assuming 
that each class features are independent of any other fea-
tures in that class [28]. It calculates the frequency of class 
label’s various features and then the probability of class 
labels. The class labels having the highest probability 
value (that class) are predicted. Bayes theorem and kernel 
density estimation are used to classify data in NB classi-
fier, and it is estimated as

where 𝜋̂j is the prior probability estimation of class j , x0 is 
kernel density for f̂j predictable density, P

(
G = j|x0

)
 is the 

predicted estimated probability of G.

2.2.6.4  Gaussian process classification (GPC)  Consider a 
data point ai from a domain K with the associated class 
label bi {−1, + 1} . For a test point a∗ , to predict the class 
membership likelihood using function f  . This functional 
value is transformed into the function of the unit interval, 

(3)J(P) =
||PTXbP

||
||PTXwP

||

(4)Proj =
argmax

P
J(P) =

argmax

P

||PTXbP
||

||PTXwP
||

(5)

X
T
(
R
−1
1

− R
−1
2

)
M + 2

(
X̄
T

2
R
−1
2

− X̄
T

1
R
−1
1

)
M

−

[
X̄
T

2
R
−1
2
M̄

2
− X̄

T

1
R
−1
1
M̄

1
+ ln

(||R2
||

||R1
||

)]
= 0

(6)P
�
G = j�x0

�
=

𝜋̂j f̂j
�
x0
�

∑n

k=1
𝜋̂kf̂k

�
x0
�
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sigm ∶ S → [0, 1] such that class membership probability 
P(b = +1|a) can be written as sigm(f (a)) . The probability 
of class must be normalized 

∑
y

P(b�a) = 1 , that is 

P(b = +1|a) = 1 − P(b = −1|a). When the sigmoid func-
tion meets the condition of point symmetry, 
sigm(t) = 1 − sigm(−t) , then the probability function can 
be written as P(b|a) = sigm(b, f (a)) [29]. We used sigmoid 
function as-

Consider D =
{
ai, bi

}n

i=1
 be the training set from 

a known distribution. Let T =
{
a∗i , b∗i

}m

i=1
 be test-

ing set from an unknown distribution. We defined n 
training inputs A =

[
a1, a2,… an

]T
∈ Sn×D , m test-

ing inputs A∗ =
[
a∗1 , a∗1 ,… a∗m

]T
∈ Sm×D ,  n train-

ing target f =
[
f1, f2,… fn

]T
∈ Sn , m testing target 

f∗ =
[
f∗1 , f∗1 ,… f∗m

]T
∈ Sm . For the n training point and m 

testing point, the covariance matrix is V = V(A,A) is the n × n 
covariance matrix, V∗ = V

(
A,A∗

)
 is the n × m covariance 

matrix, and V∗∗ = V
(
A∗,A∗

)
 is the m × m covariance matrix. 

The class labels follow Bernoulli distribution for the function 
f  ; the probability function can be written as:

A GPC is a stochastic model specified by a mean function 
of r(a) = E

[
f (a)

]
 and a positive definite covariance function 

V
(
a, a�

)
= E

[
(f (a) − r(a))

(
f
(
a�
)
− r

(
a�
))]

 . The random vari-
able f (a) is associated with a ∈ K such that for a given set of 
input A ∈ K , the joint distribution P(f |A, �) = ℕ(f |r0,V) is 
Gaussian distribution with vector r0 . Moreover, the covariance 
matrix V is a set of Gaussian distribution called the Gaussian 
process. The mean function and covariance functions depend 
on � parameter called hyperparameter. Therefore the elements 
of V are Vi,j = v

(
ai, aj, �

)
.

By using the Bayes rule, one can use the expression for the 
posterior probability distribution over the value of f

where P(b|A, �) = ∫ P(b|f )P(f |A, �)df  is the marginal prob-
ability with the hyperparameter � . The joint probability den-
sity function of f  and f∗ for training and testing function for 
the inputs is

(7)sigm(t) =
1

1 + exp(−t)

(8)p(b|f ) =
n∏

i=1

p
(
bi|fi

)
=

n∏

i

sigm
(
bi,fi

)

(9)

P(f �b,A, �) =
P(b�f )P(f �A, �)

∫ P(b�f )P(f �A, �)df

=
ℕ(f �0,V)

∏n

i=1
sigm

�
bi, fi

�

P(b�A, �)

(10)P
(
f∗, f |A∗,A, �

)
= ℕ

([
f

f∗

]
|0 ,

[
V

VT
∗

V∗

V∗∗

] )

the training set of variables is marginalized to make predic-
tions as -

the posterior product and the conditional prior product 
is obtained as

Finally, the likelihood of predictive class membership 
p∗ = P

(
b∗ = 1|a∗, b,A, �

)
 by averaging the variables for 

the test set

Equation (13) is analytically intractable for certain sig-
moid functions, although it is only a one-dimensional inte-
gral in the binary case, so simple numerical techniques are 
usually adequate. In this case, we need to use either analyti-
cal integral approximations or Laplace-based approximation 
[30]. The Laplace approximation for this study was used.

The graphical model for binary Gaussian process clas-
sification is shown in Fig. 3, where circles denote unknown 
quantities, squares correspond to the model variables. The 
horizontal line means latent variables that are explicitly 
related. The corresponding latent variable fi , the observed 
label bi is conditionally independent of all other nodes. 
Labels bi and latent function values fi are connected by the 
sigmoid probability because they are taken from the same 
GPC, all latent function values fi are entirely connected. The 
bi labels are binary, while the p∗ prediction is a likelihood 
and may therefore have values from the entire 0–1 interval.

2.2.6.5  Laplace approximation for  GPC  A Gaussian 
approximation by doing a second-order Taylor extension 

(11)

P
(
f∗|A∗, b,A, �

)
= ∫

f

P(f∗, f |A∗, b,A, �)df

= ∫
f

P(f∗|f ,A∗,A, �)P(f |b,A, �)df

(12)P
(
f∗|A∗, b,A, �

)
= ℕ(f∗|VT

∗
V−1f ,V∗∗ − VT

∗
V−1K∗)

(13)

P
(
a∗|b∗,A, �

)
= ∫

f∗

P
(
b∗|f∗

)
P
(
f∗|a∗, b,A, �

)
df∗

= ∫
f∗

sigm
(
P
(
b∗|f∗

)
P
(
f∗|a∗, b,A, �

)
df∗

)

Fig. 3   Binary Gaussian process classification (GPC) graphical model
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of log p(f |A, b) around the maximum of the posterior was 
obtained as -

where f̂ = argmaxf p(f |A, b) , and X = −∇∇logp(f |A, b) is 
the Hessian of the posterior negative log at that point.

2.2.6.6  Posterior likelihood function  The log probability of 
an unnormalized posterior distribution using the Bayes rule 
is as follows-

Differentiating this Eq. (15) w.r.t f  , the hessian of the 
negative P(b|f ) is

2.2.6.7  Predictions  Under the Laplace approximation, 
the posterior predictive mean for f∗ can be written as

Compare this with the mean given by [31] as

where E
[
f |A, b

]
 is the posterior mean of f  given A , and b.

The variance of f∗|A, b under the Gaussian approxima-
tion was computed. This comprises of two terms:

Knowing the mean and variance of f∗ and Gaussian 
distribution q

(
f∗|A, b, a∗

)
df∗ can help to make predictions. 

It can be determined as follows-

2.2.7 � Kernel optimization

In this study, three kernels were implemented: radial basis 
function (RBF), linear and polynomial kernels. The ker-
nels for GPC were selected based on the classification 
accuracy using ten trials. The kernel that estimates the 

(14)q(f |A, b) = ℕ
(
f |f̂

)
∝ exp

(
−
1

2

(
f − f̂

)T
A
(
f − f̂

))
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highest accuracy was considered to be the best GPC ker-
nel. The k-fold cross-validation strategy with cross-fold 
k = 5 and k = 10 has been used to select the GPC kernel 
among the RBF, linear and polynomial.

2.2.8 � Performance evaluation metrics

The performance of the diagnostic model can be measured 
using different performance metrics such as classification accu-
racy (AC), sensitivity (SE), specificity (SP), precision (PR), 
F1 score, and area under the receiver-operating characteristic 
curve(AUC). These performance metrics were obtained using 
the confusion matrix variable, true positive (TP), false positive 
(FP), true negative (TN), and false-negative (FN).

•	 True Positive(TP): Diabetic patient is predicted as dia-
betic

•	 False Positive(FP): Non-diabetic is predicted as diabetic
•	 True Negative(TN): Non-diabetic is predicted as non-

diabetic
•	 False Negative(FN): Diabetic patient is predicted as non-

diabetic

The performance metrics and their formulae are listed 
in Table 1.

3 � Results

3.1 � Non‑linear HRV features analysis using 
statistical test

The short-term ECG signal of 5 min segments was used 
to extract the non-linear HRV features from the RR tacho-

gram of healthy and T2DM subjects. The calculated HRV 
features from the RR tachogram suggested reduced HRV 
in T2DM subjects compared to healthy subjects. The 

Table 1   Performance evaluation metrics

Performance metrics Description

AC (TP + TN)/(TP + FP + TN + FN)
SE (TP)/(TP + FN)
SP (TN)/(TN + FP)
PR (TP)/(TP) + (FP)
F1 Score 2TP/(2TP + FP + FN)
AUC​ The area under the ROC curve
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increase in sympathetic regulation with weakened para-
sympathetic regulation is clearly shown using non-linear 
HRV features. Poincare features SD1, SD2, and SDR were 
statistically significant in T2DM subjects. Further, the 
scaling exponent (α) is low in the case of T2DM subjects. 
The higher values of approximate and sample entropy in 
T2DM subjects indicate reduced beat to beat variabil-
ity. These non-linear HRV features were used as input to 
machine learning classifiers to classify T2DM subjects 
from healthy subjects (Table 2).

3.1.1 � Limitation of statistical test and importance 
of machine learning technique

HRV features are non-linear and have a lot of intra and 
inter variability (variance). It is difficult to find a precise 
cut-off range of HRV features for healthy and T2DM sub-
jects by linear statistics. Therefore machine learning tech-
nique was incorporated into our analysis. The machine 
learning algorithm helps to understand the exact/hidden 
non-linear pattern in the healthy and T2DM risk groups. 
These patterns are independent of age, gender, BMI, and 
blood glucose variations in healthy and T2DM subjects.

3.2 � Results of Gaussian process kernel optimization

This study has used radial basis function, linear, and polyno-
mial kernels for the Gaussian process model. It is important 
to select the kernel first as the same kernel can be used fur-
ther to improve classifier performance. A two k-fold cross-
validation approach (k = 5, k = 10) was used to choose the 
best kernel for the GPC model. The kernel was selected 
based on the classification accuracy of classifiers. Kernel 
selection based on two different cross-validations is given 
in Table 3.

The best accuracy of GPC was obtained using the lin-
ear kernel with k = 10 cross-fold compared to other kernels. 
Therefore, Gaussian process-based linear kernel was used 
for all the experimentation.

3.3 � Results of comparisons between classifiers 
for fivefold and tenfold cross‑validation

The performance of four machine learning classifiers based 
on eight non-linear HRV features was compared using per-
formance metrics. It is shown in Table 4.

Table 2   Analysis of non-linear HRV features

HRV features Healthy subject 
(n = 35)

T2DM subject 
(n = 100)

p-Value

SD1 38.22 ± 19.34 24.83 ± 13.40 0.0001#

SD2 87.63 ± 34.06 44.97 ± 16.72 0.0001#

SDR 0.43 ± 0.14 0.56 ± 0.19 0.0002#

DFA-α1 0.92 ± 0.20 0.85 ± 0.22 0.2543
DFA-α2 0.92 ± 0.23 0.90 ± 0.18 0.4130
Alpha ratio 1.07 ± 0.42 0.97 ± 0.32 0.2804
AppEN 1.12 ± 0.15 1.16 ± 0.19 0.1976
SampEN 1.40 ± 0.30 1.43 ± 0.32 0.6549

Table 3   Kernel selection based on two different cross-validation

K Kernel

RBF Linear Polynomial

5 78.52% 77.78% 71.85%
10 81.48% 85.19% 82.22%

Table 4   Comparisons between 
classifiers

K Models Performance metrics

AC SE SP PR F1 score AUC​

5 LDA 69.63% 89% 14.29% 74.79% 0.81 0.52
QDA 77.78% 93% 34.29% 80.17% 0.86 0.64
NB 74.81% 88% 37.14% 80.00% 0.84 0.63
GPC-RBF 78.52% 92% 40.00% 81.42% 0.86 0.66
GPC-linear 77.78% 92% 37.14% 80.70% 0.86 0.65
GPC-polynomial 71.85% 92% 14.29% 75.41% 0.83 0.53

10 LDA 77.78% 90% 42.86% 81.82% 0.86 0.66
QDA 82.22% 93% 51.43% 84.55% 0.89 0.72
NB 77.04% 89% 42.86% 81.65% 0.85 0.66
GPC-RBF 81.48% 92% 51.43% 84.40% 0.88 0.72
GPC-linear 85.19% 92% 65.71% 88.46% 0.90 0.79
GPC-polynomial 82.22% 92% 54.29% 85.19% 0.88 0.73
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It was found that using k = 5 cross-fold validation, the 
maximum accuracy of the GPC classifier with the RBF 
kernel was 78.52%. The GPC model with a linear kernel 
using k = 10 cross-validation protocol provides the highest 
accuracy 85.19%, which is relatively better than existing 
classifiers. Further, GPC based linear kernel with k = 10 
has given SE of 92%, SP of 65.71%, PR of 88.46%, F1 
score of 0.90, and AUC of 0.79, which are also higher 
than other classifiers. Another meaningful pictorial way 
to compare the performance of classifiers is the receiver 
operating characteristic curve [32]. It is a plot of ‘1-speci-
ficity’ versus ‘sensitivity.’ Area under the ROC curve indi-
cates an individual classifier performance. The AUC near 
1 indicates the best classification performance, whereas 
near to 0.5 shows the worst classification performance. 
AUC for the GPC model with a linear kernel is 0.79, which 
is the highest among the other classifiers. The ROC curve 
of four classifiers using k fold cross-validation is given in 
Figs. 4 and 5.

The results presented in Table  4 indicate the GPC 
model using a linear kernel is suitable for detecting T2DM 
subject data from the healthy subject data. However, one 
of the main difficulty is the specificity of the model. The 
specificity of the GPC-linear kernel model was 65.71%, 
which is not suitable for practical application. Whenever 
a machine learning model is developed, it must have AC, 
SE, and SP values above 80%, which represents the pre-
dictive ability of the model on new data or test data. In 
this analysis, the specificity of the classification model 
was less, so this model cannot be served the actual intent. 
Less specificity may lead to false-positive outcomes. Thus, 
the individual feature performance and combined feature 
performance of non-linear HRV features were observed 
using GPC linear kernel model (Tables 5 and 6).

The best classification accuracy was observed with indi-
vidual SD1 and SD2 features using the GPC-linear kernel 
model. Almost all non-linear HRV features individually 
perform the same except SD1 and SD2 (Table 5). The 

Fig. 4   ROC curve for classifiers using k = fivefold cross-validation

Fig. 5   ROC curve for classifiers using k = tenfold cross-validation

Table 5   Performance using 
individual features

HRV features Performance metrics

AC SE SP PR F1 score AUC​

SD1 79.25% 94% 37.14% 81.03% 0.87 0.51
SD2 80.74% 92% 48.57% 83.63% 0.87 0.70
SDR 74.07% 100% 0 74.07% 0.85 0.50
DFA-α1
DFA-α2
Alpha ratio
AppEN
SampEN
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specificity and AUC of the model were very low while 
observing the individual feature performance (Table 5). 
Therefore, the features with individual accuracy greater 
than 75% were combined. The highest classification 
accuracy of 92.59%, sensitivity of 96.07%, specificity of 
81.81%, precision of 94.23%, F1 score of 0.95, and AUC 
of 0.89 was achieved with the combination of SD1 and 
SD2(Table 6). ROC curve using SD1 and SD2 features is 
shown in Fig. 6. The highest accuracy of GPC using the 
linear kernel model was observed by combining SD1 and 
SD2 (Table 6). Thus, this model is used as the diagnostic 
model to detect T2DM risk.

4 � Design implementation for user

The four machine learning algorithms, such as LDA, QDA, 
NB, and GPC, were used to develop a diagnostic model 
using a python data manipulation tool. The results indicate 
that the GPC-linear kernel algorithm shows an optimum 
performance using the two non-linear HRV features i.e., 
SD1 and SD2. Thus GPC linear kernel algorithm can be 
used as a diagnostic model to detect T2DM risk. In the 
proposed work, a portable, non-invasive machine learning-
based hardware setup was developed. It includes an ECG 
acquisition tool, Arduino UNO module, and raspberry pi 
with LCD screen. The ECG is acquired at the sampling 

frequency of 1000 Hz. Arduino is used for sketching the 
real-time ECG signal. The training model of the GPC lin-
ear kernel algorithm was deployed in a raspberry pi mod-
ule along with the non-linear HRV feature extraction algo-
rithm. It receives the real-time ECG signal and performs 
feature extraction and classification. A rich graphical user 
interface (GUI) was designed with backend programming 
of the GPC linear kernel algorithm. The proposed system 
facilitates two options: (1) The user can acquire real-time 
ECG, and the proposed system will automatically extract 
the HRV features with the predictive outcome. (2) The 
user can extract the non-linear HRV features separately 
or manually from the ECG signal and enter the values of 
HRV features through GUI to get the predictive outcome. 
The GUI has functionalities of accepting user input, pro-
cessing results, and predicting the outcomes. The devel-
oped GUI was designed on a python platform that takes 

Table 6   Features with 
individual accuracy of > 75% 
were combined

HRV features Performance metrics

AC SE SP PR F1 score AUC​

SD1 + SD2 92.59% 96.07% 81.81% 94.23% 0.95 0.89

Fig. 6   ROC curve for classifier using SD1 and SD2 feature

Fig. 7   Hardware module implementation

Fig. 8   Graphical user interface for users
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inputs as SD1 and SD2 HRV features. It processes the 
SD1, SD2 values and predicts the outcomes as healthy or 
T2DM risk. The design implementation of the proposed 
system and GUI are shown in Figs. 7 and 8.

4.1 � Time complexity analysis

The time complexity analysis is another significant met-
ric for assessing machine learning model performance. It 
indicates how much time the model needs to analyze the 
results. The primary goal of any study is to maximize accu-
racy while reducing time complexity. The time complex-
ity of a machine learning algorithm denotes how quickly 
or slowly it can run on input features during training and 
prediction. It is associated with the number of input features 
used while training the machine learning algorithm [33]. 
The number of features used in our study is SD1 and SD2 
only, so time complexity was not much impacted on the pro-
posed model. The time-complexity analysis of the proposed 
GPC linear kernel model and other machine learning models 
on two non-linear HRV features(SD1 + SD2) is illustrated in 
Table 7. The time complexity of machine learning models 
depends upon the computational configuration.

4.2 � Validation of the diagnostic model on patients

The proposed system was validated at Smt. Kashibai Nav-
ale Medical College and General Hospital, Pune, India. The 
non-linear HRV features of fifteen healthy subjects and fifty 
subjects with a history of T2DM were used for the model 

validation. The final model was developed by combining 
two non-linear HRV features only (SD1 and SD2). Thus, for 
validation of the model, the same features were used. The 
HRV features of sixty-five subjects (Healthy-15 and T2DM-
50) were given as input to the machine learning models. The 
obtained results are shown in Table 8.

The value of TN, FP, FN, and TP was manually calcu-
lated, and their performance metrics were obtained. Further, 
we can improve the specificity by increasing the sample size 
of healthy subjects.

The proposed GPC-linear kernel model correctly classi-
fied 47 T2DM and 11 healthy subjects from 50 T2DM and 
15 healthy subjects, respectively, yielding the best perfor-
mance among all the machine learning models. The pro-
posed GPC-linear kernel model outperforms other machine 
learning models on new data, as evidenced by classification 
accuracy and other performance metrics, demonstrating 
model reliability. Further, the reliability of the model was 
validated using a statistical test. The proposed model and 
other models were compared using the repeated ANOVA 
method to see if they were statistically different. The null 
and alternative hypothesis was established to evaluate the 
difference between models. The null hypothesis states that 
there is no statistical difference between the models, while 
the alternative hypothesis states that there is a difference 
[34]. The criteria for accepting or rejecting a hypothesis was 
based on 0.05 significance level. Null hypothesis is rejected 
if the statistical p-value is less than the level of significance. 
The rejection of null hypothesis signifies that the models 
are statistically different. We performed an ANOVA test on 
the results and got a p-value of 0.000005, which suggest to 
reject the null hypothesis and indicating that the proposed 
GPC linear kernel model is statistically distinct from other 
models.

5 � Discussion

This work has been designed to predict the risk of T2DM. 
The non-linear HRV features were used to predict the risk 
of diabetes using the Gaussian process classification model. 
Initially, all HRV features have been applied to machine 
learning classifiers, but individual and combined feature 

Table 7   Comparison of the proposed model with other models in 
term of time complexity

Model HRV features Time complexity (10 cross-fold 
validation)

Training time (s) Prediction time 
(s)

LDA SD1 + SD2 0.0008 0.0003
QDA 0.0008 0.0003
NB 0.0007 0.0004
GPC-linear 

kernel
0.0013 0.0004

Table 8   Results of sixty-five 
subjects obtained using the 
proposed and other models

Model TN FP FN TP Total Performance metrics

AC SE SP PR F1 score AUC​

LDA 8 7 15 35 65 66.15% 70.00% 53.33% 83.33% 0.76 0.61
QDA 9 6 12 38 65 72.31% 76.00% 60.00% 86.36% 0.80 0.68
NB 8 7 13 37 65 69.23% 74.00% 53.33% 84.09% 0.78 0.61
GPC-linear kernel 11 4 3 47 65 89.23% 94% 73.33% 92.15% 0.93 0.80
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performances were studied to improve the performance 
of the classifier. The highest accuracy of 92.59% with an 
acceptable range of sensitivity, specificity with combined 
SD1 and SD2 HRV features was obtained using the GPC-
linear model.

Reduced HRV was observed in the T2DM condition, 
indicating low complexity and less regularity in RR interval 
[1, 8, 10, 11]. A few studies have observed diabetic auto-
nomic neuropathy (DAN), which slowly damages the nerves 
and smallest blood vessel in diabetes patients. Further, DAN 
has suggested the diagnostic risk marker for cardiovascular 
abnormalities [3, 12]. Poincare features such as SD1 and 
SD2 have already been used in diagnosing and prognosis of 
T2DM diseases. The lower value of these features indicates 
ANS imbalance [1, 17].

A decrease in the value of DFA α1 and α2 indicates 
reduced parasympathetic activity. The value of α2 is higher 
than α1, suggests higher sympathetic activity in diabetic sub-
jects [1]. All non-linear HRV features have been reduced 
except entropies in diabetes conditions. An increase in the 
value of entropy features reflects a short beat to beat vari-
ability in diabetes conditions [19, 20]. The reduced HRV 
features are used to predict the T2DM risk at the early stages 
to start a medical intervention. The present study demon-
strated a maximum accuracy of 92.59% with the proposed 
Gaussian process-based linear kernel model using a group 
of Poincare features.

The author Acharya and co-workers [35] revealed 86% 
accuracy, the sensitivity of 87.50%, and 84.60% specificity, 
respectively, using Adaboost with a least square method with 
six non-linear HRV features. Another paper from author 
Acharya and co-workers [36] has demonstrated 90% accu-
racy, a sensitivity of 92.52%, and a specificity of 88.72% 
using perceptron Adaboost with nine non-linear HRV fea-
tures. A summary from the literature review for diabetes 
prediction using non-linear HRV features is listed in Table 9.

Many researchers have used time, and frequency domain 
HRV features to predict diabetes risk and formulated results 

with good accuracy using a different machine learning tech-
nique [37–39]. In the literature, it was noted that researchers 
had designed a diabetes predictive model with good accu-
racy, sensitivity, and specificity. However, the developed 
model was not used or validated on patients in the hospital. 
In this work, our designed model was validated on patients 
in the hospital, and the results are desirable.

5.1 � Importance of proposed diagnostic model 
for early detection of T2DM

In this kind of study, no study has implemented the machine 
learning-based hardware module that predicts the risk of 
T2DM. The developed module is a low-cost, compact, port-
able, and non-invasive system that detects T2DM risk early 
on based on the HRV features. HRV is a non-invasive tool 
that gives an early indication of disease. However, in most of 
the cases, we found that HRV is reduced in diabetic subjects. 
This reduced HRV is an early indication of T2DM disease. 
As HRV features have inherent non-linearity, there are less 
chances to have the same values of any HRV features in 
healthy and diabetes groups.

Even if the same values of HRV features present in the 
healthy and diabetes group, we have used an approach of 
employing a machine-learning algorithm. It explores the 
other non-linear features of HRV, which is difficult to study 
using linear statistics.

5.2 � Address about the population/class imbalance

The study was based on real and authentic HRV data that 
are directly extracted from patients. The sample size of 
healthy and T2DM subjects is imbalance. We tried to bal-
ance the dataset using the synthetic minority oversampling 
technique (SMOTE) [40]. The model designed with such 
technique when tested on unknown/test data, the more false 
positive and false negative results were observed. Thus, it 

Table 9   Comparison with existing studies of diabetes prediction using non-linear HRV features

References Sample size Non-linear HRV 
features

Number 
of fea-
tures

Methods AC (%) SE (%) SP (%) Model validation 
on the number of 
patients

Acharya et al. [35] Control-15
Diabetes-15

Poincare features, 
Correlation dimen-
sion, recurrence plot 
features

5 Adaboost with Least 
Squares

86 87.50 84.60 –

Acharya et al. [36] Control-15
Diabetes-15

AppEN, Recurrence 
plot, Lyapunov 
exponent, DFA

9 Perceptron Adaboost 90 92.52 88.72 –

In this work Control-35
Diabetes-100

SD1 + SD2 2 GPC-Linear kernel 92.59 96.07 81.81 Total-65
(Control-15,
Diabetes-50)
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was decided to use only real data to design the diagnostic 
model and validate it.

6 � Limitation and future directions

On this kind of study, whatever literature we have referred 
to, none of the studies have validated their proposed model 
on the patients. But it was our first attempt to validate it on 
patients. We are still working to improve the sample size of 
healthy subjects. However, it is difficult to know an individual 
is healthy unless they go through a pathological test. So it is 
challenging to increase the population size of healthy subjects 
in less time constraints because one has to go through all the 
pathological examinations. Less population size of healthy 
subjects can be the limitation of the study, and we will over-
come it in the future. In the future, the diagnostic model would 
be interfaced with the patient health monitoring system.

7 � Conclusion

The current work proposed a low-cost, non-invasive diagnos-
tic model for predicting T2DM risk based on the GPC-linear 
kernel model using two non-linear HRV features (SD1 and 
SD2). The diagnostic model showed an accuracy of 92.59%, 
sensitivity of 96.07%, specificity of 81.81%, precision of 
94.23%, F1 score of 0.95 with an AUC of 0.89. Based on 
these performance metrics, it can be concluded that a GPC-
based linear kernel is a better classifier for segregating the 
subjects associated with T2DM risk from the healthy sub-
jects. Furthermore, the diagnostic model was deployed on a 
hardware module, and its performance was validated on 65 
patients. Therefore, the use of our model for early T2DM risk 
indication is highly recommended to healthcare professionals.
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