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Abstract
A novel approach of preprocessing EEG signals by generating spectrum image for effective Convolutional Neural Network 
(CNN) based classification for Motor Imaginary (MI) recognition is proposed. The approach involves extracting the Vari-
ational Mode Decomposition (VMD) modes of EEG signals, from which the Short Time Fourier Transform (STFT) of all 
the modes are arranged to form EEG spectrum images. The EEG spectrum images generated are provided as input image to 
CNN. The two generic CNN architectures for MI classification (EEGNet and DeepConvNet) and the architectures for pattern 
recognition (AlexNet and LeNet) are used in this study. Among the four architectures, EEGNet provides average accuracies of 
91.37%, 94.41%, 85.67% and 90.21% for the four datasets used to validate the proposed approach. Consistently better results 
in comparison with results in recent literature demonstrate that the EEG spectrum image generation using VMD-STFT is a 
promising method for the time frequency analysis of EEG signals.

1  Introduction

MI based Brain Computer Interface (BCI) systems have 
recently seen many breakthrough research in attaining higher 
classification accuracies. However, a system for decoding 
the thought process of a person is still an evolving chal-
lenge in the age of automation. These systems mostly rely 
on the EEG signals, which are electrical readings of the 
brain activity captured by placing electrodes on the scalp. 
The first step towards a system for thought process recogni-
tion is motor imaginary identification, where the subject’s 
imagination of moving a body part is identified based on 
the features extracted from EEG signals. For discriminat-
ing the activity imagined by a subject, EEG signals are 
analysed in time, frequency or in time-frequency domains. 
The information extracted are either spontaneous signal or 
evoked potential which appear in EEG [23]. In the category 
of spontaneous signals, Event Related Desynchronisation 
(ERD) activity observed in the Sensorimotor cortex region 

of the brain represents suppression of the mu band of EEG 
signals during the imagination of an activity in response 
to stimuli. The suppression is possible due to imaginary 
movement, actual movement or due to some memory tasks. 
In the case of imaginary movement, after suppression of 
mu-beta band, a synchronisation activity (Event Related 
Synchronisation,ERS) appears which results in power 
increase in mu beta-rhythm [26]. The ERD and ERS activi-
ties appear in the contralateral side of the brain, which then 
spread to the ipsilateral side. This can be harnessed for con-
trolling devices [39]. Numerous methods for feature extrac-
tion and classification of EEG signals in the context of MI 
identification are proposed in literature among which work 
utilising the image form of EEG signals are described below.

The EEG feature extraction methods demonstrated as 
effective include Common Spatial Pattern (CSP) [22], band 
power features [13] and autoregressive (AR) parameters 
[15]. Besides extracting features from EEG signals, fea-
tures from image representation of EEG signals have also 
been explored. A method involving two-dimensional image 
form of EEG from which, Harris corner detector and scale-
invariant feature transform was combined to form feature 
vector. The feature vector when classified using k- nearest 
neighbour algorithm [12] provided an accuracy of 96.21% 
for BCI Dataset Ia and 78.99% for BCI Dataset III. Image 
form of EEG signals classified with CNN resulted in better 
classification accuracy [5]. Representation of spectrum of 
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EEG signals in the form of multi dimensional tensor, and 
classification using deep recurrent convolutional network 
has demonstrated significant improvements in the classifica-
tion accuracy [3].

Features in the form of image were extracted using STFT 
of Intrinsic Mode Function (IMF), obtained by decomposing 
EEG signals using Empirical Mode Decomposition(EMD) 
[24]. However, EMD has short comings like sensitivity 
to noise and mode mixing. The VMD resolved the short-
comings in EMD by having a strong mathematical theory 
[10], and thus find applications in diverse fields like speech 
enhancement [11], hyperspectral images [21], digital foren-
sic [28] and heart sound segmentation [35]. VMD decom-
poses the real valued multi component signal into subsig-
nals adaptively using the calculus of variation. This iterative 
process of decomposition provides number of band limited 
modes of the input signals along with a center frequency for 
each mode [10]. In order to perceive the frequency variations 
within a mode, STFT of EEG signal are also helpful. STFT 
provides time-frequency distributions without cross-terms 
along with higher resolutions in both time and frequency 
domains [29, 37].

Several classifiers are being explored for the classification 
of extracted features from EEG signals. Among the various 
classifiers, deep learning networks like CNN, Deep Belief 
network (DBF), Restricted Boltzmann Machines (RBM) 
and Hybrid CNN remain outstanding [8]. Classifiers such 
as Linear Discriminant Analysis (LDA), Fisher Discriminant 
analysis (FDA) and Support Vector Machine (SVM) are also 
found to be effective for classification of EEG signals [1]. 
Deep learning models have hierarchical multistage learn-
ing structure for extracting the information from data. This 
property makes deep networks capable of analysing big data. 
The deep learning models especially CNN, finds application 
in EEG feature extraction, in spite of concerns regarding 
local minima, lower performance and higher computational 
costs [14]. CNN has been successful in image classification 
problems with numerous architectures, and has exhibited 
superior results in EEG classification in the case of seizure 
detection, emotion detection and in BCI paradigms [9, 32]. 
CNN with the multiple layers of processing decomposes the 
complex structure of image into less complex structures, 
which account for the superiority of CNN in image classifi-
cation [32]. The representation of EEG signals as image and 
feeding it to CNN network have yielded promising results 
[3, 5]. Training of CNN from scratch requires lot of data 
which are deprived of in many situations especially in the 
case of EEG signals. In this case, transfer learning enables 
the utilisation of pre-trained network for classification by 
fine tuning with new data. The transfer learning has provided 
remarkable progress in utilisation of CNN in physiological 
signal processing, by eliminating the requirement of training 
a new network [33, 43].

Even though CNN provides promising results in extract-
ing features and classifying EEG signals for developing BCI 
systems, there lack a method which can be reliably applied 
to different datasets as the datasets vary in EEG capturing 
protocols and equipment. This maybe due to the fact that, 
availability of multiple datasets collected from different 
labs remain sparse, and do not provide promising results in 
implementing hardware for assisting technologies for peo-
ple with movement restrictions. Hence, in this work a novel 
method of preprocessing and classifying EEG signals using 
CNN is proposed. The preprocessing involves, transforming 
EEG signals into spectrum image which is generated from 
the VMD modes of EEG signals. EEG signals from three 
electrodes C3, Cz and C4 which are placed at the senso-
rimotor cortex area of the brain are decomposed into four 
VMD modes. In order to visualise time frequency variation 
in each VMD mode, STFT of the VMD modes are perceived 
as images. For identifying the imagined activity, viz. left 
hand, right hand, feet or tongue movement, the spectrum 
images of four different classes are classified using CNN 
classifiers. The CNN architectures considered for this work 
are models for MI based EEG signal classification and pat-
tern recognition which are fine tuned for each subject using 
EEG spectrum image. The four datasets used are Dataset I 
[6], Dataset II [36], Dataset III [7], Dataset IV [16] which 
are available in public domain. The paper is structured as 
follows. Details of dataset are provided in section 2 followed 
by methods adopted is briefly discussed in section 3. The 
section 4 depicts results and discussion and finally section 5 
is provided with conclusions.

2 � Description of EEG dataset

Dataset I consists of EEG signals of three subjects during the 
imaginary movement execution of left hand, right hand, foot 
or tongue. The imagination started at 3 sec with an arrow 
appearing on the screen in one of the four directions cor-
responding to each task, before which the subject is alerted 
with an acoustic stimulus at 3 sec. The subject imagined the 
movement till the arrow disappeared at 7 sec. In this study, 
EEG signals during the time interval from 2 sec to 7 sec was 
extracted. The EEG signals monitored were sampled at 250 
HZ and filtered between 1 and 50 HZ.

Dataset II is from BCI Competition 2008 Graz dataset 
A which consists of EEG data from nine subjects during 
imaginary movement execution of left hand, right hand, 
foot or tongue. In this cue-based BCI paradigm similar to 
the dataset I the motor imagination started from 3 seconds 
and extends up to 7.5 seconds . The EEG signals used in this 
study was of duration of 5 seconds starting from 2 seconds to 
7 seconds . The EEG signals are sampled at a rate of 250Hz 
and were filtered between 0.5Hz and 100Hz.
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In Dataset III each subject was asked to move each 
fingers before the MI experiment began. Each trial was 
of 3 seconds duration during which instruction for left/
right hand movement imagination appeared on the screen. 
Before the imagination a preparation time of 2 seconds 
( −2 to 0 seconds ) was provided. The interval extracted for 
this study is 0 to 3 seconds . After each run, the subject was 
given feedback based on the classification accuracy of the 
trial. The sampling rate of the EEG signals were 512Hz and 
the signals were bandpass filtered between 0.5Hz and 50Hz.

Dataset IV consists of four different paradigms wherein 
paradigm two consists of 5 classes of MI tasks correspond-
ingly imaginary movement of left/right hand, left/right feet 
or tongue was utilised in this work. The other paradigm 
consists of left/right movement, 5 finger movement and 
keyboard entry. Each trial was of duration 1 second which 
was used in this work. Each trial began with an action sig-
nal which appeared for 1 second . The time during which the 
action signal remained, the participants implemented the 
selected motor imagery once. EEG data recorded at 200Hz 
sampling rate were band-pass filtered between 0.53 to 70Hz . 
Additionally, a 50Hz notch filter was present.

The description regarding number of subjects, number of 
channels, number of total trials, number of rejected trials, 
number of classes and epoch duration in each of the four 
datasets utilised in this work are provided in Table  1. The 
unlabeled as well as corrupted trials are rejected from all 4 
datasets.

3 � Methods

The EEG spectrum image is generated using STFT of VMD 
modes of EEG signals corresponding to the electrodes in 
sensorimotor cortex area of the brain. The preprocessing 
methods adopted are depicted in Fig. 1. The EEG signal 
is decomposed into 4 VMD modes with centre frequency 
around the EEG frequency bands. The STFT of each of the 
VMD modes are combined by stacking to form EEG signal 
image spectrum. The VMD and STFT methods are detailed 
in subsequent sections.

3.1 � Variational mode decomposition

VMD adaptively decomposes a real valued multicomponent 
signal, x(t) into number of discrete sub signals, or modes, 
xl(t) iteratively. The decomposed L number of modes are 
compact around a center frequency, �l . The IMF and center 
frequencies of these IMF are computed using optimization 
methodology. The method tries to minimize the sum of the 
bandwidths of L modes, subject to the condition that, sum of 
the L modes is equal to the original signal using the alternate 
direction method of multipliers (ADMM) [10]. Mathemati-
cally, the procedure is expressed as

where, xl(t) is the lth mode with center frequency �l . � is the 
Dirac delta, t is time, and ∗ denotes the convolution. Above 
formulation is obtained using the following steps. 

1.	 Compute unilateral frequency spectrum of signal x(t) by 
means of Hilbert transform.

2.	 Shift the frequency spectrum to the base-band by multi-
plying with an exponential signal with estimated center 
frequency

3.	 Estimate the bandwidth through the H1 Gaussian 
smoothness of the demodulated signal, which being the 
squared L2-norm of the gradient

The above constrained optimization problem in Eq.(1) is 
modified as unconstrained along with the quadratic penalty 
term. [10]. The corresponding modified equation is written 
as

where, L is the augmented Lagrangian, � is the balancing 
parameter of data fidelity constraint, and � is the Lagrangian 
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Table 1   Details regarding number of subjects, number of channels ,total number of trials, number of rejected trials, number of classes and epoch 
duration in seconds for the four publicly available datasets which are utilised in the proposed method

Dataset No of subjects Channels No of trials per sub-
ject per class

No of rejected 
trials

No of classes Epoch(seconds)

Dataset I [6] 3 64 40 5–8 4 0–7
Dataset II [36] 9 22 144 0–5 4 0–7.5
Dataset III [7] 50 64 100 0–5 2 −2–5
Dataset IV [16] 12 19 300 70–100 5 0–1
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multiplier. Eq. (2) is then solved with the ADMM and the 
solutions in the spectral domain are written as in Eq. (3) 
and Eq.(4)

where, X̂n+1, x̂(𝜔), X̂i(𝜔) and 𝜆̂(𝜔) represent the Fourier 
transforms of xn+1 , x(t), xi and � respectively. The mode in 
the time domain is obtained as the real part of the inverse 
Fourier transform of this filtered analytic signal X̂n+1(𝜔).

Each EEG epoch for the four different tasks of imagi-
nary movement of left hand, right hand, tongue and foot 
were of 5 seconds duration for the dataset I and II, 4 sec-
onds for dataset III and 1 seconds duration for dataset IV. 
The EEG signals from the electrodes C3, Cz and C4 in 
sensorimotor cortex area were decomposed using VMD. 
Empirically the number of modes was fixed as four, where 
each mode center frequency corresponds to the estimation 
of EEG frequency bands namely Delta, Theta, Alpha and 
Beta. The modes were arranged according to the increas-
ing frequencies, viz. Delta, Theta , Alpha and Beta. The 
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power in each of the four modes for the four tasks, and 
the three electrodes (C3, Cz, C4) for the subject S02 of 
dataset II are plotted in Fig. 2. Each subplot in the figure 
shows the power variation for all the modes for a duration 
of 5 seconds. Left most figure in each column represents 
power in the 4 VMD modes for C3 electrode, middle one 
for Cz and the right most for C4 electrode whereas, each 
row corresponds to each task, imaginary movement of left 
hand, right hand, feet and tongue respectively.

3.2 � Short time Fourier Transform

The STFT is a method in which Fast Fourier Transform 
(FFT) of each of the data frames are computed. The data 
frames are obtained from a signal, by dividing signal into 
small sequential or overlapping data frames. The computed 
FFT of successive data frames can be arranged to provide 
time-frequency representation of the signal. To obtain the 
data frames, the signal is multiplied with a window func-
tion, h(n) of length, K. The length of the window function 
decides the frequency resolution, and time resolution of 
the signal in the spectrum. A large window provides less 
resolution in time and more resolution in frequency. Along 
with the window length, window type decides the time 
frequency distribution, since the strong time-variable sig-
nal causes frequency aliasing. The formulation of STFT 
is given as

Fig. 1   Proposed process flow for generating the EEG spectrum image based on VMD and STFT
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where, x(n) is input signal at time n, h(n) is window function 
of length K and Xm(�) is DTFT of windowed signal centered 
around mR.

In order to detect the onset of ERD/ERS activity, a win-
dow length of 200 ms with an overlap of 75% is provided. 
The Gabor, which uses a Gaussian window is used as the 
window function.

3.3 � EEG spectrum image

The EEG signal from an electrode of length N was decom-
posed into 4 VMD modes, xl(t) where l represents modes 
from 1 to 4. The STFT of lth mode, sl(t) was converted into 
a color image of size M × L × 3, to emphasize the distri-
bution of magnitude of the spectrum. M and L are given 
as in Eqs. (6) and (7)

(5)Xm(�) =

∞∑

n=−∞

x(n)h(n − mR)e−j�n

where, p represents the number of zero padding

where, w represents the window size and o represents over-
lapping window.

By stacking the 4 spectrum corresponding to 4 modes, 
the image size was 4M × L × 3. The window size of 50 
with zero padding of 10 was chosen for all datasets. The 
overlapping window size was of 35 points for 75% over-
lap. In the case of dataset I and II for interval of 5 seconds 
have 1250 points, where the EEG spectrum image has size 
124 × 31 × 3, while for dataset III and IV has size 124 × 134 
× 3 and 124 × 37 × 3 respectively.

The EEG spectrum images thus generated for the four dif-
ferent tasks and for the 3 electrodes for subject, S02 of data-
set II are shown in Fig. 3. Correspondingly Fig. 4 shows the 
image generated with STFT of EEG signals without modal 

(6)M =
N + p

2
+ 1

(7)L =
N - w

w-o

Fig. 2   The power in each of the four VMD modes of EEG signals for S02 of dataset II is plotted for the three electrodes and for the four tasks. 
The x-axis represents frequency in Hz and y-axis represents power in modes
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decomposition. It is evident from Fig. 3 and Fig. 4, that the 
power variation due to the imaginary movement is more 
detectable in VMD-STFT spectrum image, than in the STFT 
spectrum image. In each plot, X represents time from 2 to 7 
sec and Y axes represents modes respectively. Each subplot 
in the figure shows the power variation for all the modes for 
a duration of 5 sec. Left figure in each column represents 
the power for C3 electrode, middle one for Cz and the right 
for C4 electrode whereas each row corresponds to each task.

4 � CNN classifications

The CNN architectures consist of a multilayer structure with 
an input layer being the first layer, and the following layers 
have number of convolutional and max-pooling or average 
pooling layers. Dropout layers were provided in between 
the different convolutional layers to avoid over fitting. The 
last layer designed for classification have fully connected 
layer and a dense layer followed by softmax layer. The first 
layer of CNN learns basic features by filtering, while the 

deeper layers were designed to learn higher level features 
by decomposing the input into complex structures. The last 
layer, fully connected layer assembles the learned features 
from the previous layers for classification. The CNN incor-
porates forward propagation algorithms to find the output, 
and backward propagation algorithms to optimize the error.

EEGNet consists of a 2D convolutional layer followed by 
depthwise convolution, and a seperable convolution layer 
with each layer having batch normalisation, dropout and 
average pooling. DeepConvNet architecture was developed 
so as to have a standard Convolutional network which meets 
the purpose of generic tool for brain signal decoding tasks. 
The architecture has four convolution-max-pooling blocks 
and a dense softmax classification layer. For further details 
regarding EEGNet and DeepConvNet reader is referred to 
[18] and [32] respectively.

The two architectures for pattern recognition, AlexNet 
[17] and LeNet [19], were fine tuned for EEG spectrum 
image input wherein the architectures were adopted with-
out modification in layers. The different layers of the four 
models adopted in this work are given in Table  2. The 

Fig. 3   The EEG spectrum image based on VMD-STFT for S02 of dataset II for the three electrodes and for the four tasks. The x-axis of each 
plot represents time from 2 seconds to 7 seconds and y axis represents the VMD modes
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layers of ConvNet and EEGNet are modified with 3 chan-
nel layer as the EEG spectrum image is RGB image.

The EEG spectrum image as discussed in Sect. 3.3 
without rescaling were provided as input to each of the 
architecture by modifying the input layer so that informa-
tion in EEG spectrum image is not disrupted. The size of 
the input layer is 4M x L x 3 which is of size 124 x 81 x 3 
for dataset I and dataset II, while for dataset III and data-
set IV are 124 x 134 x 3 and 124 x 37 x 3 respectively. 
Each of the network was trained and tested for a single 
subject by dividing total trials of the subjects into 70% 
and 30% respectively with 10 fold cross validation. The 
trained model is fine tuned and tested with 70% and 30% 
of the trials separately for each subject.

The kernel size for each network are 5x5, 7x7, 5x5 and 
9x9 for LeNet, EEGNet, ConvNet and AlexNet respec-
tively. Activation function for the networks are RELU 
for LeNet, ConvNet and AlexNet while ELU for EEGNet.

5 � Results and discussion

An extensive comparison of classification accuracies of 
the EEG spectrum image for MI classification are imple-
mented with four CNN architectures ConvNet, EEGNet 
, AlexNet and LeNet. A comparison on EEG spectrum 
image from STFT of EEG signals are also performed. 
Among the four networks, two CNN architectures are 
generic architectures for EEG analysis while, two other 
models are for the pattern recognition. The classification 
accuracies for the methods of EEG spectrum image gen-
erated using STFT and VMD –STFT respectively for all 
subjects in each of the dataset are summarised in Tables 3,  
4, 5, 6. The maximum accuracy obtained for each sub-
ject in the dataset for 100 epoch is reported. The perfor-
mance curve for S02 of dataset II is plotted in Fig. 5 for 
epoch size of 100. Figure 5 includes four subplots, each 

Fig. 4   STFT of EEG signals of S02 of dataset II for the three electrodes and for the four tasks. The x-axis of each plot represents time from 2 
seconds to 7 seconds and y axis represents frequency in Hz
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Table 2   CNN layers for the four 
architectures

LeNet-5 ([19]) EEGNet ([18]) DeepConvNet(EEG) ([32]) AlexNet ([17])

Input Input Input Input
Conv2D Conv2D Conv2D Conv2D
AveragePooling2D BatchNorm Conv2D MaxPooling2D
Conv2D DepthwiseConv2D BatchNorm BatchNorm
AveragePooling2D BatchNorm MaxPooling2D Conv2D
Flatten AveragePool2D Dropout MaxPooling2D
Dense Dropout Conv2D BatchNorm
Dense SeparableConv2D BatchNorm Conv2D
Dense BatchNorm MaxPooling2D MaxPooling2D

AveragePool2D Dropout BatchNorm
Dropout Conv2D Conv2D
Flatten BatchNorm BatchNorm
Dense MaxPooling2D Conv2D

Dropout BatchNorm
Conv2D Conv2D
BatchNorm MaxPooling2D
MaxPooling2D BatchNorm
Dropout Flatten
Flatten Dense
Dense Dropout

BatchNorm
Dense
Dropout
BatchNorm
Dense
Dropout
BatchNorm
Dense

Fig. 5   Testing and training per-
formance curve for 100 epochs 
for subject 2 of dataset II
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corresponding to each CNN architecture. In each subplot, 
training and testing performance curves are plotted. From 
the figure it is observed that EEGNet and ConvNet learn at 
a faster rate. The training and testing accuracies stabilise 
with an epoch of 20 for EEGNet and ConvNet and 40 for 
AlexNet and LeNet respectively.

Highest average accuracy of 91.37% with a standard devi-
ation (STD) of (±2.12) for the three subjects are achieved 
for the dataset I for the EEG spectrum image classified with 
EEGNet as indicated in Table 3. For Dataset II with 9 sub-
jects, highest average accuracy of 94.41% is obtained for 
EEGNet classifier with STD of (±2.7) . The other networks 
show less accuracies with higher STD among subjects. In 
the case of dataset III, highest average accuracy of 89.51% is 
obtained for ConvNet but the STD is (±10.6) . For EEGNet, 
an average accuracy of 86% with reduced STD of (±7) is 
obtained. An average accuracy of 85.66% with least STD of 
(±7.49) is obtained for EEGNet for dataset IV. The average 
accuracy for each dataset are shown in Table 7 for com-
parison. Recent prominent results for various methods and 
classifiers for MI classification of the four datasets are shown 
in Table 8. Among the enormous results available for the 
first two datasets, only state of the art results are included, 
which indicate superiority of deep learning networks. The 
accuracies vary from 85% to 98% for dataset I, 74% to 96% 
for dataset II, 66 to 73% for dataset III and 54 to 86% for 
dataset IV. The proposed method has resulted in an average 

accuracy within the range of 85.67 to 94.41% for all the 
four datasets. The results for STFT image remain inferior to 
VMD-STFT EEG spectrum image. Since the modal decom-
position of EEG using VMD is based on power in the fre-
quency bands, further STFT of the decomposed modes help 
in acquiring superior EEG image spectrum.

6 � Conclusions

This work proposes an approach for transforming EEG sig-
nals to the image form by applying STFT on VMD modes 
of EEG signals. The image manifests spectrum of the EEG 
signals which were distinctively captured around the fre-
quency bands of EEG signal. Signals from three electrodes 
in the SMR region of the brain were considered for the four 
classes of MI movements. The EEG spectrum image for the 
four classes of MI movements from four different publicly 
available data sets were classified using CNN. The widely 
accepted architectures for MI based EEG signal classifica-
tion and pattern recognition were fine tuned for the EEG 
spectrum image input. The approach with EEGNet CNN 
classifier provides superior accuracies consistent for the four 
datasets utilised for validating the approach. Thus the EEG 
spectrum image generation opens up a new approach for the 
time-frequency analysis of EEG for MI classification.

Table 3   Classification accuracy 
for subjects in dataset I for the 
four CNN architectures

Subjects EEGNet DeepConvNet EEGNet AlexNet LeNet
STFT VMD+STFT VMD+STFT VMD+STFT VMD+STFT

S01 55.31 81.68 93.17 63.27 78.4
S02 60.22 85.49 89.03 60.57 60.28
S03 57.73 73.52 91.92 53.98 66.66
Avg 57.75 80.23 91.37 59.27 68.45
STD 2.46 6.12 2.12 4.78 9.19

Table 4   Classification accuracy 
for subjects in dataset II for the 
four CNN architectures

Subjects EEGNet DeepConvNet EEGNet AlexNet LeNet
STFT VMD+STFT VMD+STFT VMD+STFT VMD+STFT

S01 70.13 68.45 93.57 61.91 80.41
S02 84.27 87.61 97.74 68.38 89.18
S03 65.58 78.03 93.68 55.2 67.93
S04 57.92 75.6 91.04 60.72 76.49
S05 58.33 71 94.87 50.38 75.21
S06 79.37 69.98 95.28 65 52.85
S07 66.49 71.45 96.48 62.28 81.29
S08 55.78 82.63 89.41 71.66 73.92
S09 69.29 65.11 97.65 59.04 78.38
AVG 67.46 74.43 94.41 61.49 75.07
STD 10.32 6.76 2.74 7.22 10.77



244	 Biomedical Engineering Letters (2021) 11:235–247

1 3

Table 5   Classification accuracy 
for subjects in dataset III for the 
four CNN architectures

Subjects EEGNet DeepConvNet EEGNet AlexNet LeNet
STFT VMD+STFT VMD+STFT VMD+STFT VMD+STFT

S01 72.91 68.22 89.38 61.32 66.41
S02 80.39 94.81 86.2 59.84 69.75
S03 77.66 84.92 94.5 79.04 58.2
S04 56.02 60.33 73.04 50.74 68.33
S05 78.29 92.37 91.72 70.82 73.02
S06 72.17 79.23 88.31 79.78 68.63
S07 58.24 71.03 85.34 68.82 71.88
S08 76.49 70 91.2 58.91 60.34
S09 54.95 79.37 80.62 61.84 74.13
S10 81.23 96.49 69.2 95.91 73.39
S11 66.94 88.23 91.9 92.31 83.45
S12 69.24 96.12 94.32 78.39 60.24
S13 80.73 75.32 87.41 56.91 68.29
S14 81.3 94.47 93.26 87.55 73.45
S15 58.05 93.94 80.94 61.39 59.25
S16 68.3 92.35 91.03 49.35 55.04
S17 79.84 86.4 85.3 87.25 74.31
S18 81.27 95.25 77.59 68.3 82.23
S19 58.24 86.95 96.42 75.32 68.39
S20 73.39 97.66 81.42 77.94 78.28
S21 83.28 87.93 83.33 61.49 68.73
S22 80.36 97.02 79.23 92.44 71.89
S23 68.34 96.26 85.5 97.6 84.18
S24 57.17 97.33 89.52 78.69 66.15
S25 64.48 96.59 69.16 58.94 69.32
S26 89.74 92.51 88.03 91.55 74.88
S27 77.77 95.15 81.44 69.69 60.87
S28 68.36 97.87 85.72 87.27 74.22
S29 80.27 93.67 85.24 69.8 81.16
S30 69.59 79.95 96.19 79.59 83.2
S31 86.45 98.15 78.06 49.24 58.43
S32 68.04 86.36 91.92 96.34 77.07
S33 55.2 95.05 89.41 61.37 66.53
S34 61.04 96.84 72.58 67.93 68.6
S35 62.5 77.47 88.62 61.48 74.35
S36 91.94 98.28 94.14 72.38 77.63
S37 77.4 53.24 85.56 68.73 58.29
S38 67.82 94.2 93.39 70.3 62.26
S39 89.14 88.11 91.74 80.39 73.22
S40 76.47 69.95 75 59.29 88.94
S41 54.69 89.5 88.26 71.41 74.57
S42 76.76 97.4 87.49 86.74 82.89
S43 78.44 89.82 94.27 77.74 64.32
S44 80.62 94.18 94.63 49.38 58.27
S45 68.02 86.83 85.49 87.93 74.38
S46 66.47 90.33 70.84 50.84 68.92
S47 57.83 98.78 89.53 61.3 66.55
S48 78.92 96.16 71.1 60.19 73.29
S49 88.19 93.2 79.39 80.46 74.38
S50 80.83 94.28 89.43 69.04 71.64
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Table 5   (continued) Subjects EEGNet DeepConvNet EEGNet AlexNet LeNet
STFT VMD+STFT VMD+STFT VMD+STFT VMD+STFT

Avg 72.63 88.51 85.66 71.82 70.72
STD 10.27 10.64 7.49 13.55 7.88

Table 6   Classification accuracy 
for subjects in dataset IV for the 
four CNN architectures

Subjects EEGNet DeepConvNet EEGNet AlexNet LeNet
STFT VMD+STFT VMD+STFT VMD+STFT VMD+STFT

S01 57.83 81.75 86.74 82.18 78.31
S02 68.48 95.64 97.42 78.04 70.26
S03 73.19 86.32 82.93 66.91 82.42
S04 67.29 88.48 91.84 50.75 59.27
S05 58.93 88.03 94.27 68.94 69.54
S06 62.49 92.99 89.02 61.38 85.35
S07 77.55 76.19 87.25 74.28 75.22
S08 84.28 79.84 90.18 62.39 81.02
S09 58.1 69.78 88.55 77.21 74.93
S10 71.63 78.66 85.76 71.05 83.49
S11 76.37 88.47 92.49 67.3 77.2
S12 65.28 94.59 96.01 69.29 87.23
AVG 68.45 85.06 90.20 69.14 77.02
STD 8.45 7.92 4.34 8.51 7.90

Table 7   The average 
classification accuracy for the 
four datasets with four CNN 
architectures

EEGNet DeepConvNet EEGNet AlexNet LeNet
STFT VMD+STFT VMD+STFT VMD+STFT VMD+STFT

Dataset I 57.75 80.23 91.37 59.27 68.44
Dataset II 67.46 74.42 94.41 61.49 75.07
Dataset III 72.64 88.52 85.67 71.83 70.72
Dataset IV 68.45 85.06 90.21 69.14 77.02
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