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Epidemiologic studies often rely on questionnaire data, exposure measurement tools, and/or biomarkers to
identify risk factors and the underlying carcinogenic processes. An emerging and promising complementary
approach to investigate cancer etiology is the study of somatic “mutational signatures” that endogenous and
exogenous processes imprint on the cellular genome. These signatures can be identified from a complex web of
somatic mutations thanks to advances in DNA sequencing technology and analytical algorithms. This approach
is at the core of the Sherlock-Lung study (2018–ongoing), a retrospective case-only study of over 2,000 lung
cancers in never-smokers (LCINS), using different patterns of mutations observed within LCINS tumors to trace
back possible exposures or endogenous processes. Whole genome and transcriptome sequencing, genome-
wide methylation, microbiome, and other analyses are integrated with data from histological and radiological
imaging, lifestyle, demographic characteristics, environmental and occupational exposures, and medical records
to classify LCINS into subtypes that could reveal distinct risk factors. To date, we have received samples and data
from 1,370 LCINS cases from 17 study sites worldwide and whole-genome sequencing has been completed on
1,257 samples. Here, we present the Sherlock-Lung study design and analytical strategy, also illustrating some
empirical challenges and the potential for this approach in future epidemiologic studies.

genomic analyses; histology; lung cancer; mutational signatures; never-smokers; radiological imaging

Abbreviations: CT, computed tomography; FFPE, formalin-fixed paraffin-embedded; H&E, hematoxylin and eosin; LCINS, lung
cancer in never-smokers; GWAS, genome-wide association studies; QC, quality control; SBS, single-base substitution; WGS,
whole-genome sequencing.

Lung cancer in never-smokers (LCINS) accounts for
10%–25% of lung cancer cases (1) and ranks among the
most common causes of cancer mortality (2, 3). Compared
with former and current smokers with lung cancer, the
predominant histology observed in never-smokers is adeno-
carcinoma (4). Geographic variability in lung cancer risk
among never-smokers is also observed (5, 6), likely due to
regional differences in lifestyle and in environmental and

occupational exposures. Some established environmental
risk factors associated with LCINS include exposure to
secondhand smoke (5, 7–10), radon (11–15), outdoor (16,
17) and indoor (18–21) air pollution, and asbestos (22,
23), which have been reviewed extensively (Table 1). Other
risk factors include history of respiratory diseases, such as
tuberculosis (24–26), pneumonia (24, 25, 27), and asthma
(27–29). However, most LCINS cases have no known
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risk factors, highlighting the critical need for etiological
studies.

Throughout life, somatic cells acquire mutations, many
of which occur well before the development of cancer
(30). Advances in sequencing technologies combined with
the development of novel computational methods can
decipher the characteristic patterns of somatic mutations,
termed “mutational signatures,” imprinted by the activities
of endogenous and exogenous mutational processes (31).
Distinct mutational signatures can now be identified from
the thousands of somatic substitutions, insertions/deletions,
copy number alterations, and structural rearrangements (32)
observed in cancerous or normal somatic genomes (30–32),
using the sequence context of each alteration (33, 34). Mu-
tational signatures can reveal established exposures (e.g.,
tobacco smoking in lung cancer (35), ultraviolet light in
skin cancer (36), or alcohol (37) or aflatoxin (38) exposure
in liver cancer). Mutational signatures can also identify
failure of known endogenous processes (e.g., defective DNA
mismatch repair (39), errors in homologous recombination
repair pathways (40), or loss of both polymerase proofread-
ing and mismatch repair function (41)). Similar “marks” are
likely imprinted on the genomes of LCINS.

The objective of the Sherlock-Lung study is to identify
mutational signatures and relate them to past exogenous
and endogenous processes by analyzing the cancer genome
of 2,000 ethnically diverse LCINS cases identified through
previous research efforts. The analytical approach used in
this retrospective case-only study design is novel in that the
different patterns of mutations observed within tumors can
be used to infer prior probable exposures, some occurring
years before diagnosis, even in the absence of exposure
data. The starting point is the identification of mutational
signatures in tumor samples and linking them to potential
exogenous exposures and endogenous biological processes
in external databases (42). When information on environ-
mental and lifestyle exposures is available for the cases,
we can also estimate the magnitude of etiological hetero-
geneity by relating exposure data to tumor subtypes in case-
only analyses (43). In contrast, more traditional analytical
approaches typically analyze mutational data and relate it
to exposures reported by the cases. Moreover, the approach
we use here allows for the identification of potential new
or unexpected risk factors for LCINS, as it happened, for
example, with the identification of the plant-derived aris-
tolochic acid, through its specific mutational patterns, as a
risk factor for a subset of hepatocellular carcinoma (44) and
clear cell renal cell carcinoma (45). We acknowledge that
the case-only design does not allow estimation of relative
risks for the association between specific exposures and the
risk of developing LCINS, but the identification of potential
heterogeneity of exposure–tumor mutation associations will
lay the foundation for future cohort or case-control stud-
ies to obtain such relative risks. Notably, the analysis of
genomic data can also lead to a greater understanding of the
endogenous mutational mechanisms (e.g., deficient DNA
repair (40) or apolipoprotein B mRNA editing enzyme, cat-
alytic polypeptide-like (APOBEC)-related mutations (46))
triggering or facilitating clonal outgrowth in the presence or
absence of exogenous exposures.

Briefly, the 2 primary aims of the Sherlock-Lung study
are to: 1) identify exogenous exposures and endogenous
processes involved in LCINS through the analysis of muta-
tional signatures and other molecular characteristics, and
2) develop an integrated molecular, histological, and radi-
ological classification of LCINS (Figure 1). We also discuss
secondary aims with their attendant challenges and opportu-
nities.

METHODS

Study design

Sherlock-Lung will include 2,000 LCINS patients with
treatment-naive fresh frozen tumor specimens and a source
of germline DNA, of any histological type, but primarily
adenocarcinoma, of all stages, ages, and sexes. Surgical
samples will mostly come from stages I–IIIA (resectable
lesions), while biopsies will also include more advanced
cases. LCINS whose diagnosis was based only on imaging
evaluation are excluded. A subgroup of patients (n ∼ 500)
will be sought who have known history of high exposure
to established lung cancer risk factors (“special exposures
populations”), while the remaining cases will be patients
with no known exposures to established risk factors (“gen-
eral populations”) (47) (Figure 1).

Study population and sample/data collection. Retrospec-
tive collection of data and biospecimens from 2,000 LCINS
cases with fresh frozen tumor specimens requires contacting
many potential sources. Accordingly, we have established
contact with institutions identified through publications,
conferences, extensive web searches, and personal relation-
ships; recruitment has been pursued by follow-up e-mail
and phone/video calls. Sample collection began in 2019
and to date, LCINS cases have been drawn from tissue
biobanks, hospital case series, population-based or hospital-
based case-control studies, and clinical trials with fresh
frozen lung tumor and a source of germline DNA samples.
To capture a variety of exposures and genetic background
across geographical regions, the study plan is to recruit
at least 100 cases each from Asia, Africa, Central and
South America, and the Middle East, in addition to those
of European descent. Of note, germline data from this
multiethnic population will increase the diversity of existing
large-scale genome-wide association studies (GWAS)
(>78% of participants in published GWAS are of European
ancestry (48), and approximately 71.8% of these samples
are collected from the United States, the United Kingdom,
and Iceland (49)). Based on the power calculations from
the “Mutographs of Cancer” whole-genome sequencing
(WGS) data, 100 samples should be sufficient to detect 20%
enrichment of mutations associated with a given exposure,
whereas 2,000 samples can detect a 5% enrichment (50).

Subject prioritization. Prioritization of subject selection is
based on tumor sample requirements, exposure to specific
risk factors, and availability/quality of data on exposure
assessment, pathology, and imaging. The optimal sample
requirements are listed in Web Figure 1 (available at https://
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doi.org/10.1093/aje/kwaa234). Overall, samples from cases
with documented high exposures to established lung car-
cinogens (special exposures populations) have the highest
priority as they have the most potential to identify a muta-
tional signature associated with a distinct exogenous risk
factor. Given the rarity and importance of these samples, we
are willing to extend inclusion criteria and collect formalin-
fixed paraffin-embedded (FFPE) samples for validation and
pertinent analyses if frozen biospecimens are not available
(e.g., for cases with high exposure to wood and coal smoke
from Colombia, Table 2).

For cases without clear exposures (general populations),
the minimum requirement for enrollment includes availabil-
ity of data on environment or residence, lifestyle, demo-
graphics, histology, and >1 fresh frozen tissue sample paired
with a source of germline DNA (i.e., whole blood, buffy
coat, normal lung tissue, saliva, or buccal cells) per subject.
Additional criteria for prioritization, in order of importance,
include:

1. Ethnic diversity and geographic region.
2. Availability of multiple normal tissue samples (n = 4)

to study the lifetime accumulation of mutations and
presence of mutations in cancer driver genes.

3. Multiple hematoxylin and eosin (H&E) slides for his-
tological classification.

4. Lung computed tomography (CT)-scan imaging data
for radiological classification.

5. Availability of FFPE tissue blocks from the tumor cen-
ter and periphery for tumor microenvironment analy-
sis.

6. Availability of multiple tumor tissue samples (n = 4)
for clonal evolution analysis.

7. Availability of plasma samples for circulating tumor
DNA analysis.

Collection of exposure data. We rely on 3 data sources to
collect data on exposures to the major risk factors, including
secondhand tobacco smoke, asbestos, radon, indoor and
outdoor air pollution, and previous lung/respiratory tract dis-
eases: 1) self-reported household, occupational, and lifestyle
exposures; 2) medical records; 3) residential data (location
of longest residence), which we plan to link to geogenic
mapping and satellite data. The documented exposures must
have occurred at least a decade prior to cancer diagnosis and
must have lasted, cumulatively, for at least 1 year. Some case
series will have extensive data on these risk factors while
other case series will have limited data, depending on the
approach used to recruit cases.

Code of ethics. Because the National Cancer Institute is
only receiving deidentified samples and data from collab-
orating centers, has no direct contact or interaction with
study subjects, and does not use or generate identifiable
private information, Sherlock-Lung has been determined to
constitute “Not Human Subject Research (NHSR)” based on
the Federal Common Rule (45 CFR 46; https://www.ecfr.
gov/). Contributing cases are required to confirm collection
under a local IRB-approved study.
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Figure 1. Aims of the Sherlock-Lung study, worldwide, 2018–ongoing.

Laboratory and analytical methods

Aim 1: Characterize the genomic landscape of LCINS and
relationship with exposures and endogenous processes.
LCINS will be characterized using WGS, whole transcrip-

tome, and genome-wide methylation analyses to describe
the mutational burden of single nucleotide variants (SNVs),
mutational signatures, alterations in major cancer driver
genes and in lineage-specific surfactant genes, somatic
copy number alterations (SCNAs), structural variants (SVs),

Am J Epidemiol. 2021;190(6):962–976
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Table 2. Lung Cancer Samples From Never-Smoker Patients Identified During the Initial 20 Months of Sherlock-Lung, Worldwide, 2018–
Ongoing

Region

Cases With Data and Samples
Received

Pending Casesa Potential Additional Casesb

General Special Exposures General Special Exposures General Special Exposures

North America 353 0 55 180 138 0

Europe 424 0 149 47 9 125

Asia 434 28 300 200 200 90

Central/South America 0 131c 108 19 477 213

Africa 0 0 80 70 100 30

Middle East 0 0 72 0 40 0

Australia 0 0 0 5 0 40

Caribbean 0 0 50 0 30 0

All regions 1,211 159 814 521 994 498

a Written commitments to provide data/samples has been received from the institutions.
b Institutions have expressed interest in participating in Sherlock-Lung and efforts are underway to establish collaborations.
c All samples received to date are fresh frozen specimens with the exception of 106 formalin-fixed paraffin-embedded samples from South

America.

germline variation, methylation patterns, gene expression,
telomere length, presence of new tumor epitopes, viral
sequences, lung microbiota, and additional genomic changes
in LCINS (Table 3). Moreover, we plan to analyze germline
genetic variants from lung GWAS (51–54) or polygenic risk
scores in relation to quantifiable tumor genomic alterations.
Sample processing and quality control. Samples from col-
laborating sites are received at a central laboratory for
staging and preparation. Our central laboratory requires a
minimum of 2 tissue samples of 40 mg each to extract DNA
and RNA for genomic analyses. If collaborating sites send
lung tissue specimens, these are first sent to a facility for
validation of pathology and nucleotide extraction (DNA
and RNA) with standard quality control (QC) metrics (Web
Appendix 1). When already-extracted tumor DNA samples
are provided, confirmatory quantification and QC are per-
formed at a central laboratory following similar procedures.
QC-approved DNA samples are then sent to a genomic
center for whole genome sequencing, while methylation,
microbiome, and RNA sequencing analyses are conducted
at the central laboratory.
Whole-genome sequencing. To date, studies of the genomic
landscape of lung cancer have included mostly smokers
and relied largely on targeted sequencing or whole-exome
sequencing (55–60). However, the larger number of somatic
mutations in whole-genome sequences, of which approx-
imately 98% is not covered by whole-exome sequencing,
provides increased power for signature decomposition.
Moreover, WGS can better reveal structural rearrangements,
detailed copy number profile, noncoding mutations, and
other genomic changes not captured by whole-exome se-
quencing. Sherlock-Lung tumor tissue samples will be
analyzed by WGS with an average coverage of 80×, using
blood samples or other germline DNA sources (coverage

of approximately 40×) as reference. For high-priority cases
with uncertain sample quality, we will conduct deeper tumor
sequencing (coverage of approximately 120×–200×) to
increase the probability of detecting low-allele-fraction or
subclonal mutations.

Using current bioinformatic tools, separation of clonal
from subclonal mutations within each tumor enables infer-
ence of evolutionary trajectories of the mutational processes
in tumors. In previous analyses of lung adenocarcinomas in
smokers, we found that mutations assigned to the tobacco
smoking signature (single-base substitution (SBS) 4) were
predominantly clonal and therefore involved in tumor ini-
tiation (57). We will extend this analysis to normal tissue
adjacent to the tumor tissue to improve our knowledge of
early clonal expansion of cancer-driver mutations that are
widely present in clinically normal tissues albeit in lower cell
fractions (61–63). A pilot study is underway in normal tissue
to identify the optimal approach to detect genomic changes
in a small fraction of cells (Table 3).
RNA sequencing. RNA sequencing analysis of tumor/nor-
mal tissue pairs is being carried out in approximately 1,000
cases, using 2 × 150 base pairs paired-end sequencing with
a target depth of 100 million reads, to identify transcribed
alterations and assess gene expression, gene splicing muta-
tions, fusions, and tumor immune microenvironment.
Whole-genome DNA methylation analysis. In contrast to
stable genetic events, epigenetic states are reversible and
responsive to environmental stressors (64). Understanding
the epigenetic landscape that is specific to LCINS will help
dissect the nongenetic factors contributing to the tumorigen-
esis through interaction with gene expression regulation and
mutagenesis. To address this question and describe global
DNA methylation patterns, their impact on gene expression,
the presence of 5′—C—phosphate—G—3′ (CpG) island
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Table 3. Summary of the Experimental Plans to Characterize Lung Cancers in Sherlock-Lung, Worldwide, 2018–Ongoing

Experimental Plan No. of Samples/Imaging Per Subject Subjects

Aim 1: Characterize the genomic landscape of LCINS and
relationship with exposures and endogenous processes

Whole genome sequencing Tcoverage 80× = 1, Bcoverage 40× = 1 ∼2000

RNA sequencing + methylation array T = 1, N = 1 ∼1,000

Cancer-driver gene targeted sequencing or WES + SNP arraya Ncoverage 1,000× = 4, Bcoverage 400× = 1 or
Ncoverage 200× = 4, Bcoverage 100x = 1

∼500

16S ribosomal RNA T = 1, N = 1 ∼2000

Aim 2: Develop an integrated molecular, histological, and
radiological classification of LCINS.

H&E slides Up to 6 tumor blocks per tumor ∼2000

Lung CT–scan imaging Diagnostic imaging (and before or after
diagnosis if available)

∼2000

Abbreviations: B, number of blood samples; CT, computed tomography; LCINS, lung cancers in never-smokers; N, number of normal lung
tissue samples; SNP, single-nucleotide polymorphism; T, number of lung tumor samples; WES, whole-exome sequencing.

a Ongoing pilot study in normal lung tissue samples.

methylator phenotype (65), and methylation features associ-
ated with mutational signatures, DNA methylation analysis
in tumor/normal tissue pairs from approximately 1,000 cases
is being analyzed using Infinium EPIC arrays (approximate-
ly 850,000 probes; Illumina, Inc., San Diego, California).

Gene expression and methylation data will also be used
to deconvolute the tumor microenvironment and its con-
stituents (e.g., infiltrating immune cell populations) (66–68),
in conjunction with H&E and immunofluorescent analyses.
These data will also enable assessment of sample purity
based on copy number alteration and single-nucleotide vari-
ant allele frequency data (69).
Microbiome analysis. Recent studies have characterized
the microbiota in both normal and tumor lung tissue. We
observed that the proportion of microbiota species in normal
lung tissue can be distinct from other organs and associated
with environmental exposures related to lung cancer
risk, including air pollution (70). Another study found a
distinct lung microbiome in patients with lung cancer and
particular genomic changes (71). It was also shown that
local microbiota promote inflammation associated with
lung adenocarcinoma via interaction with immune cells
(72). The lung cancer microbiome was also characterized
in The Cancer Genome Atlas (TCGA) data using a custom
data analysis pipeline (73). In Sherlock-Lung, we will
characterize the taxonomic and functional profiles of
lung microbiota using 16S rRNA data to investigate the
contribution to risk and progression of LCINS.

Aim 2: Develop an integrated molecular, histological,
and radiological classification of LCINS. Histological
classification. Integrated histological and molecular
studies, largely based on smokers, have suggested that lung
adenocarcinomas could be further classified into subtypes
by combining histological features with genomics, transcrip-
tomic, and epigenomic changes (74). Different histological

subtypes (e.g., lepidic, acinar, papillary) suggest distinct
biological pathways with implications for distinct etiologi-
cal risk factors and clinical outcomes. In Sherlock-Lung, we
are collecting, digitally scanning, annotating, and examining
H&E slides from all available tissue blocks (up to 6 per
tumor) to evaluate the tumor histological landscape. The
original pathology report is collected for diagnostic review.
Radiological classification. The widespread use of CT
scans for lung cancer screening has resulted in a dramatic
increase in the number of indeterminate ground-glass opac-
ities (75), many with multifocal components, which makes
judgment on the extent and benefit of surgical resection chal-
lenging. Collection of CT-scan images with reports enables
integration of radiological imaging, including ground-glass
opacities, with histological and molecular features. Histo-
logical and CT images are being archived for future studies,
including application of deep learning/artificial intelli-
gence–based algorithms to evaluate diagnostic and prog-
nostic features.

Secondary aims

We plan further data collection and analyses (Table 4),
including mining electronic medical records (e.g., the Clin-
ical Practice Research Datalink, https://www.cprd.com/), to
explore novel associations between LCINS and medical
conditions or chronic medication use that can help inform
genomic analyses and interpretation; lineage phylogenetic
analysis (76–79) to reconstruct the tumor evolution using
multiple tumor and normal tissue samples, possibly includ-
ing single cell approaches; the analysis of density, colo-
calization, and spatial architectures of cells in the tumor
microenvironment, to investigate cancer immunoediting (80,
81) using H&E-stained slides in conjunction with multi-
plex immunofluorescence staining of specific markers; the
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Table 4. Secondary Aims, Sherlock-Lung, Worldwide, 2018–Ongoing

Objective Experimental Plans

Electronic medical records Analysis of medical conditions and long-term medication use in cases of LCINS

Tumor microenvironment Quantification and spatial analysis of immune, endothelial, stromal cells

H&E

Multiplex immunof luorescent markers

Digital imaging and spatial analysis using HALO imaging platforma

Liquid biopsy Circulating tumor DNA (ctDNA)

Deep target sequencing of driver genes + low-pass WGS

Comparative analysis of WGS in T/ctDNA

Clonal evolution Multiregion tumor and normal tissue samples

Phylogenetic analysis

Single cell analysis

Laboratory validation Organoid/CRISPR/engineered cell lines

Mutational signatures and other genomic changes

Development of algorithms Novel approaches for mutational signature analyses

Integrated analysis of -omics data and radiological and pathological imaging

Abbreviations: CRISPR, clustered regularly interspaced short palindromic repeats; H&E, hematoxylin and eosin; LCINS,
lung cancers in never-smokers; WGS, whole-genome sequencing.

a HALO image analysis platform (Indica labs, Albuquerque, New Mexico, USA).

analysis of circulating tumor DNA (82) using low pass
WGS; in-silico (46, 83, 84) and experimental (85, 86) val-
idation of mutational signatures; and development of novel
analytical approaches for the integrative analyses.

Data sharing

The genomic data and digital imaging database from this
study will be made available in accordance with National
Institutes of Health policy through the National Cancer
Institute’s Genomic Data Commons.

RESULTS

As of June 2, 2020, we have received samples and data
from 1,370 LCINS cases from 17 collaborating institutions
in North America, Europe, Asia, and Central and South
America (Table 2). Of these, 159 cases have known high
levels of special exposures (28 from Asia and 131 from
Central and South America). The disproportionately low
number of cases with high exposures to known risk factors
underscores the challenge of collecting high-quality frozen
specimens from cases with documented exposures at least a
decade prior to cancer diagnosis, especially given that these
high-level of exposures are primarily seen in cases from low-
and middle-income countries.

We have received written commitment from institutions to
provide additional fresh frozen and/or FFPE samples from
1,560 cases. In our experience, selected centers provided
less than 50% of the promised frozen samples, and QC-
related exclusions further decreased the number of samples

available for WGS. Thus, if needed, we could collect more
samples from 1,342 cases from other potential collaborators
(Table 4). In addition to the geographical regions already
represented, we anticipate samples from other regions,
including Africa and the Middle East. We are prioritizing
collection of samples from the regions outside Europe
and the United States, especially those with documented
exposures to known LCINS risk factors.

Frozen specimens collected from the 1,370 LCINS cases
identified to date include 1,017 tumor and 820 nontumor
lung-tissue specimens and 644 blood DNA samples. Out of
a total of 1,837 lung tissue specimens received, 1,798 were
shipped to the laboratory for DNA extraction. Of these, 210
failed tissue QC or pathology review (11.7%). The quality
varied by region; Asia had the lowest proportion of tissues
to fail QC (3.8%), followed by North America (11.6%)
and Europe (14.1%). Samples from Central and Southern
America are still under review. We found that if the lung
tissue specimens passed QC or pathology review, extracted
DNA was of high quality (94.9% of the extracted DNA
passed QC for sequencing). Similarly, when collaborating
sites sent existing extracted DNA, the quality was excellent,
with 94.4% passing QC and only 8 samples out of 1,257
failing sequencing (Table 5).

Notably, analysis of mutational signatures was important
for excluding samples that were erroneously included in the
study. For example, 2 samples were dominated by signature
SBS7, attributed to ultraviolet exposure. Upon repeat review
by 3 different pathologists, it was determined that the sam-
ples were not from primary lung tumors but from metastases
of skin squamous cell carcinomas. Moreover, we identified 1
sample dominated by SBS4, attributed to tobacco smoking,
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and verified that the case was a current smoker, erroneously
reported as a never-smoker. We also found 1 sample with a
high level of signature SBS31 attributed to platinum-based
chemotherapy. Upon retrieval of clinical data from previous
hospitalizations, we found that this subject had a prior tumor
treated with platinum and bevacizumab.

DISCUSSION

Here we have presented the framework of a large integra-
tive study that uses mutational signatures and other genomic
features to complement questionnaire and exposure assess-
ment approaches to identify potential factors contributing
to lung tumorigenesis in never-smokers. In tumorigenesis,
endogenous factors, such as developmental and differenti-
ation programs, or exogenous factors, such as mutagenic
exposures, pathogens, and inflammation (32), can leave a
“signature” on both tumor and adjacent nontumor tissue,
which can be captured by the analysis of the mutations
within trinucleotide or pentanucleotide context. To date, this
approach has identified over 50 different mutational signa-
tures across cancer types, many of which have mapped
to one or more environmental or endogenous events (31,
32, 35). Moreover, mutational signatures can have potential
clinical value as predictors of therapeutic response in cancer
(87).

The second primary objective is to categorize LCINS
based on molecular and clinical characteristics. According
to The Cancer Genome Atlas analyses, lung adenocarcino-
mas (mostly from smokers) can be further classified into
subtypes using a combination of histological features and
transcriptomic, epigenomic, and genomic changes (74). Our
study of nonsmoking cases might reveal pathways in adeno-
carcinomas (or other histological types) previously hidden
by the strong effect of tobacco smoking, possibly allowing
further tumor classification, which in turn might have treat-
ment implications. The Cancer Genome Atlas has estimated
that at least 1 in 10 cancer cases across cancer types might
be classified and treated differently using a molecular taxon-
omy instead of current histopathology-based classification
(88).

The use of WGS for the analysis of mutational signa-
tures and tumor subclassification has several challenges and
limitations, which extend beyond LCINS. Based on initial
sample collection (Tables 2 and 5) and the analysis of muta-
tional signatures in these samples, we have learned a series
of lessons (Figure 2).

Collecting frozen specimens can be challenging. Despite
technological advancements, WGS analysis currently re-
quires unfragmented DNA from fresh frozen tissue spec-
imens. As noted above, we aim to gather samples from
diverse racial/ethnic groups and geographical locations
across 6 continents to ensure diversity of exposures and
ancestry. However, in regions that lack resources and prox-
imity to hospitals, have limited cancer screening programs,
or often incur misdiagnoses (e.g., lung cancer can be initially
misdiagnosed as tuberculosis), cancer diagnoses are often
delayed, when surgery is a treatment option for a very
small percentage of such cases. In the absence of surgical

specimens, tumor biopsies have been collected. Although
biopsies can be obtained from advanced tumors, balancing
the stage distribution, which is skewed towards early stage
in surgical cases, the materials have been either too small
or necrotic. Additionally, only a subset of hospitals had the
infrastructure to rapidly freeze, maintain, and ship adequate
samples.

Collection of samples from high-income countries, al-
though expected to be more feasible, is daunting. For ex-
ample, 3 well-established institutions in North America
initially identified 494 cases, but only 215 samples could
be retrieved. Moreover, there has been variability in the
provision of adequate samples—some centers effectively
provided frozen tissue, others had extracted DNA, while
others could provide FFPE blocks, tissue sections (with
often different section numbers and thickness), H&E slides,
or digitally scanned images, necessitating great flexibility
from the central laboratory. Also, we encountered delays
due to country-specific restrictions/policies on data and
biospecimens sharing; accordingly, we developed a solution
to conduct tumor profiling analyses locally with careful
validation of comparable platforms, procedures, and QC, as
in our central laboratory.

Collection of samples from individuals with high expo-
sure to known risk factors for lung cancer remains a major
challenge. Exposures to these risk factors is most relevant
decades before the cancer diagnosis, when they potentially
had an impact on tumor initiation. These exposures have
been high in the past for many countries, including those
where current exposure levels are low because of stringent
occupational exposure limits and public health interventions
(e.g., asbestos exposure). However, tumor samples from
lung cancer cases with previous high levels of exposures,
even drawn from occupational cohorts, exist only as FFPE
archived tissue blocks, which currently limit their utility for
genomic analyses. Sample collection in low- and middle-
income countries, where exposures are still high, might
not have had exposures in the most important etiological
time window for lung cancer and might experience chal-
lenges described above. As an alternative approach to iden-
tify exposure-specific mutational signatures, we will utilize
known experimental mutational signatures of environmental
or microbial mutagens generated by exposing pluripotent
stem cells, cell lines, or organoids to different dosages of
mutagens (38, 85, 89, 90). We will test these mutagen signa-
tures in our samples and estimate the proportion of mutations
that can be explained by them. These analyses could shed
light on potential exposures associated with the mutations,
which will require further epidemiologic and experimental
validation.

Many algorithms have been proposed to identify muta-
tional signatures from a composite of genomic changes.
However, they often lack consensus on analysis and result
interpretation, their parameters can vary across tissue or
cancer types (91), supervised fitting of signatures can lead
to false results, and no recognized gold standard exists (92).
Although these issues are less likely to be important for
signatures with distinct patterns (e.g., APOBEC-related sig-
natures SBS2 and SBS13), others, particularly the so called
“flat” signatures (e.g., SBS3, SBS5, or SBS40) characterized
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by similar mutation distributions across trinucleotide con-
texts, cannot be always robustly separated. Moreover, there
are several mutational signatures identified across cancer
types whose origin is still unknown (32). The analytical plan
envisions the use of multiple algorithms, the pentanucleotide
context, and the verification of mutation enrichment and
distributions to confirm signatures.

In conclusion, Sherlock-Lung is predicated on the exami-
nation of the genomic tumor landscape with careful clinical
and exposure assessment to enable investigation of LCINS
etiology. We have described the study design and objectives
as well as opportunities and challenges of this integra-
tive approach. With the reduction in cost for sequencing
technologies and the progress of analytical tools, similar
studies across different cancer types could become a viable
approach for future epidemiologic investigation of risk fac-
tors for distinct cancers.

Figure 2. Lessons learned from the Sherlock-Lung study, world-
wide, 2018–ongoing.

ACKNOWLEDGMENTS

Author affiliations: Integrative Tumor Epidemiology
Branch, Division of Cancer Epidemiology and Genetics,
National Cancer Institute, Rockville, Maryland, United
States (Maria Teresa Landi, Naoise C. Synnott, Tongwu
Zhang, Wei Zhao, Michael Kebede, Jian Sang, Laura
Mendoza, Marwil Pacheco, Mustapha Abubakar,
Montserrat Garcia-Closas); Cancer Prevention Fellowship
Program, Division of Cancer Prevention, National Cancer
Institute, Rockville, Maryland, United States (Naoise C.
Synnott); Westat, Inc., Rockville, Maryland, United States
(Jennifer Rosenbaum); Biostatistics Branch, Division of
Cancer Epidemiology and Genetics, National Cancer
Institute, Rockville, Maryland, United States (Bin Zhu,
Jianxin Shi); Laboratory of Translational Genomics,
Division of Cancer Epidemiology and Genetics, National
Cancer Institute, Maryland, United States (Jiyeon Choi);
Cancer Genomics Research Laboratory, Frederick National
Laboratory for Cancer Research, Division of Cancer
Epidemiology and Genetics, National Cancer Institute,
Rockville, Maryland, United States (Belynda Hicks);
Occupational and Environmental Epidemiology Branch,
Division of Cancer Epidemiology and Genetics, National
Cancer Institute, Rockville, Maryland, United States (Neil
E. Caporaso, Nathaniel Rothman, Qing Lan); Genome
Integrity and Structural Biology Laboratory, National
Institute of Environmental Health Sciences, Research
Triangle Park, North Carolina, United States (Dmitry A.
Gordenin); Big Data Institute, Nuffield Department of
Medicine, University of Oxford, Oxford, United Kingdom
(David C. Wedge); Manchester Cancer Research Centre,
The University of Manchester, Manchester, United
Kingdom (David C. Wedge); Department of Cellular and
Molecular Medicine, Department of Bioengineering,
Moores Cancer Center, University of California, San
Diego, California, United States (Ludmil B. Alexandrov);
and Office of the Director, Division of Cancer
Epidemiology and Genetics, National Cancer Institute,
Rockville, Maryland, United States (Montserrat
Garcia-Closas, Stephen J. Chanock).

This work was supported by the Intramural Research
Program of the National Cancer Institute, Division of
Cancer Epidemiology and Genetics, National Institutes of
Health. Part of this work was also supported by the
National Institutes of Health Intramural Research Program
Project Z1AES103266 (to D.A.G).

We thank Drs. Amy Berrington, Ludmila Prokunina, and
Laufey Amundadottir, Division of Cancer Epidemiology
and Genetics, National Cancer Institute, for their critical
review of the study design; Drs. Rena Jones, Neil Caporaso,
Melissa Friesen, and Debra Silverman (Division of Cancer
Epidemiology and Genetics) for their help in designing the
collection instrument for epidemiologic data; Drs. Christine
Ambrosone (Roswell Park Cancer Center); Chris Amos
(Baylor University); Oscar Arrieta (Instituto Nacional de
Cancerologia, Mexico); Yohan Bossé (Laval University);
Paul Brennan (International Agency for Research on
Cancer); David Christiani (Harvard University); Dario
Consonni (University of Milan, Italy); Paul Hofman

Am J Epidemiol. 2021;190(6):962–976



The Sherlock-Lung Study 973

(University of Nice, France); Tobias Peikert and Brian
Bartholmai (Mayo Clinic); Chao Agnes Hsiung (National
Health Research Institutes, Zhunan, Taiwan); Geoffrey Liu
(University of Toronto, Canada); Bonnie Rothberg (Yale
University); Matthew Schabath (Moffitt Cancer Center);
Hongbing Shen (Nanjing Medical University, China); and
Maria Wong (University of Hong Kong) for their help in
assembling the first collection of specimens and data; Drs.
Naoko Ishibe and Susan Viet (Westat) for the literature
review on risk factors for LCINS; Drs. Mary Olanich,
Yelena Golubeva, and Petra Lenz (Cancer Genomics
Research Laboratory, Frederick National Laboratory for
Cancer Research, Division of Cancer Epidemiology and
Genetics), and Maire Duggan (University of Calgary,
Canada) for the development of standard operating
procedures for sample collection and histological imaging;
and Drs. Nuria Lopez-Bigas (European Bioinformatics
Institute, Barcelona) and Hannah Carter (University of
California San Diego) for the useful discussions on
analytical approaches. We also thank the members of the
Sherlock-Lung Advisory Board, Drs. Matthew Meyerson
(Broad Institute), John Samet (University of Colorado),
Margaret Spitz (Baylor College of Medicine), Ronald
Summers (National Institutes of Health Clinical Center),
Michael Thun (American Cancer Society), and William
Travis (Memorial Sloan Kettering Cancer Center) for their
support and positive feedback throughout the study.

Conflict of interest: none declared.

REFERENCES

1. Couraud S, Zalcman G, Milleron B, et al. Lung cancer in
never smokers—a review. Eur J Cancer. 2012;48(9):
1299–1311.

2. Samet JM, Avila-Tang E, Boffetta P, et al. Lung cancer in
never smokers: clinical epidemiology and environmental
risk factors. Clin Cancer Res. 2009;15(18):5626–5645.

3. Cho J, Choi SM, Lee J, et al. Proportion and clinical features
of never-smokers with non-small cell lung cancer. Chin J
Cancer. 2017;36(1):e20.

4. Subramanian J, Govindan R. Lung cancer in never smokers:
a review. J Clin Oncol. 2007;25(5):561–570.

5. Thun MJ, Hannan LM, Adams-Campbell LL, et al. Lung
cancer occurrence in never-smokers: an analysis of 13
cohorts and 22 cancer registry studies. PLoS Med. 2008;
5(9):e185.

6. Sisti J, Boffetta P. What proportion of lung cancer in
never-smokers can be attributed to known risk factors? Int J
Cancer. 2012;131(2):265–275.

7. Office on Smoking and Health. The Health Consequences of
Involuntary Exposure to Tobacco Smoke: A Report of the
Surgeon General. http://www.ncbi.nlm.nih.gov/books/
NBK44324/. Accessed September 22, 2020.

8. Brennan P, Buffler PA, Reynolds P, et al. Secondhand
smoke exposure in adulthood and risk of lung cancer among
never smokers: a pooled analysis of two large studies. Int J
Cancer. 2004;109(1):125–131.

9. Kim AS, Ko HJ, Kwon JH, et al. Exposure to secondhand
smoke and risk of cancer in never smokers: a meta-analysis
of epidemiologic studies. Int J Environ Res Public Health.
2018;15(9):1981.

10. Kim CH, Lee YC, Hung RJ, et al. Exposure to secondhand
tobacco smoke and lung cancer by histological type: a
pooled analysis of the International Lung Cancer
Consortium (ILCCO). Int J Cancer. 2014;135(8):
1918–1930.

11. Darby S, Hill D, Deo H, et al. Residential radon and lung
cancer—detailed results of a collaborative analysis of
individual data on 7148 persons with lung cancer and
14,208 persons without lung cancer from 13 epidemiologic
studies in Europe. Scand J Work Environ Health. 2006;
32(suppl 1):1–83.

12. Krewski D, Lubin JH, Zielinski JM, et al. Residential radon
and risk of lung cancer: a combined analysis of 7 North
American case-control studies. Epidemiology. 2005;16(2):
137–145.

13. Lorenzo-Gonzalez M, Ruano-Ravina A, Torres-Duran M,
et al. Lung cancer and residential radon in never-smokers: a
pooling study in the northwest of Spain. Environ Res. 2019;
172:713–718.

14. Lubin JH, Boice JD Jr, Edling C, et al. Lung cancer in
radon-exposed miners and estimation of risk from indoor
exposure. J Natl Cancer Inst. 1995;87(11):817–827.

15. Torres-Durán M, Barros-Dios JM, Fernández-Villar A, et al.
Residential radon and lung cancer in never smokers. A
systematic review. Cancer Lett. 2014;345(1):21–26.

16. Hamra GB, Guha N, Cohen A, et al. Outdoor particulate
matter exposure and lung cancer: a systematic review and
meta-analysis. Environ Health Perspect. 2014;122(9):
906–911.

17. Yang WS, Zhao H, Wang X, et al. An evidence-based
assessment for the association between long-term exposure
to outdoor air pollution and the risk of lung cancer. Eur J
Cancer Prev. 2016;25(3):163–172.

18. Hosgood HD 3rd, Boffetta P, Greenland S, et al. In-home
coal and wood use and lung cancer risk: a pooled analysis of
the International Lung Cancer Consortium. Environ Health
Perspect. 2010;118(12):1743–1747.

19. Kurmi OP, Arya PH, Lam KB, et al. Lung cancer risk and
solid fuel smoke exposure: a systematic review and
meta-analysis. Eur Respir J. 2012;40(5):1228–1237.

20. Zhao Y, Wang S, Aunan K, et al. Air pollution and lung
cancer risks in China—a meta-analysis. Sci Total Environ.
2006;366(2–3):500–513.

21. Vermeulen R, Downward GS, Zhang J, et al. Constituents of
household air pollution and risk of lung cancer among
never-smoking women in Xuanwei and Fuyuan, China.
Environ Health Perspect. 2019;127(9):97001.

22. Ngamwong Y, Tangamornsuksan W, Lohitnavy O, et al.
Additive synergism between asbestos and smoking in lung
cancer risk: a systematic review and meta-analysis. PLoS
One. 2015;10(8):e0135798.

23. Olsson AC, Vermeulen R, Schüz J, et al. Exposure-response
analyses of asbestos and lung cancer subtypes in a pooled
analysis of case-control studies. Epidemiology. 2017;28(2):
288–299.

24. Brenner DR, Boffetta P, Duell EJ, et al. Previous lung
diseases and lung cancer risk: a pooled analysis from the
International Lung Cancer Consortium. Am J Epidemiol.
2012;176(7):573–585.

25. Brenner DR, McLaughlin JR, Hung RJ. Previous lung
diseases and lung cancer risk: a systematic review and
meta-analysis. PLoS One. 2011;6(3):e17479.

26. Liang HY, Li XL, Yu XS, et al. Facts and fiction of the
relationship between preexisting tuberculosis and lung
cancer risk: a systematic review. Int J Cancer. 2009;
125(12):2936–2944.

Am J Epidemiol. 2021;190(6):962–976

http://www.ncbi.nlm.nih.gov/books/NBK44324/
http://www.ncbi.nlm.nih.gov/books/NBK44324/


974 Landi et al.

27. Denholm R, Schüz J, Straif K, et al. Is previous respiratory
disease a risk factor for lung cancer? Am J Respir Crit Care
Med. 2014;190(5):549–559.

28. Gardner LD, Loffredo CA, Langenberg P, et al.
Associations between history of chronic lung disease and
non-small cell lung carcinoma in Maryland: variations by
sex and race. Ann Epidemiol. 2018;28(8):543–548.

29. Qu YL, Liu J, Zhang LX, et al. Asthma and the risk of lung
cancer: a meta-analysis. Oncotarget. 2017;8(7):
11614–11620.

30. Alexandrov LB, Stratton MR. Mutational signatures: the
patterns of somatic mutations hidden in cancer genomes.
Curr Opin Genet Dev. 2014;24(100):52–60.

31. Alexandrov LB, Nik-Zainal S, Wedge DC, et al. Signatures
of mutational processes in human cancer. Nature. 2013;
500(7463):415–421.

32. Alexandrov LB, Kim J, Haradhvala NJ, et al. The repertoire
of mutational signatures in human cancer. Nature. 2020;
578(7793):94–101.

33. Steele CD, Tarabichi M, Oukrif D, et al. Undifferentiated
sarcomas develop through distinct evolutionary pathways.
Cancer Cell. 2019;35(3):441–456.e8.

34. Macintyre G, Goranova TE, De Silva D, et al. Copy number
signatures and mutational processes in ovarian carcinoma.
Nat Genet. 2018;50(9):1262–1270.

35. Alexandrov LB, Ju YS, Haase K, et al. Mutational
signatures associated with tobacco smoking in human
cancer. Science. 2016;354(6312):618–622.

36. van Zeeland AA, Vreeswijk MP, de Gruijl FR, et al.
Transcription-coupled repair: impact on UV-induced
mutagenesis in cultured rodent cells and mouse skin tumors.
Mutat Res. 2005;577(1–2):170–178.

37. Letouzé E, Shinde J, Renault V, et al. Mutational signatures
reveal the dynamic interplay of risk factors and cellular
processes during liver tumorigenesis. Nat Commun. 2017;
8(1):1315.

38. Huang MN, Yu W, Teoh WW, et al. Genome-scale
mutational signatures of aflatoxin in cells, mice, and human
tumors. Genome Res. 2017;27(9):1475–1486.

39. Meier B, Volkova NV, Hong Y, et al. Mutational signatures
of DNA mismatch repair deficiency in C. elegans and
human cancers. Genome Res. 2018;28(5):666–675.

40. Polak P, Kim J, Braunstein LZ, et al. A mutational signature
reveals alterations underlying deficient homologous
recombination repair in breast cancer. Nat Genet. 2017;
49(10):1476–1486.

41. Haradhvala NJ, Kim J, Maruvka YE, et al. Distinct
mutational signatures characterize concurrent loss of
polymerase proofreading and mismatch repair. Nat
Commun. 2018;9(1):1746.

42. Phillips DH. Mutational spectra and mutational signatures:
insights into cancer aetiology and mechanisms of DNA
damage and repair. DNA Repair (Amst). 2018;71:6–11.

43. Begg CB, Zhang ZF. Statistical analysis of molecular
epidemiology studies employing case-series. Cancer
Epidemiol Biomarkers Prev. 1994;3(2):173–175.

44. Poon SL, Pang ST, McPherson JR, et al. Genome-wide
mutational signatures of aristolochic acid and its
application as a screening tool. Sci Transl Med. 2013;
5(197):e101.

45. Scelo G, Riazalhosseini Y, Greger L, et al. Variation in
genomic landscape of clear cell renal cell carcinoma across
Europe. Nat Commun. 2014;5:5135.

46. Chan K, Roberts SA, Klimczak LJ, et al. An APOBEC3A
hypermutation signature is distinguishable from the

signature of background mutagenesis by APOBEC3B in
human cancers. Nat Genet. 2015;47(9):1067–1072.

47. Landi MT, Zhang T, Garcia-Closas M, et al. Sherlock-Lung:
tracing lung cancer mutational processes in never smokers
[abstract]. Cancer Res. 2019;79(13 suppl):Abstract
SY26-02.

48. Popejoy AB, Fullerton SM. Genomics is failing on diversity.
Nature. 2016;538(7624):161–164.

49. Peterson RE, Kuchenbaecker K, Walters RK, et al.
Genome-wide association studies in ancestrally diverse
populations: opportunities, methods, pitfalls, and
recommendations. Cell. 2019;179(3):589–603.

50. Cancer Research UK. The Mutographs Project. https://
www.mutographs.org. Accessed October 7, 2019.

51. Landi MT, Chatterjee N, Yu K, et al. A genome-wide
association study of lung cancer identifies a region of
chromosome 5p15 associated with risk for adenocarcinoma.
Am J Hum Genet. 2009;85(5):679–691.

52. McKay JD, Hung RJ, Han Y, et al. Large-scale association
analysis identifies new lung cancer susceptibility loci and
heterogeneity in genetic susceptibility across histological
subtypes. Nat Genet. 2017;49(7):1126–1132.

53. Lan Q, Hsiung CA, Matsuo K, et al. Genome-wide
association analysis identifies new lung cancer susceptibility
loci in never-smoking women in Asia. Nat Genet. 2012;
44(12):1330–1335.

54. Seow WJ, Matsuo K, Hsiung CA, et al. Association between
GWAS-identified lung adenocarcinoma susceptibility loci
and EGFR mutations in never-smoking Asian women, and
comparison with findings from Western populations. Hum
Mol Genet. 2017;26(2):454–465.

55. Imielinski M, Berger AH, Hammerman PS, et al.
Mapping the hallmarks of lung adenocarcinoma with
massively parallel sequencing. Cell. 2012;150(6):
1107–1120.

56. Campbell JD, Alexandrov A, Kim J, et al. Distinct patterns
of somatic genome alterations in lung adenocarcinomas
and squamous cell carcinomas. Nat Genet. 2016;48(6):
607–616.

57. Shi J, Hua X, Zhu B, et al. Somatic genomics and clinical
features of lung adenocarcinoma: a retrospective study.
PLoS Med. 2016;13(12):e1002162.

58. Jamal-Hanjani M, Wilson GA, McGranahan N, et al.
Tracking the evolution of non-small-cell lung cancer.
N Engl J Med. 2017;376(22):2109–2121.

59. Luo W, Tian P, Wang Y, et al. Characteristics of genomic
alterations of lung adenocarcinoma in young never-smokers.
Int J Cancer. 2018;143(7):1696–1705.

60. Lee JJ, Park S, Park H, et al. Tracing oncogene
rearrangements in the mutational history of lung
adenocarcinoma. Cell. 2019;177(7):1842–1857.e21.

61. Risques RA, Kennedy SR. Aging and the rise of somatic
cancer-associated mutations in normal tissues. PLoS Genet.
2018;14(1):e1007108.

62. Martincorena I. Somatic mutation and clonal expansions in
human tissues. Genome Med. 2019;11(1):35.

63. Yoshida K, Gowers KHC, Lee-Six H, et al. Tobacco
smoking and somatic mutations in human bronchial
epithelium. Nature. 2020;578(7794):266–272.

64. Mazor T, Pankov A, Johnson BE, et al. DNA methylation
and somatic mutations converge on the cell cycle and define
similar evolutionary histories in brain tumors. Cancer Cell.
2015;28(3):307–317.

65. Issa JP. CpG island methylator phenotype in cancer. Nat Rev
Cancer. 2004;4(12):988–993.

Am J Epidemiol. 2021;190(6):962–976

https://www.mutographs.org
https://www.mutographs.org


The Sherlock-Lung Study 975

66. Chakravarthy A, Furness A, Joshi K, et al. Pan-cancer
deconvolution of tumour composition using DNA
methylation. Nat Commun. 2018;9(1):3220.

67. Chen B, Khodadoust MS, Liu CL, et al. Profiling tumor
infiltrating immune cells with CIBERSORT. Methods Mol
Biol. 2018;1711:243–259.

68. Hoadley KA, Yau C, Hinoue T, et al. Cell-of-origin patterns
dominate the molecular classification of 10,000 tumors from
33 types of cancer. Cell. 2018;173(2):291–304.e6.

69. Zheng X, Zhang N, Wu HJ, et al. Estimating and accounting
for tumor purity in the analysis of DNA methylation data
from cancer studies. Genome Biol. 2017;18(1):17.

70. Yu G, Gail MH, Consonni D, et al. Characterizing human
lung tissue microbiota and its relationship to
epidemiological and clinical features. Genome Biol. 2016;
17(1):163.

71. Greathouse KL, White JR, Vargas AJ, et al. Interaction
between the microbiome and TP53 in human lung cancer.
Genome Biol. 2018;19(1):123.

72. Jin C, Lagoudas GK, Zhao C, et al. Commensal microbiota
promote lung cancer development via gammadelta T cells.
Cell. 2019;176(5):998–1013.e16.

73. Maddi A, Sabharwal A, Violante T, et al. The microbiome
and lung cancer. J Thorac Dis. 2019;11(1):280–291.

74. Cancer Genome Atlas Research Network. Comprehensive
molecular profiling of lung adenocarcinoma. Nature. 2014;
511(7511):543–550.

75. Zhang Y, Fu F, Chen H Management of Ground-Glass
Opacities in the Lung cancer Spectrum. Ann Thorac Surg.
2020;110(6):1796–1804.

76. de Bruin EC, McGranahan N, Mitter R, et al. Spatial and
temporal diversity in genomic instability processes
defines lung cancer evolution. Science. 2014;346(6206):
251–256.

77. Jamal-Hanjani M, Hackshaw A, Ngai Y, et al. Tracking
genomic cancer evolution for precision medicine: the lung
TRACERx study. PLoS Biol. 2014;12(7):e1001906.

78. Negrao MV, Quek K, Zhang J, et al. TRACERx: tracking
tumor evolution to impact the course of lung cancer.
J Thorac Cardiovasc Surg. 2018;155(3):1199–1202.

79. Turajlic S, Xu H, Litchfield K, et al. Deterministic
evolutionary trajectories influence primary tumor growth:
TRACERx renal. Cell. 2018;173(3):595–610.e11.

80. Hanahan D, Coussens LM. Accessories to the crime:
functions of cells recruited to the tumor microenvironment.
Cancer Cell. 2012;21(3):309–322.

81. Vesely MD, Schreiber RD. Cancer immunoediting:
antigens, mechanisms, and implications to cancer
immunotherapy. Ann N Y Acad Sci. 2013;1284(1):
1–5.

82. Yeh P, Hunter T, Sinha D, et al. Circulating tumour DNA
reflects treatment response and clonal evolution in chronic
lymphocytic leukaemia. Nat Commun. 2017;8:14756.

83. Saini N, Roberts SA, Klimczak LJ, et al. The impact of
environmental and endogenous damage on somatic mutation
load in human skin fibroblasts. PLoS Genet. 2016;
12(10):e1006385.

84. Saini N, Sterling JF, Sakofsky CJ, et al. Mutation signatures
specific to DNA alkylating agents in yeast and cancers.
Nucleic Acids Res. 2020;48(7):3692–3707.

85. Kucab JE, Zou X, Morganella S, et al. A compendium of
mutational signatures of environmental agents. Cell. 2019;
177(4):821–836.e16.

86. Petljak M, Alexandrov LB, Brammeld JS, et al.
Characterizing mutational signatures in human cancer cell

lines reveals episodic APOBEC mutagenesis. Cell. 2019;
176(6):1282–1294.e20.

87. Davies H, Glodzik D, Morganella S, et al. HRDetect is a
predictor of BRCA1 and BRCA2 deficiency based on
mutational signatures. Nat Med. 2017;23(4):517–525.

88. Hoadley KA, Yau C, Wolf DM, et al. Multiplatform analysis
of 12 cancer types reveals molecular classification within
and across tissues of origin. Cell. 2014;158(4):929–944.

89. Boot A, Huang MN, Ng AWT, et al. In-depth
characterization of the cisplatin mutational signature in
human cell lines and in esophageal and liver tumors.
Genome Res. 2018;28(5):654–665.

90. Drost J, van Boxtel R, Blokzijl F, et al. Use of
CRISPR-modified human stem cell organoids to study the
origin of mutational signatures in cancer. Science. 2017;
358(6360):234–238.

91. Degasperi A, Amarante TD, Czarnecki J, et al. A practical
framework and online tool for mutational signature analyses
show inter-tissue variation and driver dependencies. Nat
Cancers. 2020;1(2):249–263.

92. Koh G, Zou X, Nik-Zainal S. Mutational signatures:
experimental design and analytical framework. Genome
Biol. 2020;21(1):37.

93. Gharibvand L, Shavlik D, Ghamsary M, et al. The
association between ambient fine particulate air pollution
and lung cancer incidence: results from the AHSMOG-2
study. Environ Health Perspect. 2017;125(3):378–384.

94. Huang F, Pan B, Wu J, et al. Relationship between exposure
to PM2.5 and lung cancer incidence and mortality: a
meta-analysis. Oncotarget. 2017;8(26):43322–43331.

95. Cui P, Huang Y, Han J, et al. Ambient particulate matter and
lung cancer incidence and mortality: a meta-analysis of
prospective studies. Eur J Public Health. 2015;25(2):
324–329.

96. Raaschou-Nielsen O, Andersen ZJ, Beelen R, et al. Air
pollution and lung cancer incidence in 17 European cohorts:
prospective analyses from the European Study of Cohorts
for Air Pollution Effects (ESCAPE). Lancet Oncol. 2013;
14(9):813–822.

97. Kim C, Gao YT, Xiang YB, et al. Home kitchen ventilation,
cooking fuels, and lung cancer risk in a prospective cohort
of never smoking women in Shanghai, China. Int J Cancer.
2015;136(3):632–638.

98. Raspanti GA, Hashibe M, Siwakoti B, et al. Household air
pollution and lung cancer risk among never-smokers in
Nepal. Environ Res. 2016;147:141–145.

99. Barone-Adesi F, Chapman RS, Silverman DT, et al. Risk of
lung cancer associated with domestic use of coal in
Xuanwei, China: retrospective cohort study. BMJ. 2012;
345:e5414.

100. Zhang Y, Chen K, Zhang H. Meta-analysis of risk factors on
lung cancer in non-smoking Chinese female. Zhonghua Liu
Xing Bing Xue Za Zhi. 2001;22(2):119–121.

101. Berry G, Liddell FDK. The interaction of asbestos and
smoking in lung cancer: a modified measure of effect. Ann
Occup Hyg. 2004;48(5):459–462.

102. Oh SS, Koh S, Kang H, et al. Radon exposure and lung
cancer: risk in nonsmokers among cohort studies. Ann
Occup Environ Med. 2016;28:11.

103. Zhang ZL, Sun J, Dong JY, et al. Residential radon and lung
cancer risk: an updated meta- analysis of case-control
studies. Asian Pac J Cancer Prev. 2012;13(6):2459–2465.

104. Neuberger JS, Gesell TF. Residential radon exposure and
lung cancer: risk in nonsmokers. Health Phys. 2002;83(1):
1–18.

Am J Epidemiol. 2021;190(6):962–976



976 Landi et al.

105. Rosenberger A, Bickeboller H, McCormack V, et al.
Asthma and lung cancer risk: a systematic investigation by
the international lung cancer consortium. Carcinogenesis.
2012;33(3):587–597.

106. Santillan AA, Camargo CA Jr, Colditz GA. A
meta-analysis of asthma and risk of lung cancer
(United States). Cancer Causes Control. 2003;14(4):
327–334.

Am J Epidemiol. 2021;190(6):962–976


	Tracing Lung Cancer Risk Factors Through Mutational Signatures in Never-Smokers 
	METHODS
	Study design 
	Laboratory and analytical methods 
	Secondary aims
	Data sharing
	RESULTS
	DISCUSSION 



