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A B S T R A C T

The World Health Organization (WHO) has declared Coronavirus Disease 2019 (COVID-19) as one of the
highly contagious diseases and considered this epidemic as a global health emergency. Therefore, medical
professionals urgently need an early diagnosis method for this new type of disease as soon as possible. In
this research work, a new early screening method for the investigation of COVID-19 pneumonia using chest
CT scan images has been introduced. For this purpose, a new image segmentation method based on K-means
clustering algorithm (KMC) and novel fast forward quantum optimization algorithm (FFQOA) is proposed.
The proposed method, called FFQOAK (FFQOA+KMC), initiates by clustering gray level values with the KMC
algorithm and generating an optimal segmented image with the FFQOA. The main objective of the proposed
FFQOAK is to segment the chest CT scan images so that infected regions can be accurately detected. The
proposed method is verified and validated with different chest CT scan images of COVID-19 patients. The
segmented images obtained using FFQOAK method are compared with various benchmark image segmentation
methods. The proposed method achieves mean squared error, peak signal-to-noise ratio, Jaccard similarity
coefficient and correlation coefficient of 712.30, 19.61, 0.90 and 0.91 in case of four experimental sets, namely
Experimental_Set_1, Experimental_Set_2, Experimental_Set_3 and Experimental_Set_4, respectively. These four
performance evaluation metrics show the effectiveness of FFQOAK method over these existing methods.
1. Introduction

In late 2019, the novel COVID-19 pneumonia was observed in
Wuhan City, China (Cohen & Normile, 2020; Zhu et al., 2020). Huang
et al. (2020) identified the typical manifestation symptoms of COVID-
19 based on 41 patients in Wuhan city, which included fever, cough,
myalgia and fatigue. All of these 41 patients suffered from pneumo-
nia and showed abnormalities in their chest computed tomography
(CT). These patients also had serious health problems that included
acute respiratory illness, acute cardiac injury, and secondary infec-
tions. Of these, 13 patients were transferred to the Intensive Care
Unit (ICU), while 6 patients died during the course of treatment. For
the first time, Chan and colleagues (Chan et al., 2020) had found
evidence of human-to-human spread COVID-19 disease at the Hong
Kong University.

COVID-19 is associated with severe respiratory symptoms leading
to ICU admissions and death with high frequency (Katris, 2021; Zhou
et al., 2020). The type of pneumonia caused by COVID-19 is a highly
infectious disease and this outbreak has been declared a global public
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health emergency by the WHO (WHO, 2020). A real-time RT-PCR
approach was used to diagnose COVID-19 pneumonia, which indicated
positive symptoms of severe acute respiratory syndrome coronavirus
2 in nine pregnant women (Chen et al., 2020). However, in the case
of COVID-19 infection, the RT-PCR approach has a very low positive
rate and may not be effective for early detection and treatment of
suspected patients (Fang et al., 2020). Nevertheless, medical imaging
technologies, such as X-ray, CT, magnetic resonance imaging (MRI),
etc. have made a significant contribution to improve diagnostic ac-
curacy, timeliness, and performance (Nowaková, Prílepok, & Snášel,
2017). A recent study shows that certain features associated with
COVID-19 can be detected in the lungs by chest CT image (Chung
et al., 2020). Li et al. (2020) have used a deep learning approach to
separate COVID-19 from all other viral pneumonias based on CT chest
examinations. Such studies (Chung et al., 2020; Li et al., 2020) have
shown that CT could be an effective tool for early COVID-19 testing
and diagnosis. Notwithstanding the advantages of CT scanning, these
images share some common image features between COVID-19 and
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Fig. 1. A quantum system with 𝑞 number of quanta 𝑄𝑘 (𝑘 = 1, 2,… , 𝑞).

other types of pneumonia that make it very difficult to distinguish
between them. Such features can therefore be distinguished in terms of
similarities and dissimilarities using various image processing methods.

Image segmentation is one of the tedious tasks in image processing
and pattern recognition, with many applications in computer vision,
robotics, object recognition, and so on. The main purpose of image
segmentation is to separate each object in the image from the rest of the
artifacts (Tobias & Seara, 2002). Thus, it is a mechanism for dividing
an image into different parts so that each part has its own region.
According to Cheng, Jiang, Sun, and Wang (2001), it is a method
of partitioning an image 𝐼 into non-overlapping regions (𝐼1, 𝐼2,… , 𝐼𝑛)
such that:
𝑛
⋃

𝑖
𝐼𝑖 = 𝐼, and 𝐼𝑖 ∩ 𝐼𝑗 = ∅, 𝐼𝑖 ≠ 𝐼𝑗 (1)

Image segmentation is a tedious mechanism due to the involvement
of complexities related to contrast, brightness, noise, etc. (Yang, Zhao,
Chen, & Fang, 2008). In segmentation, some issues always arise such
as:

1. How to distinguish objects from each other, since they often
overlap in color?

2. How to distinguish objects from the background, because their
color levels may be similar?

3. How to adequately quantify color levels so that certain objects
belong to a specific set?
2

Many image segmentation methods have been proposed to address
these issues, including the Otsu thresholding method (Xu, Xu, Jin, &
Song, 2011), the multilevel thresholding method (Manikandan, Ramar,
Iruthayarajan, & Srinivasagan, 2014), the watershed method (Cates,
Whitaker, & Jones, 2005), the adaptive thresholding method (Issac,
Sarathi, & Dutta, 2015), the ambiguous set based segmentation method
(Singh, Huang, & Lee, 2019), the neutrosophic-entropy based cluster-
ing algorithm (Singh, 2020b), the neutrosophic-entropy based adap-
tive thresholding segmentation algorithm (Singh, 2020a), the fuzzy-
entropy-fusion based thresholding method (Singh, Huang, Chu, & Lee,
2020) and the multiple thresholding method (Singh, 2021b). These
methods used specific thresholds to distinguish the objects and have
been successfully used in medical image segmentation. Some of the ex-
isting segmentation methods (Gordillo, Montseny, & Sobrevilla, 2013;
Kong et al., 2020; Menze et al., 2014) are based on partitioning medical
images by identifying discontinuous color levels in a given region.
While these methods are computationally simple and inexpensive, they
are very sensitive to threshold selection.

One of the most popular methods is the KMC algorithm (Queen,
1967), which assigns each color level to the respective cluster depend-
ing on certain distance criteria (Yao, Duan, Li, & Wang, 2013). How-
ever, the KMC algorithm has the following inherent drawbacks (Selim
& Ismail, 1984):

• It is observed that the KMC algorithm generates many cluster
centers with local optima and often misses the global optima.

• The optimal results of the KMC algorithm are very sensitive to the
initial definition of the cluster centers. It is observed that different
clusters can be generated with different initial cluster centers.

Many improved methods are proposed by hybridizing the following
optimization algorithms to overcome the above drawbacks of KMC
algorithm. These methods are given in the following list:

• Genetic Algorithm (GA)+ KMC=GAK (Khrissi, Akkad, Satori, &
Satori, 2020),

• Particle Swarm Optimization (PSO)+ KMC=PSOK (van der Merwe
& Engelbrecht, 2003),

• Dynamic PSO (DPSO)+ KMC=DPSOK (Li, He, & Wen, 2015), and
• Ant Colony Optimization (ACO)+ KMC=ACOK (Saatchi & Hung,

2005).

However, such hybridization of optimization algorithms is either
too difficult or only partially overcomes the drawbacks of the KMC
algorithm. This shows the need for further studies to solve the problems
of the KMC algorithm, especially towards solving the problems of
optimal cluster centers and global optima. Through this motivation,
this study proposed a novel FFQOA, which is the updated version of
the existing quantum optimization algorithm (QOA) (Singh, Dhiman,
& Kaur, 2018) and modified QOA (MQOA) (Huang, Singh, Kuo, & Chu,
2021). However, these algorithms have certain weaknesses, such as:
Fig. 2. A two-dimensional geometrical representation of movement and displacement enhancements for a quantum: (a) at epoch 𝑒, and (b) at epoch 𝑒 + 1.
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Fig. 3. Searching processes of the proposed FFQOAK during segmentation: (a) CT scan image of COVID-19, (b) enhanced CT scan image of (a), (c) search landscape, (d) comparison
of fitness, (e) average fitness curve, (f) search history, and (g) segmented image of (b).

Fig. 4. Segmentation of CT scan images of Experimental_Set_1 (Case labels: 1–5) of COVID-19 using the proposed FFQOAK and existing methods: (a) extracted CT scan image,
(b) enhanced CT scan image of (a), (c) GT of (a), (d) proposed FFQOAK, (e) KMC, (f) GAK, (g) PSOK, (h) DPSOK, and (i) ACOK.
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Fig. 5. Segmentation of CT scan images of Experimental_Set_1 (Case labels: 6–10) of COVID-19 using the proposed FFQOAK and existing methods: (a) extracted CT scan image,
(b) enhanced CT scan image of (a), (c) GT of (a), (d) proposed FFQOAK, (e) KMC, (f) GAK, (g) PSOK, (h) DPSOK, and (i) ACOK.
Fig. 6. Segmentation of CT scan images of Experimental_Set_2 (Case labels: 1–5) of COVID-19 using the proposed FFQOAK and existing methods: (a) extracted CT scan image,
(b) enhanced CT scan image of (a), (c) GT of (a), (d) proposed FFQOAK, (e) KMC, (f) GAK, (g) PSOK, (h) DPSOK, and (i) ACOK.
• A well-defined formulation of the quantum system that serves as

a set of search agents to find the optimal global solution is not

properly defined.
• There is no description of appropriate ranges for the various

constants.

• There is no consideration of the locally and globally optimal

values for finding the optimal solution.
4

Significant improvements are made to the QOA and MQOA as part
of this research, which have been incorporated into the FFQOA. These
are listed as:

• Well-defined ranges for the constants and parameters are given.
• Formulations for the quantum system are properly defined.
• Formulas for initializing the quantum’s location, movement and

displacement in the quantum system are included.
• Mechanisms for enhancing the search scope and updating the

displacement are included. For this purpose, the FFQOA considers
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Fig. 7. Segmentation of CT scan images of Experimental_Set_2 (Case labels: 6–10) of COVID-19 using the proposed FFQOAK and existing methods: (a) extracted CT scan image,
(b) enhanced CT scan image of (a), (c) GT of (a), (d) proposed FFQOAK, (e) KMC, (f) GAK, (g) PSOK, (h) DPSOK, and (i) ACOK.
Fig. 8. Segmentation of CT scan images of Experimental_Set_3 (Case labels: 1–5) of COVID-19 using the proposed FFQOAK and existing methods: (a) extracted CT scan image,
(b) enhanced CT scan image of (a), (c) GT of (a), (d) proposed FFQOAK, (e) KMC, (f) GAK, (g) PSOK, (h) DPSOK, and (i) ACOK.
the personal best and the global best displacements achieved by
the quantum in the quantum system.

This study has proposed a new image segmentation method, called
FFQOAK based on FFQOA and KMC algorithm. Considering the preva-
lence of COVID-19, the proposed FFQOAK method has been employed
in segmenting the chest CT scan images of COVID-19 patients (Jun
et al., 2020). The aim of this application is to segment these images
into different regions and detect the infected regions. In this method,
KMC algorithm is used to cluster the gray level values of chest CT scan
5

images. The main strategy of this algorithm is to cluster the gray level
values in such a way that the Euclidean distance between the gray level
values belonging to each cluster is minimized. In this algorithm, each
cluster center is represented by the intensity of the gray level values.
However, the KMC algorithm tries to find the best cluster centers for the
gray level values with each iteration. Since, the KMC algorithm endures
with the problems of optimal cluster centers and global optimum, the
FFQOA is used to solve these problems by minimizing the Euclidean
distance function. Experimental results show that the FFQOAK method
is able to generate optimal segmented images by highlighting the
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Fig. 9. Segmentation of CT scan images of Experimental_Set_3 (Case labels: 6–10) of COVID-19 using the proposed FFQOAK and existing methods: (a) extracted CT scan image,
(b) enhanced CT scan image of (a), (c) GT of (a), (d) proposed FFQOAK, (e) KMC, (f) GAK, (g) PSOK, (h) DPSOK, and (i) ACOK.
Fig. 10. Segmentation of CT scan images of Experimental_Set_4 (Case labels: 1–5) of COVID-19 using the proposed FFQOAK and existing methods: (a) extracted CT scan image,
(b) enhanced CT scan image of (a), (c) GT of (a), (d) proposed FFQOAK, (e) KMC, (f) GAK, (g) PSOK, (h) DPSOK, and (i) ACOK.
infected regions with good visual effects in the CT scan images. The
performance of the proposed FFQOAK method has been compared with
five other methods, including KMC (Juang & Wu, 2010), GAK (Khrissi
et al., 2020), PSOK (van der Merwe & Engelbrecht, 2003), DPSOK (Li
et al., 2015) and ACOK (Saatchi & Hung, 2005). Various comparative
metrics based on mean squared error (MSE), peak signal-to-noise ratio
(PSNR), Jaccard similarity coefficient (JSC) and correlation coefficient
(CC) show the efficiency of the proposed FFQOAK method.

The remainder of this article is arranged as follows. Section 2
presents the application of the KMC algorithm for image segmentation.
The proposed FFQOA is presented in Section 3. The proposed FFQOAK
method is presented in Section 4. Experimental results are discussed in
6

Section 5. Finally, conclusions and future directions are presented in
Section 6.

2. Image segmentation using KMC algorithm

For an input image 𝐼𝑝, each gray level value 𝑃𝑖(𝑖 = 1, 2,… , 𝑛) can
be defined with n-dimensional vectors, which take their values in the
range [0, 𝐺] with 𝐺 = 255. That is, for the 𝐼𝑝, the 256 gray levels belong
to the universe of discourse 𝑈 = [0, 𝐺]. Therefore, a gray level domain
(GLD) (Jourlin, 2016) can be described on a set of domains 𝑃𝑖 forming
a space in the plane 𝑈 . The GLD is denoted as 𝐺 , and can be expressed
𝑙𝑑
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Fig. 11. Segmentation of CT scan images of Experimental_Set_4 (Case labels: 6–10) of COVID-19 using the proposed FFQOAK and existing methods: (a) extracted CT scan image,
(b) enhanced CT scan image of (a), (c) GT of (a), (d) proposed FFQOAK, (e) KMC, (f) GAK, (g) PSOK, (h) DPSOK, and (i) ACOK.
as:

𝐺𝑙𝑑 ∶ 𝑃𝑖 ⊂ R2 → 𝑈 ⊂ R (2)

In the context of clustering 𝐺𝑙𝑑 , this study uses the KMC algorithm.
Steps involved in this algorithm are explained next.

Step 1. Input: an image 𝐼𝑝.

Step 2. A set of gray level values 𝐺𝑙𝑑 = {𝑃1, 𝑃2,… , 𝑃𝑛}.

Step 3. Initialize 𝜃 number of clusters 𝑧 = 1, 2,… , 𝜃.

Step 4. Assume a set of randomly initialized cluster centers as 𝐶(𝑒) =
[

𝐶1(𝑒), 𝐶2(𝑒),… , 𝐶𝜃(𝑒)
]

; where, 𝑒 represents the 1st epoch of the
algorithm.

Step 5. Repeat.

(a) Calculate the Euclidean distance 𝑑[𝑃𝑖, 𝐶𝑗 (𝑒)] between gray level
value 𝑃𝑖 ∈ 𝐺𝑙𝑑 and the cluster center 𝐶𝑗 (𝑒) ∈ 𝐶(𝑒) using the
relation given below as:

𝑑[𝑃𝑖, 𝐶𝑗 (𝑒)] = |𝑃𝑖 − 𝐶𝑗 (𝑒)|
2 (3)

If 𝐶𝑗 (𝑒) is the nearest center for the 𝑃𝑖, then it is assigned to the
cluster 𝑍𝑗 .

(b) Assign all the gray level values to the closest cluster center
based on the minimum Euclidean distance.

(c) Recalculate the new cluster centers using the following equa-
tion as:

𝐶𝑗 (𝑒 + 1) = 1
𝜂

𝜂
∑

𝑖=1
𝑃𝑖; (𝑗 = 1, 2,… , 𝜃) (4)

Here, 𝜂 represents the size of the cluster 𝑍𝑗 .

Step 6. Go to Step 5, and step up the epoch. This process is continued
until the cluster centers stop changing or the algorithm reaches
the maximum number of epochs 𝐸, i.e., 𝑒 = 1, 2,… , 𝐸.

Step 7. Output: reshape the 𝜃 number of clustered gray level values
into a segmented image 𝐼𝑠.
7

3. The proposed FFQOA

In this section, inspiration, background, mathematical modeling are
presented along with the pseudocode of the proposed FFQOA.

3.1. Inspiration for the FFQOA

It is known from experiments that quantum motion is very different
from the motion of rigid objects. Since rigid objects consist of many
atoms, quantum effects in rigid objects are somehow considered to
be averaged. Rigid objects in quantum physics are composed of many
quanta, and is called quantum system (Fig. 1). In a quantum system, the
motion of a microscopic quantum usually can be defined by classical
mechanics (Levi, 2012). In this approach, the location, movement
and displacement of the quantum can be defined in the direction of
motion. In this study, it has been assumed that there is an inertial
time reference with respect to which a quantum can move to achieve
the best displacement. In the quantum system, the search for the
best displacement continues until each quantum achieves its own best
displacement. Based on this motivation, a new optimization algorithm
inspired by the displacement of quantum is proposed in this study. The
proposed algorithm is referred to as FFQOA.

3.2. Background for the FFQOA

The FFQOA is a quantum-based heuristic search algorithm based
on the simulation of quantum displacement activity within a quantum
system. The original goal of the FFQOA is to mathematically simulate
the elegant and uncertain displacements of quanta by discovering their
patterns that excite the quanta to move by following the Schrödinger
equation (Schrödinger, 1935). In the intermediate phase, this algorithm
enhances the search scope of the instantaneous movement of individ-
ual quantum by rearranging them within the quantum system. Their
movements lead to displacements that give both stability and optimal
structure to the quantum system. For this purpose, the FFQOA has been
developed, which is very simple and effective in solving optimization
problems.
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Fig. 12. Convergence curve analysis of Experimental_Set_1 (Case label: 1-10).
In FFQOA, the search agent is called “quantum”, which is allowed
to move in the multidimensional search space. A collective form of
quantum is called quanta. Each quantum has its own point of origin,
which is called location, and the state of change of its location is
called movement. Movement of quantum leads to change in location,
which is called displacement. Enhancements in the displacements of
quanta are made on the basis of the exchange of information with a
successful quantum. A successful quantum is evaluated by the effective
displacement. Therefore, the displacement of a quantum is affected
by the effective displacement of its surrounding quanta. Consequently,
the search activity of a quantum is influenced by other quanta within
the quantum system. The result of modeling this interaction operation
is that each quantum in the search space shifts in the direction of
the preceding quanta. Therefore, each quantum maintains this infor-
mation in the quantum system: (a) personal location, (b) personal
movement, (c) personal displacement, (d) personal successes in the
form of displacements, and (e) surrounding successes in the form of
displacements. Finally, each quantum attempts to achieve stability in
8

the multidimensional search space by mimicking personal successes
and surrounding success.

3.3. Mathematical modeling for the FFQOA

In the following, we provide the mechanism of FFQOA by formulat-
ing an optimization problem as:

Optimize (Max. or Min.) 𝑓ℎ(𝑥), (ℎ = 1, 2,… ,𝐻), 𝑥 ∈ Q (5)

subject to the linear constraints

𝜆𝑗 (𝑥) ≥ 0, (𝑗 = 1, 2,… , 𝐽 ), (6)

𝛩𝑚(𝑥) ≥ 0, (𝑚 = 1, 2,… ,𝑀), (7)

where, 𝑓ℎ(𝑥), 𝜆𝑗 (𝑥) and 𝛩𝑚(𝑥) are functions of the following design
vector:

𝑥 = (𝑥𝑛), (𝑛 = 1, 2,… , 𝑁) (8)

where, the components 𝑥𝑛 of 𝑥 are called decision variables, and 𝑁 is
the number of decision variables. In Eq. (5), the functions 𝑓 (𝑥) are
ℎ
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Fig. 13. Convergence curve analysis of Experimental_Set_2 (Case label: 1-10).
referred as the objective functions, where 𝐻 = 1 indicates that it is only
a single objective. The space expanded by the 𝑥𝑖 is called the quantum
system Q, whereas the space produced by the 𝑓ℎ(𝑥) values is called the
solution space. In Eqs. (6) and (7), 𝜆𝑗 and 𝛩𝑚 are called constraints. For
these constraints, a condition set is defined for each decision variable
𝑥𝑛 as 𝐺𝐿𝐵 ≤ 𝑥𝑛 ≤ 𝐺𝑈𝐵 , which restricts the value of an 𝑥𝑛 within a lower
bound (𝐺𝐿𝐵) and an upper bound (𝐺𝑈𝐵).

Step 1. Initialization of quantum in the quantum system: First,
assume that the solutions to the optimization problems are
scattered in the quantum system. Each quantum is allowed to
move to search the solution in this system. A quantum system
is defined by initializing each quantum in the search space with
the following Schrödinger equation (Schrödinger, 1935) as:

𝑄𝑘(𝑒) = 𝜙 ⋅𝑄1𝑘(𝑒) + (1 − 𝜙) ⋅𝑄2𝑘(𝑒) (9)

In Eq. (9), 𝑄𝑘(𝑒) represents the 𝑘th quantum with an epoch 𝑒,
and 𝑘 = 1, 2,… , 𝑞; where 𝑞 denotes the total number of quanta
in the Q. Here, 𝑄1 (𝑒) and 𝑄2 (𝑒) are two wave functions for
9

𝑘 𝑘
the 𝑘th quantum; 𝜙 = 𝑎 + 𝑖𝑏 is a complex number, 𝑎 and
𝑏 are real numbers in [0, 1] and 𝑖 is the imaginary unit 𝑖 =
√

−1. In the representation of complex number, multiplication
by −1 refers to a 180-degree rotation about the origin of the 𝑘th
quantum. Hence, the multiplication by 𝑖 refers to a 90-degree
rotation of the 𝑘th quantum in the “positive”, counterclockwise
direction (Berezin & Shubin, 1991). Since it is not possible to
use the complex number 𝜙 directly to initialize the quantum
in the search space, therefore, its absolute value is used in the
computation process, defined as |𝜙| =

√

𝑎2 + 𝑏2. Both 𝑄1𝑘(𝑒) and
𝑄2𝑘(𝑒) can be defined as:

𝑄1𝑘(𝑒) =
{

𝐺𝑈𝐵 + 𝑟1 ⋅ (𝐺𝑈𝐵 − 𝐺𝐿𝐵)
}

(10)

𝑄2𝑘(𝑒) =
{

𝐺𝐿𝐵 + 𝑟2 ⋅ (𝐺𝑈𝐵 − 𝐺𝐿𝐵)
}

(11)

In Eqs. (10) and (11), 𝑟1 and 𝑟2 represent two different random
functions, which are defined in [0, 1], respectively.

Step 2. Location of quantum: To model this, it is assumed that for
each quantum there must be a location in the quantum system.
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Mathematically, the location acquired by 𝑄𝑘(𝑒) is denoted as
𝐿𝑘(𝑒), and can be defined as:

𝐿𝑘(𝑒) =
1

𝑄𝑘(𝑒)
𝑒−2∕𝑄𝑘(𝑒) (12)

tep 3. Movement of quantum: To search the solution, each quan-
tum is allowed to move in the quantum system. Mathematically,
movement exhibited by 𝑄𝑘(𝑒) is called 𝑀𝑘(𝑒), and can be defined
as:

𝑀𝑘(𝑒) = |𝑄𝑘(𝑒) −
𝐿𝑘(𝑒)
2

ln(1∕𝑚𝑓 )| (13)

Here, 𝑚𝑓 is called the quantum movement factor, which can be
taken in ]0, 1].

Step 4. Displacement of quantum: The movement of each quantum
provides a displacement to it. The displacement accompanied
by each quantum in the quantum system can be defined by the
𝐿𝑘(𝑒) and 𝑀𝑘(𝑒). The displacement of the 𝑄𝑘(𝑒) is denoted by
𝐷𝑘(𝑒), and can be expressed as:

𝐷𝑘(𝑒) = 2 ⋅ |𝐿𝑘(𝑒) −𝑀𝑘(𝑒)| (14)

Step 5. Fitness evaluation of displacement: A fitness value is deter-
mined for 𝐷𝑘(𝑒), and it is updated if a better solution than the
previous one exists.

Algorithm 1 PROCEDURE pBD().
Define Q with 𝑞 number of quanta: 𝑄𝑘(𝑒)(𝑘 = 1, 2,… , 𝑞) ∈ Q (Eq. (9)).
while 𝑒 < 𝐸 do

for ∀𝑄𝑘(𝑒) do
/*get the personal best displacement*/
if 𝐽 (𝐷𝑖(𝑒)) < 𝐽 (𝐷𝑗 (𝑒)) then

𝐷𝑗 (𝑒) = 𝐷𝑖(𝑒);
end
/*get the surrounding best displacement*/
if 𝐽 (𝐷𝑗 (𝑒)) < 𝐽 (𝑝𝐵𝐷𝑘(𝑒)) then

𝑝𝐵𝐷𝑘(𝑒) = 𝐷𝑗 (𝑒);
end

end
for ∀𝑄𝑘(𝑒) do

Update 𝑀𝑘(𝑒): 𝑀𝑘(𝑒 + 1) (Eq. (15)).
Update 𝐷𝑘(𝑒): 𝐷𝑘(𝑒 + 1) (Eq. (20)).

end
/*Repeat the process until stopping criterion is satisfied*/
𝑒 = 𝑒 + 1;

nd

Step 6. Enhancement of search scope of quantum: Every quantum
enhances its search scope by adjusting its corresponding 𝑀𝑘(𝑒).
This enhancement of 𝑀𝑘(𝑒) for the next epoch 𝑒+1 is represented
by 𝑀𝑘(𝑒 + 1), and can be defined as:

𝑀𝑘(𝑒 + 1) = 𝑀1 +𝑀2 +𝑀3 (15)

In Eq. (15), 𝑀1, 𝑀2 and 𝑀3 can defined using the following Eqs.
(16)–(18), respectively:

𝑀1 = 𝛼 ⋅𝑀𝑘(𝑒) (16)
𝑀2 = ln(1∕𝑚𝑓 ) ⋅ 𝑟3 ⋅ [𝑝𝐵𝐷𝑘(𝑒) −𝐷𝑘(𝑒)] (17)

𝑀3 = ln(1∕𝑚𝑓 ) ⋅ 𝑟4 ⋅ [𝑔𝐵𝐷(𝑒) −𝐷𝑘(𝑒)] (18)

In Eq. (16), 𝛼 is called the quantum acceleration factor, which can
be defined as:

𝛼 = 𝛼𝑚𝑎𝑥 − 𝑒 ×
|𝛼𝑚𝑎𝑥 − 𝛼𝑚𝑖𝑛|

𝐸
(19)

Here, 𝑒 = 1, 2,… , 𝐸, where 𝐸 denotes the maximum number of
epochs set for the algorithm. Here, 𝛼 and 𝛼 can be taken in
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𝑚𝑖𝑛 𝑚𝑎𝑥
[0.1, 0.9], where 𝛼𝑚𝑎𝑥 > 𝛼𝑚𝑖𝑛. In Eq. (17), 𝑝𝐵𝐷𝑘(𝑒) is the personal
best displacement achieved since the first epoch for the 𝑘th
quantum. In Eq. (18), the 𝑔𝐵𝐷(𝑒) is the global best displacement
achieved so far among the displacements. In Eqs. (17) and (18),
𝑟3 and 𝑟4 represent two different random functions, which are
defined in [0, 1], respectively.

Step 7. Update the displacement of quantum: Every quantum up-
dates its displacement with the help of previous displacement
𝐷𝑘(𝑒) and enhanced search scope 𝑀𝑘(𝑒 + 1). This adjustment of
𝐷𝑘(𝑒) for the next epoch is represented by 𝐷𝑘(𝑒+1), and can be
defined as:

𝐷𝑘(𝑒 + 1) = 𝐷𝑘(𝑒) +𝑀𝑘(𝑒 + 1) (20)

.4. Personal best and global best displacements

The personal best displacement, i.e., 𝑝𝐵𝐷𝑘(𝑒) is the best displace-
ent experienced by the quantum since the first epoch 𝑒. By consider-

ng the optimization problem (Eq. (5)), the personal best displacement
or Eq. (17) at the next epoch 𝑒 + 1 is determined as:

𝐵𝐷𝑘(𝑒 + 1) =

{

𝑝𝐵𝐷𝑘(𝑒); if 𝐽 (𝐷𝑘(𝑒 + 1)) ≥ 𝐽 (𝑝𝐵𝐷𝑘(𝑒))
𝐷𝑘(𝑒 + 1); if 𝐽 (𝐷𝑘(𝑒 + 1)) < 𝐽 (𝑝𝐵𝐷𝑘(𝑒))

(21)

ere, 𝐽 denotes the fitness function, which calculates how the corre-
ponding displacement is close to the optimal solution.

For the global best displacement, surrounding quanta act like a
etwork within the quantum system. For the enhancement of search
cope, this network is used to extract information from all the quanta.
n this case, network information is the best displacement among the
uanta, denoted as the 𝑔𝐵𝐷(𝑒) for the epoch 𝑒. For Eq. (18), it can be
btained as:

𝑔𝐵𝐷(𝑒) ∈ {𝑝𝐵𝐷1(𝑒), 𝑝𝐵𝐷2(𝑒),… , 𝑝𝐵𝐷𝑞(𝑒)} ∣ 𝐽 (𝑔𝐵𝐷(𝑒))

min{𝑝𝐵𝐷1(𝑒), 𝑝𝐵𝐷2(𝑒),… , 𝑝𝐵𝐷𝑞(𝑒)} (22)

Determination procedures for the personal best and global best
isplacements are summarized in Algorithm 1 and Algorithm 2, respec-
ively.

Algorithm 2 PROCEDURE gBD().
Define Q with 𝑞 number of quanta: 𝑄𝑘(𝑒)(𝑘 = 1, 2,… , 𝑞) ∈ Q (Eq. (9)).
while 𝑒 < 𝐸 do

for ∀𝑄𝑘(𝑒) do
/*get the personal best displacement*/
if 𝐽 (𝐷𝑖(𝑒)) < 𝐽 (𝐷𝑗 (𝑒)) then

𝐷𝑗 (𝑒) = 𝐷𝑖(𝑒);
end
/*get the global best displacement*/
if 𝐽 (𝐷𝑗 (𝑒)) < 𝐽 (𝑔𝐵𝐷(𝑒)) then

𝑔𝐵𝐷(𝑒) = 𝐷𝑗 (𝑒);
end

end
for ∀𝑄𝑘(𝑒) do

Update 𝑀𝑘(𝑒): 𝑀𝑘(𝑒 + 1) (Eq. (15)).
Update 𝐷𝑘(𝑒): 𝐷𝑘(𝑒 + 1) (Eq. (20)).

end
/*Repeat the process until stopping criterion is satisfied*/
𝑒 = 𝑒 + 1;

nd

3.5. The search scope components

The search scope enhancement equation (Eq. (15)) is comprised of
three components as:
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Fig. 14. Convergence curve analysis of Experimental_Set_3 (Case label: 1-10).
• In 𝑀1 (Eq. (16)), the 𝑀𝑘(𝑒) term stores information about the pre-
ceding movement information, i.e., information about the prior
immediate movement path. The integration of 𝛼 with 𝑀𝑘(𝑒),
i.e., “𝛼 ⋅𝑀𝑘(𝑒)” term can be viewed as an accelerated component
that prevents the quantum from radically altering movement
and influencing towards the present movement. Hence, this com-
ponent is termed as the preceding movement component of the
quantum.

• In 𝑀2 (Eq. (17)), the “ln(1∕𝑚𝑓 ) ⋅ 𝑟3 ⋅ [𝑝𝐵𝐷𝑘(𝑒) − 𝐷𝑘(𝑒)]” term
maintains the personal network information of the 𝑄𝑘(𝑒) in terms
of past displacements. In a context, this component embodies
individual knowledge of the displacement, which was the best
for the quantum at the personal network level. The procedure for
computing the personal best displacement in this network level
is presented as Algorithm 1. The advantage of this component is
that it attracts quanta towards their own personal best displace-
ments. This activity resembles the quanta’s propensity to attain
those displacements that have provided stability to them most
11
during their past displacements. This component is referred to the
personal network component of the quantum.

• In 𝑀3 (Eq. (18)), the “ln(1∕𝑚𝑓 ) ⋅ 𝑟4 ⋅ [𝑔𝐵𝐷(𝑒) −𝐷𝑘(𝑒)]” term main-
tains the global network information of the 𝑄𝑘(𝑒) by quantifying
the fitness of the 𝑘th quantum with respect to surrounding quanta.
This component’s effect is that each quantum is attracted to the
global best displacement discovered by the quantum’s surround-
ing. The procedure for computing the global best displacement in
this network level is presented as Algorithm 2. This component is
termed as the global network component of the quantum.

A vector representation of the search scope enhancement equation
(Eq. (15)) can naively be represented in a two-dimensional search
space. For the ease of interpretation, a quantum can be assumed
in a two-dimensional search space. An example of the search scope
enhancement of the quantum is depicted in Fig. 2. Fig. 2(a) indicates
the stage of 𝐷𝑘(𝑒) for the 𝑄𝑘(𝑒) at the epoch 𝑒. It should be noted that
the 𝐷𝑘(𝑒) makes the 𝑄𝑘(𝑒) closer to the 𝑝𝐵𝐷𝑘(𝑒). For the epoch 𝑒 + 1,
the process of search scope enhancement is updated, which is shown in
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Fig. 15. Convergence curve analysis of Experimental_Set_4 (Case label: 1-10).

Fig. 16. Visual analysis of segmented results of Experimental_Set_1 (Case labels: 4 and 5): (a) enhanced and enlarged CT scan image, (b) proposed FFQOAK, (c) KMC, (d) GAK,
(e) PSOK, (f) DPSOK, and (g) ACOK.
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Fig. 17. Visual analysis of segmented results of Experimental_Set_2 (Case labels: 4 and 5): (a) enhanced and enlarged CT scan image, (b) proposed FFQOAK, (c) KMC, (d) GAK,
(e) PSOK, (f) DPSOK, and (g) ACOK.
Fig. 18. Visual analysis of segmented results of Experimental_Set_3 (Case labels: 4 and 5): (a) enhanced and enlarged CT scan image, (b) proposed FFQOAK, (c) KMC, (d) GAK,
(e) PSOK, (f) DPSOK, and (g) ACOK.
Fig. 2(b). The figure shows that the 𝐷𝑘(𝑒+1) contributes to the quantum
by taking it closer to the 𝑔𝐵𝐷(𝑒 + 1).

The proposed FFQOA is summarized in Algorithm 3 in terms of 𝑞
number of quanta in the Q.

Algorithm 3 PROCEDURE FFQOA().
Define Q with 𝑞 number of quanta: 𝑄𝑘(𝑒)(𝑘 = 1, 2,… , 𝑞) ∈ Q (Eq. (9)).
for ∀𝑄𝑘(𝑒) do

Define location of each quantum: 𝐿𝑘(𝑒) (Eq. (12)).
Define movement of each quantum: 𝑀𝑘(𝑒) (Eq. (13)).
Compute displacement of each quantum: 𝐷𝑘(𝑒) (Eq. (14)).
Evaluate the fitness of each displacement 𝐷𝑘(𝑒) to get: 𝑝𝐵𝐷𝑘(𝑒)
(Algorithm 1) and 𝑔𝐵𝐷(𝑒) (Algorithm 2).

end
while 𝑒 < 𝐸 do

for each 𝑄𝑘(𝑒) do
Update 𝑀𝑘(𝑒): 𝑀𝑘(𝑒 + 1) (Eq. (15)).
Update 𝐷𝑘(𝑒): 𝐷𝑘(𝑒 + 1) (Eq. (20)).

end
/*Repeat the process until stopping criterion is satisfied*/
e=e+1;

end

4. The proposed FFQOAK method

This section introduces the proposed FFQOAK method along with
its searching processes of optimal solution.
13
4.1. Phases of the FFQOAK method

Each phase of the proposed method is explained next.

Step 1. Input: an image 𝐼𝑝.

Step 2. A set of gray level values 𝐺𝑙𝑑 = {𝑃1, 𝑃2,… , 𝑃𝑛}.

Step 3. Initialize 𝜃 number of clusters 𝑧 = 1, 2,… , 𝜃.

Step 4. Obtain the set of initial cluster centers as 𝐶 =
[

𝐶1, 𝐶2,… , 𝐶𝜃
]

using KMC algorithm.

Step 5. Apply the FFQOAK in the 𝐺𝑙𝑑 to get the optimal segmented
image 𝐼𝑠 as:

sub-step 5.1. Initialization of quantum in the quantum sys-
tem: Analogue to Step 1 of FFQOA.

sub-step 5.2. Location of quantum: Analogue to Step 2 of
FFQOA.

sub-step 5.3. Movement of quantum: Analogue to Step 3 of
FFQOA.

sub-step 5.4. Displacement of quantum: Obtain the displace-
ment (analogue to Step 4 of FFQOA), and assign the set
of initial cluster centers 𝐶 to any displacement 𝐷𝑗 (𝑒).

sub-step 5.5. Repeat.
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Fig. 19. Visual analysis of segmented results of Experimental_Set_4 (Case labels: 4 and 5): (a) enhanced and enlarged CT scan image, (b) proposed FFQOAK, (c) KMC, (d) GAK,
(e) PSOK, (f) DPSOK, and (g) ACOK.
(a) Calculation of Euclidean distance: Calculate the Eucl-
idean distance between gray level value 𝑃𝑖 ∈ 𝐺𝑙𝑑 and the
displacement 𝐷𝑗 (𝑒) using the relation given below as:

𝑑[𝑃𝑖, 𝑋𝑧] = |𝑃𝑖 −𝑋𝑧|
2; ∀𝑋𝑧 ∈ 𝐷𝑗 (𝑒) (23)

If 𝑋𝑧 is the nearest center to 𝑃𝑖, then it is assigned to
cluster 𝑍𝑧.

(b) Assignment of gray level values: Assign all the gray
level values to the closest center based on the minimum
Euclidean distance.

(c) Fitness evaluation of cluster center: Evaluate the fit-
ness of 𝑗th cluster center 𝐷𝑗 (𝑒), which can be defined as:

𝐽𝑗 (𝑒) =
𝑛
∑

𝑖=1
|𝑃𝑖 −𝑋𝑧|

2 (24)

The value of 𝐽𝑗 (𝑒) is considered to be optimal, when it
satisfies the following condition:

𝜕𝐽𝑗 (𝑒)
𝜕𝑋𝑧

= 𝜕
𝜕𝑋𝑧

𝑛
∑

𝑖=1
|𝑃𝑖 −𝑋𝑧|

2 = −2
𝑛
∑

𝑖=1
|𝑃𝑖 −𝑋𝑧| = 0 (25)

The average fitness of all displacements in the Q, where
Q ⊆ 𝐷𝑗 (𝑒), is computed as:

𝐽𝑎𝑣𝑔(𝑒) =
1
𝜃

𝜃
∑

𝑗=1
𝐽𝑗 (𝑒) (26)

sub-step 5.6. Enhancement of search scope of quantum:
Analogue to Step 6 of FFQOA.

sub-step 5.7. Update the displacement of quantum: Ana-
logue to Step 7 of FFQOA.

sub-step 5.8. Go to sub-step 5.8., and step up the epoch.
This process is continued until the cluster centers stop
changing or the algorithm reaches the maximum number
of epochs 𝐸, i.e., 𝑒 = 1, 2,… , 𝐸.

Step 6. Output: reshape the 𝜃 number of clustered gray level values
into a segmented image 𝐼 .
14

𝑠

Algorithm 4 PROCEDURE FFQOAK().
Input: an image 𝐼𝑝.
A set of gray level values 𝐺𝑙𝑑 = {𝑃1, 𝑃2,… , 𝑃𝑛}.
Initialize 𝜃 number of clusters 𝑧 = 1, 2,… , 𝜃.
Obtain the initial cluster centers: 𝐶 =

[

𝐶1, 𝐶2,… , 𝐶𝜃
]

(using KMC
algorithm).
/*Apply the FFQOAK in the 𝐺𝑙𝑑 to get the optimal segmented image
𝐼𝑠*/
for ∀𝑄𝑘(𝑒) do

Define Q with 𝑞 number of quanta: 𝑄𝑘(𝑒)(𝑘 = 1, 2,… , 𝑞) ∈ Q (Eq.
(9)).
Define location of each quantum: 𝐿𝑘(𝑒) (Eq. (12)).
Define movement of each quantum: 𝑀𝑘(𝑒) (Eq. (13)).
Obtain the displacement (Eq. (14)), and assign the set of initial
cluster centers 𝐶 to any displacement 𝐷𝑗 (𝑒).

end
while 𝑒 < 𝐸 do

for ∀𝑄𝑘(𝑒) do
Calculate the Euclidean distance between gray level value 𝑃𝑖 ∈
𝐺𝑙𝑑 and the displacement 𝐷𝑗 (𝑒) (Eq. (23)).
Assign all the gray level values to the closest center based on
the minimum Euclidean distance.
Evaluate the fitness of 𝑗th cluster center 𝐷𝑗 (𝑒) (Eq. (24)) to get:
𝑝𝐵𝐷𝑘(𝑒) (Algorithm 1) and 𝑔𝐵𝐷(𝑒) (Algorithm 2).
Update the 𝑀𝑘(𝑒): 𝑀𝑘(𝑒 + 1) (Eq. (15)).
Update the 𝐷𝑘(𝑒): 𝐷𝑘(𝑒 + 1) (Eq. (20)).

end
/*Repeat the process until there is no change in the cluster cen-
ters.*/
e=e+1;

end
Output: reshape the 𝜃 number of clustered gray level values into a
segmented image 𝐼𝑠.

The proposed FFQOAK method is summarized in Algorithm 4 in
terms of 𝑞 number of quanta in the Q.

4.2. Optimization process of the proposed FFQOAK method

The FFQOAK is comprised of six major stages in the segmentation
of images as:

Stage I: For each quantum, a quantum system is defined and its dis-
placement is calculated.

Stage II: The initial displacement of each quantum is considered as the
initial cluster center.
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(

Stage III: Each displacement (Stage II) is assigned to the Euclidean
distance function of the KMC algorithm.

Stage IV: The fitness parameter is used to evaluate the fitness of each
cluster center

Stage V: The search scope of each quantum is enhanced by updating
its movement and displacement within the quantum system.

Stage VI: Go to Stage III with updated displacements, until it discov-
ers the optimal global solution or the nearest optimal global
solution.

The FFQOAK is implemented in Matlab R2014a version (8.3.0.532)
in Microsoft Windows 8.1 environment on Core i-5 processor with
3.20 GHz and 8 GB memory. Based on Singh (2021a), various param-
eters associated with the proposed FFQOAK are set as:

• Number of clusters, 𝜃 = 3,
• Number of quanta, 𝑄 = 20,
• Real numbers, 𝑎 = 0.1 and 𝑏 = 0.1,
• Quantum movement factor, 𝑚𝑓 = 0.14,
• 𝛼𝑚𝑎𝑥 = 0.9, 𝛼𝑚𝑖𝑛 = 0.2, and
• Maximum number of epochs, 𝐸 = 100.

Each image has been preprocessed before segmentation due to noise
and low contrast features. This is done using the adaptive filtering
technique (Douglas & Losada, 2002), followed by the histogram equal-
ization method (Han, Yang, & Lee, 2011). The preprocessed image is
called enhanced CT scan image. Some of the essential processes of the
proposed FFQOAK are illustrated by a chest CT scan image of COVID-
19 in Fig. 3. The input and its enhanced CT scan images are shown in
Fig. 3(a) and (b), respectively. The proposed FFQOAK is applied to the
enhanced CT scan image for segmentation. The search landscape of the
fitness evaluation metric is shown in Fig. 3(c). Comparison of fitness
values between the first quantum and the optimal quantum is shown
in Fig. 3(d). Their differences show that the optimal quantum converges
very well by avoiding the local optimal solution. The convergence curve
of the average fitness values is shown in Fig. 3(e), and shows that all
quanta perform well in finding the optimal solution at each epoch. But,
only a certain quantum reaches the global optimal solution. The search
history curve, as shown in Fig. 3(f), demonstrates the location history
of the quanta during the search for the global optimal solution. Using
the optimal cluster centers, the input image is reshaped to form the
segmented image. This segmented image is shown in Fig. 3(g).

It can be observed that by including FFQOA, FFQOAK can achieve
fast convergence. The initial cluster centers optimized in Stage III
can be considered as the global optimal cluster centers of the KMC
algorithm. Therefore, the requirement of adopting the initial cluster
centers for the KMC algorithm in the next stages no longer exists.

5. Experimental results

This section includes descriptions of the dataset and its preprocess-
ing, performance evaluation metrics, statistical analyses, convergence
analysis and finally visual analysis.

5.1. Dataset and preprocessing descriptions

The proposed FFQOAK method has been evaluated with different
types of chest CT scan images of COVID-19 patients obtained from
Jun et al. (2020). This dataset contains 20 labeled COVID-19 CT scan
images. For experimental purposes, 10 labeled COVID-19 CT scan
images are used, which are labeled as Case 1, Case 2, and so on.
From each label, four different images are extracted and arranged in
four experimental sets, namely Experimental_Set_1, Experimental_Set_2,
Experimental_Set_3 and Experimental_Set_4. Each experimental set con-
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tains ground truth (GT) of the respective image. The descriptions of
Table 1
Features of selected images of chest CT scan images of COVID-19.

Dataset Case
label

Extracted
image

Extracted CT
scan image
size (in kB)

Enhanced CT
scan image
size (in kB)

Experimental_Set_1

1 #142 169 129
2 #94 237 172
3 #105 218 154
4 #85 202 146
5 #100 207 155
6 #110 211 140
7 #94 212 134
8 #96 184 126
9 #109 181 130
10 #155 173 121

Experimental_Set_2

1 #118 179 120
2 #106 231 7.15
3 #81 216 152
4 #71 191 144
5 #76 193 147
6 #87 211 150
7 #113 225 149
8 #120 169 127
9 #90 173 136
10 #179 177 130

Experimental_Set_3

1 #129 188 124
2 #97 250 164
3 #92 223 150
4 #95 206 139
5 #87 210 143
6 #98 222 141
7 #102 222 139
8 #107 192 129
9 #100 185 137
10 #166 179 127

Experimental_Set_4

1 #136 173 71.0
2 #86 223 92.5
3 #100 190 81.6
4 #77 179 82.2
5 #80 179 80.9
6 #92 191 83.0
7 #89 177 76.5
8 #114 181 75.3
9 #104 185 77.8
10 #171 163 70.6

the features associated with each experimental set in terms of case
label, extracted images, original image size (in kB) and enhanced image
size (in kB) are listed in Table 1. The main objective of splitting the
dataset into four sets is to evaluate whether the same set of parameters
of FFQOAK used for the Experimental_Set_1 is suitable for the other
experimental sets or not.

5.2. Performance evaluation metrics

The performance of the proposed FFQOAK method has been evalu-
ated by comparing the segmented slices with GT. For this purpose, well-
known statistical metrics are used, namely MSE, PSNR, JSC and CC.
Such metrics can evaluate the performance of the proposed FFQOAK in
terms of its consistency with the GT. These metrics are defined in terms
of the input image (𝐼𝑝), the segmented image (𝐼𝑠) and the respective GT
𝐼𝑔) as (Huang, Singh and Kuo, 2020):

• MSE: The MSE value is used to measure an average loss in
intensity of gray level values during the segmentation of 𝐼𝑝. A
smaller MSE value implies less intensity loss and results in better
𝐼𝑠. Mathematically, this can be expressed as:

𝑀𝑆𝐸 = 1
𝑈 × 𝑉

𝑈
∑

𝑢=1

𝑉
∑

𝑣=1
(𝐼𝑝 − 𝐼𝑠)

2 (27)

Here, 𝑈 × 𝑉 represents the size of image in terms of pixels.
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Table 2
Comparison of MSE with the existing methods and the proposed FFQOAK for the chest CT scan images of COVID-19.

Dataset Case label Extracted image KMC GAK PSOK DPSOK ACOK FFQOAK

Experimental_Set_1

1 #142 7106.24 2101.60 1579.67 1419.67 1119.34 719.12
2 #94 6140.72 2108.73 1800.24 1700.14 1010.15 810.21
3 #105 4465.27 2192.48 1218.01 1113.01 1013.01 713.32
4 #85 6294.26 2191.21 1265.11 1065.11 1065.11 615.45
5 #100 6310.28 2191.91 1214.44 1114.10 1014.23 614.12
6 #110 4976.81 2110.35 1786.87 1386.23 1086.45 711.45
7 #94 6014.15 2111.36 1848.87 1248.15 1018.12 718.12
8 #96 3219.35 2148.27 2690.30 1290.30 1090.13 710.11
9 #109 5737.93 2191.90 2636.93 1336.93 1036.93 736.12
10 #155 5664.07 2192.73 2844.77 1344.77 1044.77 714.14

Experimental_Set_2

1 #118 4798.78 2193.26 1413.13 1113.13 1013.13 709.12
2 #106 5098.64 2192.25 1406.40 1106.40 1006.14 800.11
3 #81 2026.53 2164.63 1231.64 1131.64 1011.64 703.12
4 #71 4830.01 2116.22 1794.11 1294.11 1024.11 725.15
5 #76 5393.30 2117.85 1276.13 1176.13 1016.23 714.12
6 #87 4594.02 2124.75 1156.87 1056.87 1016.27 716.45
7 #113 5739.52 2175.23 1645.72 1245.72 1045.72 718.12
8 #120 8951.75 2127.63 1585.28 1285.28 1085.28 810.11
9 #90 5436.72 2112.82 1132.82 1032.82 1032.82 716.12
10 #179 4594.02 2124.75 1156.87 1056.87 1016.87 714.14

Experimental_Set_3

1 #129 6116.24 2111.10 2519.67 1419.17 1219.54 619.45
2 #97 5140.72 2128.13 2810.24 1610.24 1110.15 640.22
3 #92 4365.17 2092.58 1318.11 1213.01 1113.21 733.32
4 #95 6284.16 2161.24 1365.31 1165.11 1265.11 715.45
5 #87 6410.18 2391.95 1312.42 1214.10 1314.23 614.12
6 #98 5976.31 2120.15 1686.57 1376.23 1286.45 716.45
7 #102 5012.15 2131.16 1948.77 1348.15 1118.12 728.12
8 #107 3119.15 2248.17 2590.32 1390.30 1191.13 717.11
9 #100 4737.13 2291.91 2646.83 1346.93 1138.93 711.12
10 #166 4614.17 2292.13 2644.87 1314.75 1244.77 745.64

Experimental_Set_4

1 #136 5126.64 2211.20 1219.67 1519.12 1319.14 729.33
2 #86 5210.72 2328.13 1910.14 1620.21 1210.25 710.12
3 #100 5165.17 2192.38 1818.21 1413.21 1213.23 723.66
4 #77 7184.16 2361.14 1765.32 1365.11 1165.21 625.15
5 #80 6310.38 2491.95 1612.45 1314.12 1214.24 724.22
6 #92 5878.36 2320.15 1786.67 1476.43 1486.41 716.65
7 #89 5115.35 2241.66 1848.71 1448.25 1218.22 768.22
8 #114 3219.35 2143.27 2690.31 1491.32 1291.23 717.11
9 #104 4837.23 2491.92 2746.82 1446.82 1238.92 732.42
10 #171 4514.27 2392.23 2844.82 1214.54 1344.17 715.45

Average – – 5293.23 2203.31 1844.26 1305.61 1136.73 712.30
5

e
1
1
m
a
M
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• PSNR: The PSNR is inversely related to the MSE, i.e., a higher
value shows less distortion and thus a better 𝐼𝑠. Mathematically,
this can be expressed as:

𝑃𝑆𝑁𝑅 = 10 × log10

[

(255)2

𝑀𝑆𝐸

]

(28)

• JSC: JSC evaluates the similarity between the 𝐼𝑠 and 𝐼𝑔 . It is
defined as the size of the intersection of the pixel sets divided
by the size of the union of the pixel sets from the 𝐼𝑠 and 𝐼𝑔 . The
JSC value lies between the range 0–100%. A JSC value near 100%
means that the region of interest of the 𝐼𝑠 has a perfect similarity
to the corresponding 𝐼𝑔 . Mathematically, this can be expressed as:

𝐽𝐼𝑠 ,𝐼𝑔 (𝑋) =
𝑂𝐼𝑠∩𝐼𝑔 (𝑋)

𝑂𝐼𝑠∪𝐼𝑔 (𝑋)
(29)

In Eq. (29), 𝑂𝐼𝑠∩𝐼𝑔 (𝑋) and 𝑂𝐼𝑠∪𝐼𝑔 (𝑋) denote the intersection and
union of the pixel sets associated with the 𝑋 class of 𝐼𝑠 and 𝐼𝑔 ,
respectively.

• CC: The CC test is used to determine the similarity between 𝐼𝑠
and 𝐼𝑔 . The range for CC is defined between [−1, 1]. A value
for CC close to 1 indicates a perfect match between the seg-
mented regions and the respective GT. Mathematically, this can
16

l

be expressed:

𝑟 =

𝑈
∑

𝑢=1

𝑉
∑

𝑣=1
(𝐼𝑠 − 𝐼𝑠)(𝐼𝑔 − 𝐼𝑔)

(

𝑈
∑

𝑢=1

𝑉
∑

𝑣=1
(𝐼𝑠 − 𝐼𝑠)2

)(

𝑈
∑

𝑢=1

𝑉
∑

𝑣=1
(𝐼𝑔 − 𝐼𝑔)2

) ; − 1 ≤ 𝑟 ≤ 1 (30)

where, 𝑟 indicates the CC value. In Eq. (30), 𝐼𝑠 and 𝐼𝑔 represent
the means of 𝐼𝑠 and 𝐼𝑔 , respectively.

.3. Statistical analyses

In Figs. 4–11(a)∼(b), extracted CT scan images and their respective
nhanced images of COVID-19 patients are shown in columns. Figs. 4–
1(c) show the GT of the respective images of Figs. 4–11(a). Figs. 4–
1(d) show segmented images obtained by the proposed FFQOAK
ethod. Segmented images obtained using the existing methods such

s KMC (Juang & Wu, 2010), GAK (Khrissi et al., 2020), PSOK (van der
erwe & Engelbrecht, 2003), DPSOK (Li et al., 2015) and ACOK

Saatchi & Hung, 2005) are shown in Figs. 4–11(e)∼(i), respectively.
hese segmented images are obtained with the number of clusters
= 3. Since all these images are in gray scale, clustering with more

han 𝜃 = 3 does not produce significant features of infections in the

ungs.
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Table 3
Comparison of PSNR with the existing methods and the proposed FFQOAK for the chest CT scan images of COVID-19.

Dataset Case label Extracted image KMC GAK PSOK DPSOK ACOK FFQOAK

Experimental_Set_1

1 #142 9.61 14.91 16.15 16.61 17.64 19.56
2 #94 10.25 14.89 15.58 15.83 18.09 19.04
3 #105 11.63 14.72 17.27 17.67 18.07 19.60
4 #85 10.14 14.72 17.11 17.86 17.86 20.24
5 #100 10.13 14.72 17.29 17.66 18.07 20.25
6 #110 11.16 14.89 15.61 16.71 17.77 19.61
7 #94 10.34 14.89 15.46 17.17 18.05 19.57
8 #96 13.05 14.81 13.83 17.02 17.76 19.62
9 #109 10.54 14.72 13.92 16.87 17.97 19.46
10 #155 10.60 14.72 13.59 16.84 17.94 19.59

Experimental_Set_2

1 #118 11.32 14.72 16.63 17.67 18.07 19.62
2 #106 11.06 14.72 16.65 17.69 18.10 19.10
3 #81 15.06 14.78 17.23 17.59 18.08 19.66
4 #71 11.29 14.88 15.59 17.01 18.03 19.53
5 #76 10.81 14.87 17.07 17.43 18.06 19.59
6 #87 11.51 14.86 17.50 17.89 18.06 20.25
7 #113 10.54 14.76 15.97 17.18 17.94 19.57
8 #120 8.61 14.85 16.13 17.04 17.78 19.05
9 #90 10.78 14.88 17.59 17.99 17.99 19.58
10 #179 11.51 14.86 17.50 17.89 18.06 19.59

Experimental_Set_3

1 #129 10.27 14.89 14.12 16.61 17.27 20.21
2 #97 11.02 14.85 13.64 16.06 17.68 20.07
3 #92 11.73 14.92 16.93 17.29 17.67 19.48
4 #95 10.15 14.78 16.78 17.47 17.11 19.59
5 #87 10.06 14.34 16.95 17.29 16.94 19.59
6 #98 10.37 14.87 15.86 16.74 17.04 19.58
7 #102 11.13 14.84 15.23 16.83 17.65 19.51
8 #107 13.19 14.61 14.00 16.70 17.37 19.57
9 #100 11.38 14.53 13.90 16.84 17.57 19.61
10 #166 11.49 14.53 13.91 16.94 17.18 19.41

Experimental_Set_4

1 #136 11.03 14.68 17.27 16.31 16.93 19.50
2 #86 10.96 14.46 15.32 16.04 17.30 19.62
3 #100 11.00 14.72 15.53 16.63 17.29 19.54
4 #77 9.57 14.40 15.66 16.78 17.47 20.17
5 #80 10.13 14.17 16.06 16.94 17.29 19.53
6 #92 10.44 14.48 15.61 16.44 16.41 19.58
7 #89 11.04 14.63 15.46 16.52 17.27 19.28
8 #114 13.05 14.82 13.83 16.40 17.02 19.57
9 #104 11.28 14.17 13.74 16.53 17.20 19.48
10 #171 11.58 14.34 13.59 17.29 16.85 19.59

Average – – 11.02 14.70 15.68 17.01 17.60 19.61
Based on the segmented images, it is easy to determine that the
nfected regions in the extracted images are not sufficiently segmented
y the existing methods (Juang & Wu, 2010; Khrissi et al., 2020; Li
t al., 2015; van der Merwe & Engelbrecht, 2003; Saatchi & Hung,
005). Comparing the segmented images of existing methods with the
roposed FFQOAK method, it is found that the proposed FFQOAK
ethod properly segmented the infected regions in the extracted im-

ges. The segmented images obtained from the existing methods shown
n Figs. 4–11(e)∼(i), show that the existing methods cannot deal with

these images as they have inconsistent and vague boundaries. On the
other hand, the segmented images derived from the proposed FFQOAK
method clearly highlight the infected regions and their boundaries.

Finally, a statistical analysis of the proposed and existing methods
is performed using the MSE, PSNR, JSC and CC metrics. To simplify
the comparison, the average values of MSE, PSNR, JSC and CC are
considered. The proposed FFQOAK method is compared with the ex-
isting methods (Juang & Wu, 2010; Khrissi et al., 2020; Li et al.,
2015; van der Merwe & Engelbrecht, 2003; Saatchi & Hung, 2005).
Table 2 shows the results of the comparison in terms of average MSE
values. The average MSE values of the four experimental sets, namely
Experimental_Set_1, Experimental_Set_2, Experimental_Set_3 and Exper-
imental_Set_4, obtained by KMC, GAK, PSOK, DPSOK, ACOK and the
17

proposed FFQOAK method are 5293.23, 2203.31, 1844.26, 1305.61,
1136.73 and 712.30, respectively. These statistics show that the aver-
age MSE values of all these existing methods are much higher than the
proposed FFQOAK method. Table 3 shows the results of the comparison
in terms of average PSNR values. The average PSNR values of the four
experimental sets obtained using KMC, GAK, PSOK, DPSOK, ACOK and
the proposed FFQOAK method are 11.02, 14.70, 15.68, 17.01, 17.60
and 19.61, respectively. The comparison of these values shows that the
proposed method has a higher PSNR value than the existing methods.
Table 4 shows the average JSC values of the existing methods and
the proposed FFQOAK method. For Experimental_Set_1, Experimen-
tal_Set_2, Experimental_Set_3 and Experimental_Set_4, the respective
average JSC values obtained from KMC, GAK, PSOK, DPSOK, ACOK
and proposed FFQOAK method are 0.37, 0.48, 0.74, 0.77, 0.84 and
0.90, respectively. These values show that the average JSC value of
the proposed FFQOAK method is significantly higher than that of the
existing methods. Table 5 shows the average CC values for the existing
methods and the proposed FFQOAK method. From the four experimen-
tal sets, the average CC values for the KMC, GAK, PSOK, DPSOK, ACOK
and proposed FFQOAK method are 0.43, 0.53, 0.68, 0.77, 0.84 and
0.91, respectively. These statistics show that the proposed FFQOAK
method has a higher CC value than the existing methods. This statistical
analysis shows that the proposed FFQOAK method outperforms the
existing methods in segmenting the different regions of chest CT scan
images of COVID-19 patients.
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Table 4
Comparison of JSC with the existing methods and the proposed FFQOAK for the chest CT scan images of COVID-19.

Dataset Case label Extracted image KMC GAK PSOK DPSOK ACOK FFQOAK

Experimental_Set_1

1 #142 0.36 0.49 0.64 0.79 0.81 0.88
2 #94 0.39 0.50 0.65 0.77 0.80 0.87
3 #105 0.36 0.53 0.76 0.78 0.82 0.89
4 #85 0.34 0.51 0.75 0.79 0.83 0.90
5 #100 0.39 0.52 0.73 0.79 0.82 0.89
6 #110 0.31 0.48 0.77 0.76 0.83 0.90
7 #94 0.32 0.47 0.74 0.79 0.84 0.89
8 #96 0.33 0.52 0.73 0.78 0.82 0.89
9 #109 0.34 0.43 0.74 0.79 0.83 0.90
10 #155 0.38 0.43 0.73 0.79 0.83 0.90

Experimental_Set_2

1 #118 0.38 0.48 0.78 0.79 0.89 0.92
2 #106 0.38 0.48 0.75 0.78 0.84 0.91
3 #81 0.39 0.41 0.74 0.79 0.82 0.89
4 #71 0.39 0.49 0.72 0.76 0.86 0.91
5 #76 0.38 0.48 0.75 0.79 0.82 0.87
6 #87 0.39 0.41 0.76 0.76 0.88 0.91
7 #113 0.37 0.42 0.74 0.78 0.87 0.90
8 #120 0.40 0.47 0.75 0.77 0.82 0.89
9 #90 0.39 0.46 0.76 0.79 0.83 0.90
10 #179 0.39 0.45 0.74 0.78 0.84 0.91

Experimental_Set_3

1 #129 0.36 0.48 0.75 0.78 0.83 0.90
2 #97 0.38 0.51 0.64 0.79 0.84 0.91
3 #92 0.37 0.53 0.76 0.75 0.81 0.88
4 #95 0.34 0.53 0.74 0.77 0.85 0.91
5 #87 0.38 0.51 0.72 0.76 0.83 0.90
6 #98 0.34 0.58 0.76 0.76 0.85 0.91
7 #102 0.35 0.47 0.75 0.74 0.83 0.90
8 #107 0.36 0.52 0.76 0.76 0.81 0.89
9 #100 0.36 0.46 0.76 0.73 0.83 0.90
10 #166 0.36 0.48 0.74 0.76 0.84 0.91

Experimental_Set_4

1 #136 0.36 0.49 0.73 0.78 0.86 0.91
2 #86 0.37 0.47 0.75 0.79 0.83 0.90
3 #100 0.40 0.45 0.74 0.78 0.81 0.87
4 #77 0.38 0.47 0.73 0.76 0.87 0.91
5 #80 0.39 0.46 0.76 0.79 0.83 0.88
6 #92 0.39 0.47 0.75 0.76 0.86 0.91
7 #89 0.36 0.43 0.74 0.77 0.87 0.90
8 #114 0.40 0.46 0.73 0.78 0.85 0.89
9 #104 0.36 0.47 0.74 0.79 0.82 0.89
10 #171 0.37 0.46 0.75 0.77 0.85 0.90

Average – – 0.37 0.48 0.74 0.77 0.84 0.90
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Based on the statistical analyses discussed above, it is obvious that
he performance of the proposed FFQOAK method is better than the
MC algorithm. These analyses also indicate that the proposed FFQOAK
ethod outperforms the existing hybridized methods, such as GAK,
SOK, DPSOK and ACOK.

.4. Convergence analysis

The main reason of outperforming the proposed FFQOAK method
s that FFQOA is more robust than GA, PSO, DPSO and ACO, which
re hybridized with the KMC algorithm. In order to justify it, fitness of
he GAK, PSOK, DPSOK and ACOK are evaluated. The main goal of the
AK, PSOK, DPSOK, ACOK and FFQOAK is to search the best fitness
alue for Euclidean distance function during the segmentation process
f the chest CT scan images of COVID-19 patients. Table 6 presents
utcomes of comparison in terms of average of best fitness values. To
implify the comparison, the average of the best fitness values is consid-
red. The average of the best fitness values for Experimental_Set_1, Ex-
erimental_Set_2, Experimental_Set_3, and Experimental_Set_4 obtained
rom GAK, PSOK, DPSOK, and ACOK are 3.83 × 10−2, 2.66 × 10−3,
.41 × 10−4 and 2.51 × 10−5, respectively. However, the average of
he best fitness value for Experimental_Set_1, Experimental_Set_2, Ex-
18

erimental_Set_3 and Experimental_Set_4 obtained by FFQOAK method
s 3.17 × 10−7, which is much lower than the existing methods, viz.,
AK, PSOK, DPSOK and ACOK. This shows that the FFQOA is very
ffective compared to the selected optimization algorithms, i.e., GA,
SO, DPSO and ACO. Therefore, it improves the performance of the
roposed FFQOAK method (especially the KMC algorithm) compared
o the existing GAK, PSOK, DPSOK and ACOK methods.

To better understand the behavior of FFQOAK compared to the
xisting methods GAK, PSOK, DPSOK and ACOK in finding the best
itness value, the convergence curve analysis is performed. The conver-
ence curves of the selected methods, including FFQOAK are shown in
igs. 12–15 for four experimental sets. From these figures, four different
ehaviors for the GAK, PSOK, DPSOK, ACOK and the proposed FFQOAK
ethods can be seen within 100 epochs:

Behavior I: It is observed that the FFQOAK method converges very
fast in the entire search space compared to the GAK,
PSOK, DPSOK and ACOK methods in terms of four ex-
perimental sets.

Behavior II: The FFQOAK converges very well to the search of the best
fitness value with respect to four experimental sets.

ehavior III: The FFQOAK converges very expressively from the first

steps of the epochs with respect to Experimental_Set_1
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Table 5
Comparison of CC with the existing methods and the proposed FFQOAK for the chest CT scan images of COVID-19.

Dataset Case label Extracted image KMC GAK PSOK DPSOK ACOK FFQOAK

Experimental_Set_1

1 #142 0.40 0.50 0.65 0.74 0.81 0.94
2 #94 0.41 0.51 0.66 0.75 0.82 0.88
3 #105 0.41 0.51 0.66 0.75 0.82 0.91
4 #85 0.40 0.50 0.65 0.74 0.81 0.94
5 #100 0.40 0.50 0.65 0.74 0.81 0.90
6 #110 0.42 0.52 0.67 0.76 0.83 0.91
7 #94 0.42 0.52 0.67 0.76 0.83 0.89
8 #96 0.45 0.55 0.70 0.81 0.88 0.92
9 #109 0.44 0.54 0.69 0.80 0.87 0.91
10 #155 0.42 0.52 0.67 0.78 0.85 0.89

Experimental_Set_2

1 #118 0.41 0.51 0.66 0.75 0.82 0.89
2 #106 0.42 0.52 0.67 0.76 0.82 0.92
3 #81 0.44 0.54 0.69 0.78 0.85 0.90
4 #71 0.40 0.50 0.65 0.74 0.81 0.89
5 #76 0.40 0.50 0.65 0.74 0.81 0.89
6 #87 0.45 0.55 0.70 0.79 0.86 0.90
7 #113 0.46 0.56 0.71 0.80 0.87 0.91
8 #120 0.48 0.58 0.73 0.82 0.89 0.93
9 #90 0.48 0.58 0.73 0.82 0.89 0.93
10 #179 0.42 0.52 0.67 0.76 0.83 0.90

Experimental_Set_3

1 #129 0.42 0.52 0.67 0.76 0.83 0.89
2 #97 0.41 0.51 0.66 0.75 0.82 0.90
3 #92 0.43 0.53 0.68 0.77 0.84 0.89
4 #95 0.40 0.50 0.65 0.74 0.81 0.88
5 #87 0.41 0.51 0.66 0.75 0.82 0.91
6 #98 0.42 0.52 0.67 0.76 0.83 0.92
7 #102 0.46 0.56 0.71 0.80 0.87 0.91
8 #107 0.45 0.55 0.70 0.79 0.86 0.90
9 #100 0.44 0.54 0.69 0.78 0.85 0.89
10 #166 0.42 0.52 0.67 0.76 0.83 0.88

Experimental_Set_4

1 #136 0.43 0.53 0.68 0.77 0.84 0.90
2 #86 0.45 0.55 0.70 0.79 0.86 0.92
3 #100 0.40 0.50 0.65 0.74 0.81 0.94
4 #77 0.44 0.54 0.69 0.78 0.85 0.95
5 #80 0.40 0.50 0.65 0.74 0.81 0.93
6 #92 0.42 0.52 0.67 0.76 0.83 0.95
7 #89 0.41 0.51 0.66 0.75 0.82 0.92
8 #114 0.45 0.55 0.70 0.79 0.86 0.93
9 #104 0.46 0.56 0.71 0.80 0.87 0.95
10 #171 0.42 0.52 0.67 0.76 0.83 0.92

Average – – 0.43 0.53 0.68 0.77 0.84 0.91
compared to the GAK, PSOK, DPSOK and ACOK meth-
ods. This expressive convergence behavior is also ob-
served for Experimental_Set_2, Experimental_Set_3 and
Experimental_Set_4.

ehavior IV: It is observed that the GAK and PSOK methods are close
to the local optimal fitness values in the case of four ex-
perimental sets. However, the DPSOK and ACOK methods
show a small difference in finding the optimal fitness val-
ues compared to the GAK and PSOK methods. As shown
in Figs. 12 and 15, the proposed FFQOAK method is able
to search the optimal fitness values without getting into
a local optimal situation compared to the GAK, PSOK,
DPSOK and ACOK methods.

This analysis shows that the FFQOAK maintains the right balance
etween exploration and exploitation to find the best fitness values.
rom Figs. 12–15, it is also evident that the FFQOAK method is very
ompetitive and has a high success rate compared to GAK, PSOK,
PSOK and ACOK methods in solving the clustering problem of chest
19

T scan images of COVID-19 patients.
5.5. Visual analysis of segmented images

A visual analysis is performed to evaluate the quality of segmented
chest CT scan images of COVID-19 patients. The evaluation criterion
is based on the ability to detect foreground and background regions
and identify the infected regions. To demonstrate the visual analysis,
segmented images obtained from KMC, GAK, PSOK, DPSOK, ACOK
and proposed FFQOAK method are selected. To perform the clustering
operation of each of the methods, the number of clusters is chosen as
𝜃 = 3. For demonstration, some of the CT scan images are selected
from four experimental sets. For visual analysis, the enhanced CT scan
and the corresponding segmented images obtained by each method are
cropped and enlarged to clearly show their features. Figs. 16–19(a)
show the enhanced and enlarged CT scan images for Case labels 4 and
5. Segmented images obtained using the proposed FFQOAK method
are shown in Figs. 16–19(b). For visual analysis, the segmented images
obtained by the existing KMC, GAK, PSOK, DPSOK and ACOK methods
are shown in Figs. 16–19(c)∼(g), respectively. In Figs. 16–19(b), the
white dense areas in the lungs show the signs and symptoms of COVID-
19. Therefore, in Figs. 16–19(b), it can be seen that the proposed
FFQOAK method produces better segmented images than KMC, GAK,

PSOK, DPSOK and ACOK (Figs. 16–19(c)∼(g), respectively).
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Table 6
Comparison of the best fitness value with the existing methods and proposed FFQOAK in terms of segmenting the chest CT scan images of
COVID-19.

Dataset Case label Extracted image GAK × 10−2 PSOK × 10−3 DPSOK × 10−4 ACOK × 10−5 FFQOAK × 10−7

Experimental_Set_1

1 #142 2.68 2.34 1.87 6.44 2.66
2 #94 1.91 1.00 1.48 1.25 3.83
3 #105 4.08 1.71 1.65 8.58 1.02
4 #85 5.93 3.70 1.81 2.25 2.12
5 #100 3.05 3.84 3.47 1.46 2.66
6 #110 3.48 1.90 2.66 1.11 2.20
7 #94 3.65 2.51 3.31 1.45 1.24
8 #96 4.06 2.21 1.77 2.17 3.36
9 #109 4.05 2.07 2.18 1.02 1.40
10 #155 4.93 2.35 2.00 2.50 6.38

Experimental_Set_2

1 #118 4.00 1.06 2.78 3.24 3.94
2 #106 2.11 1.00 1.18 1.77 7.88
3 #81 3.40 4.07 3.02 1.64 5.36
4 #71 3.97 2.83 2.27 1.23 4.64
5 #76 5.40 1.91 4.07 2.33 1.78
6 #87 4.00 5.05 1.92 1.16 2.50
7 #113 5.69 5.51 2.37 2.59 3.33
8 #120 3.13 3.95 2.00 1.83 7.18
9 #90 5.69 3.75 3.61 1.16 1.39
10 #179 4.14 3.95 2.00 1.83 7.18

Experimental_Set_3

1 #129 2.18 2.14 1.83 5.44 2.16
2 #97 1.92 1.10 1.58 2.25 3.93
3 #92 4.18 1.81 1.75 6.58 1.12
4 #95 5.93 3.60 1.91 2.15 2.22
5 #87 3.15 3.74 3.57 1.36 2.86
6 #98 3.45 1.80 2.36 1.21 2.40
7 #102 3.15 2.61 3.41 1.75 1.14
8 #107 4.16 2.31 1.87 2.27 3.46
9 #100 4.15 2.17 2.28 1.12 1.20
10 #166 4.92 2.45 2.10 2.60 6.48

Experimental_Set_4

1 #136 1.18 2.64 2.83 4.44 2.66
2 #86 2.62 2.10 1.68 3.15 3.95
3 #100 4.38 1.91 1.75 4.58 2.12
4 #77 4.93 3.50 2.91 3.15 3.22
5 #80 4.15 2.74 3.87 2.16 2.56
6 #92 4.45 2.10 2.86 1.61 2.60
7 #89 3.25 2.81 2.71 1.45 1.54
8 #114 3.86 2.31 2.67 2.57 3.56
9 #104 3.95 2.97 2.38 1.62 1.26
10 #171 3.92 2.75 2.50 2.10 4.48

Average – – 3.83 2.66 2.41 2.51 3.17
6. Conclusions and future directions

In this study, a new hybridized method, called FFQOAK was pro-
posed. This method was based on the FFQOA and KMC algorithms.
The proposed FFQOAK was applied to the segmentation of the chest
CT scan images of COVID-19 patients. In the proposed method, KMC
algorithm was used to segment the images while FFQOA algorithm was
used to obtain the optimal segmented images. The proposed FFQOAK
method was compared with the existing image segmentation methods,
which include KMC, GAK, PSOK, DPSOK and ACOK. The performance
of the proposed as well as the existing methods was evaluated using
statistical metrics, such as MSE, PSNR, JSC and CC. The experimental
results showed that the proposed FFQOAK method outperformed the
existing methods. The empirical analysis showed that the proposed
FFQOAK method not only preserved the advantages of the fast con-
vergence ability of the KMC, but also solved its disadvantage of easily
achieving an optimal local solution by using the FFQOA. Therefore, it
can be concluded that the proposed FFQOAK method in this study was
effective in analyzing the chest CT scan images of COVID-19 patients
through the segmentation approach and proved to be an additional
promising diagnostic method for medical experts.

The limitation of the study is that the proposed FFQOAK method
was validated only with chest images. For future work, the proposed
method can be improved to be applied to other types of medical images,
such as X-rays and MRIs. In future, we will also try to demonstrate
the application of the proposed FFQOA in solving various engineering
design problems.
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