

CORRESPONDENCE

Increase in serum levels of phosphatidylserine-specific phospholipase A₁ in COVID-19 patients

Takuya Shimura^{1,6}, Makoto Kurano^{1,2,6 \infty}, Koh Okamoto³, Daisuke Jubishi³, Kuniyuki Kano⁴, Koji Igarashi⁵, Satoshi Shimamoto⁵, Junken Aoki⁴, Kyoji Moriya³ and Yutaka Yatomi^{1,2 \infty}

© The Author(s), under exclusive licence to CSI and USTC 2021

Cellular & Molecular Immunology (2021) 18:2275–2277; https://doi.org/10.1038/s41423-021-00744-2

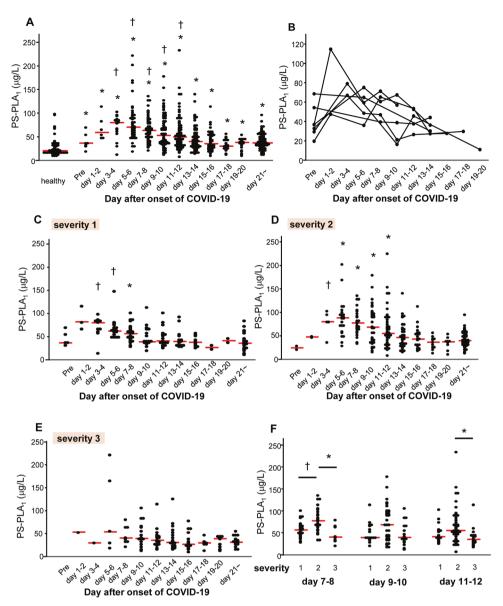
The development of novel drugs to overcome the current global coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an important task. Although antiviral agents have been investigated, one of the important goals of treatment is also to control the biological response to the infection. A series of elegant basic studies have revealed that lysophosphatidylserine (LysoPS) might play important roles in inflammation through three kinds of G protein-coupled receptors [1]; LysoPS reportedly suppresses activation of T cells [2] and secretion of inflammatory cytokines from macrophages [3] and promotes phagocytosis of apoptotic cells, including apoptotic neutrophils, by macrophages [4]. Considering these proposed physiological effects, it appears that LysoPS might have important roles in the resolution of inflammation. Phosphatidylserine-specific phospholipase A₁ (PS-PLA₁) has been proposed to be involved in the production of LysoPS [5].

In the present study, we investigated the serum levels of PS-PLA₁ in 58 healthy adult volunteers and 133 COVID-19 patients, consisting of 127 symptomatic patients and 6 asymptomatic patients. The 127 symptomatic COVID-19 patients were classified into three groups according to disease severity: severity level 1 (mild disease, did not require oxygen therapy), severity level 2 (moderate disease, required oxygen therapy but not mechanical ventilatory support), and severity level 3 (severe disease, required mechanical ventilatory support). The PS-PLA₁ levels were determined by a two-site immunoenzymometric assay with the TOSOH AIA system (TOSOH, Tokyo, Japan) [6]. The method is described in detail in the Supplementary Materials and Methods section.

Compared to those in the healthy group, as shown in Fig. 1A, the serum PS-PLA₁ levels were consistently and significantly higher during the clinical course, each day after the onset of symptoms, in the COVID-19 patients. From 7 COVID-19 patients, we collected serum samples 2–11 days prior to the onset of symptoms. The time course, shown in Fig. 1B, of the serum PS-PLA₁ levels showed that the levels tended to increase on days 6–7 after the onset of symptoms (P = 0.07). The serum PS-PLA₁ levels were also significantly higher from days 3–4 to days 11–12 than the levels measured after day 21 from symptom onset, suggesting that the serum PS-PLA₁ levels did increase specifically in response to the infection in patients with symptomatic COVID-19. The time course of the serum PS-PLA₁ levels in the asymptomatic subjects is

shown in Supplementary Fig. 1. Comparison of the PS-PLA₁ levels in the serum samples collected on days 1–2 to days 9–10 (n=16) from the six asymptomatic patients with those in the serum samples from healthy subjects (n=58) revealed that the serum PS-PLA₁ levels were significantly higher in the asymptomatic COVID-19 patients than in the healthy control subjects (P < 0.01).

To date, elevated serum PS-PLA₁ levels have been noted only in a limited number of pathological states, including cancers, SLE, and hyperthyroidism [7]. Among these, inflammation akin to that seen in SLE might possibly explain the increase in the serum PS-PLA₁ levels in COVID-19 patients since several phenotypes of COVID-19 are characterized by the presence of anti-phospholipid antibody, antinuclear antibody, and systemic endotheliitis at rather high frequencies, with the possible involvement of NETosis [8]


In regard to the association of elevated PS-PLA₁ levels with the severity and clinical parameters of COVID-19, in the subjects with mild COVID-19 (severity level 1), the serum PS-PLA₁ levels were significantly higher than the levels measured after day 21 from symptom onset (Fig. 1C). In the patients with moderate COVID-19 (severity level 2), the serum PS-PLA₁ levels were also higher than those measured after day 21 from symptom onset (Fig. 1D). In contrast, in the patients with severe COVID-19 (severity level 3), no significant elevation of the serum PS-PLA₁ levels was observed (Fig. 1E). The PS-PLA₁ levels were found to be higher in the patient group with severity level 2 than in the patient group with severity level 1 on days 7-8 and higher than those in the patient group with severity level 3 on days 7-8 and days 11-12 (Fig. 1F). As shown in Supplementary Fig. 2 and Supplementary Table 1, the serum PS-PLA₁ levels showed significantly positive correlations with the serum CRP levels but a significantly negative correlation with the serum D-dimer levels on days 13-14. The serum PS-PLA₁ levels showed significant negative correlations with the anti-SARS-CoV-2 IgM titers measured on days 11–12 and anti-SARS-CoV-2 IgG levels measured from days 11-12 to days 15-16.

Considering that LysoPS might have important roles in the resolution of inflammation [2–4], together with the result that the serum PS-PLA₁ levels were lower in patients with severe COVID-19 than in those with moderate COVID-19 (Fig. 1C–F), we propose the hypothesis that failure of the serum PS-PLA₁ levels to increase adequately to suppress an overreactive immune system could

¹Department of Clinical Laboratory, The University of Tokyo Hospital, Tokyo, Japan. ²Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan. ³Department of Infectious Diseases, The University of Tokyo Hospital, Tokyo, Japan. ⁴Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan. ⁵Bioscience Division, TOSOH Corporation, Kanagawa, Japan. ⁶These authors contributed equally: Takuya Shimura, Makoto Kurano. [™]email: kurano-tky@umin.ac.jp; yatoyuta-tky@umin.ac.jp;

Received: 28 June 2021 Accepted: 7 July 2021

Published online: 28 July 2021

Fig. 1 Serum PS-PLA₁ levels in subjects with COVID-19. The serum PS-PLA₁ levels were measured in patients with COVID-19 (severity level 1, n=41; severity level 2, n=62; severity level 3, n=24) and healthy subjects (n=58). **A** Time course of serum PS-PLA₁ levels in symptomatic COVID-19 patients and distribution of serum PS-PLA₁ levels in healthy subjects. The differences in the levels between the healthy subjects and COVID-19 patients were assessed by the Mann–Whitney U test, *P < 0.01 vs. healthy subjects. Differences between the serum PS-PLA₁ levels measured on specified days after the onset of COVID-19 symptoms and those measured after day 21 from symptom onset in individual subjects were assessed by the Wilcoxon signed-rank sum test, TP 0.01 vs. level measured after day 21. **B** Time course of the serum PS-PLA₁ levels in the COVID-19 patients for whom samples collected before disease onset (Pre) were available (n=7). **C-F** Time course of serum PS-PLA₁ levels in patients with mild (**C**), moderate (**D**), and severe COVID-19 (**E**). *P < 0.01; $^TP < 0.05$ vs. level measured after day 21 from symptom onset. **F** Differences in the serum PS-PLA₁ levels on days 7–8, days 9–10, and days 11–12. The differences were assessed using an independent Kruskal–Wallis test, followed by the Games Howell test for post hoc analysis. *P < 0.01; $^TP < 0.05$. The horizontal bars represent the means of independent samples

result in the development of severe COVID-19 as a result of a cytokine storm. The negative association with the serum D-dimer levels might be consistent with the serum PS-PLA₁ levels being lower in patients with severe COVID-19 than in those with moderately severe disease, while the positive correlation with the serum CRP levels might be consistent with the elevated serum PS-PLA₁ levels declining faster in patients with mild COVID-19 than in those with moderate COVID-19. PS-PLA₁ is expressed in immune cells, such as dendritic cells, T cells, and macrophages, and in various tissues, including the lung and liver [7]. Considering these origins, a possible mechanism of modulation of the serum PS-PLA₁ level in a bell-shaped manner depending on the severity of

COVID-19 might be impaired upregulation of PS-PLA₁ expression in immune cells in severe COVID-19 patients, resulting in inappropriate immune responses, and/or the severely injured lungs and/or liver in severe COVID-19 failing to maintain adequate serum PS-PLA₁ levels. Interestingly, the serum PS-PLA₁ levels were negatively correlated with the serum anti-SARS-CoV-2 antibody levels. Considering that LysoPS plays important roles in the biology of lymphocytes [2], PS-PLA₁ might affect the generation of anti-SARS-CoV-2 antibodies through LysoPS.

In summary, COVID-19 patients showed elevated serum levels of PS-PLA₁, an enzyme involved in the synthesis of LysoPS, in a bell-shaped manner depending on the severity of COVID-19. The

alteration of the serum PS-PLA₁ levels might represent compensatory biological responses directed at suppressing immunological overreaction of the body in COVID-19, which is an important risk factor for mortality from the disease.

REFERENCES

- 1. Inoue A, Ishiguro J, Kitamura H, Arima N, Okutani M, Shuto A, et al. TGFalpha shedding assay: an accurate and versatile method for detecting GPCR activation. Nat Methods. 2012;9:1021–9.
- 2. Bellini F, Bruni A. Role of a serum phospholipase A1 in the phosphatidylserine-induced T cell inhibition. FEBS Lett. 1993;316:1–4.
- Nishikawa M, Kurano M, Ikeda H, Aoki J, Yatomi Y. Lysophosphatidylserine has bilateral effects on macrophages in the pathogenesis of atherosclerosis. J Atheroscler Thromb. 2015;22:518–26.
- Frasch SC, Bratton DL. Emerging roles for lysophosphatidylserine in resolution of inflammation. Prog Lipid Res. 2012;51:199–207.
- Aoki J, Nagai Y, Hosono H, Inoue K, Arai H. Structure and function of phosphaticlylserine-specific phospholipase A1. Biochim Biophys Acta. 2002;1582:26–32.
- Nakamura K, Igarashi K, Ohkawa R, Saiki N, Nagasaki M, Uno K, et al. A novel enzyme immunoassay for the determination of phosphatidylserine-specific phospholipase A(1) in human serum samples. Clin Chim Acta. 2010;411:1090–4.
- 7. Zhao Y, Hasse S, Bourgoin SG. Phosphatidylserine-specific phospholipase A1: a friend or the devil in disguise. Prog Lipid Res. 2021;83:101112.
- 8. Mariano RZ, Rio A, Reis F. Covid-19 overlapping with systemic sclerosis. Rev Soc Bras Med Trop. 2020;53:e20200450.

ACKNOWLEDGEMENTS

This work was supported by Research Grants in the Natural Sciences from the Mitsubishi Foundation (MK) and Leading Advanced Projects for medical innovation (LEAP) from AMED (JA and YY).

AUTHOR CONTRIBUTIONS

Conceptualization: MK, JA, KM, and YY. Methodology: TS, SS, and KI. Investigation: TS, MK, KO, DJ, and KK. Visualization: TS, MK. Funding acquisition: MK, JA, and YY. Project administration: MK, KO, DJ, KM, and YY. Supervision: MK, YY. Writing—original draft: MK. Writing—review and editing: KO, DJ, KK, KI, JA, KM, and YY.

COMPETING INTERESTS

KI and RS are employees of TOSOH Corporation.

ADDITIONAL INFORMATION

Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41423-021-00744-2.

Correspondence and requests for materials should be addressed to M.K. or Y.Y.

Reprints and permission information is available at http://www.nature.com/reprints