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Abstract
Despite advances in antiretroviral treatment (ART), human immunodeficiency 
virus (HIV) continues to be a major global public health issue owing to the 
increased mortality rates related to the prevalent oncogenic viruses among people 
living with HIV (PLWH). Human papillomavirus (HPV) is the most common 
sexually transmitted viral disease in both men and women worldwide. High-risk 
or oncogenic HPV types are associated with the development of HPV-related 
malignancies, including cervical, penile, and anal cancer, in addition to oral 
cancers. The incidence of anal squamous cell cancers is increasing among PLWH, 
necessitating the need for reliable screening methods in this population at risk. In 
fact, the currently used screening methods, including the Pap smear, are invasive 
and are neither sensitive nor specific. Investigators are interested in circulatory 
and tissue micro ribonucleic acids (miRNAs), as these small non-coding RNAs are 
ideal biomarkers for early detection and prognosis of cancer. Multiple miRNAs 
are deregulated during HIV and HPV infection and their deregulation contributes 
to the pathogenesis of disease. Here, we will review the molecular basis of HIV 
and HPV co-infections and focus on the pathogenesis and epidemiology of anal 
cancer in PLWH. The limitations of screening for anal cancer and the need for a 
reliable screening program that involves specific miRNAs with diagnostic and 
therapeutic values is also discussed.
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Core Tip: Human papillomavirus (HPV) is the most common sexually transmitted 
infection worldwide. People living with human immunodeficiency virus (HIV) are at 
high risk of acquiring HPV infection and developing HPV-associated malignancies, 
including anal cancer, independent of acquired immune deficiency syndrome. This 
high risk is associated with several factors including the dysregulation of cellular micro 
ribonucleic acids (miRNAs) and the direct interaction between HIV and HPV. Dysreg-
ulated miRNAs are known to play a role in HIV, HPV infections, and HPV-related 
cancers. Here, we discuss the role of HIV in HPV-associated pathogenesis and 
important implications of miRNAs on current screening for and early detection of anal 
cancer.
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INTRODUCTION
At the end of 2019, approximately 36900000 people were estimated to be living with 
human immunodeficiency virus (HIV)[1]. Despite the advances in antiretroviral 
treatment (ART) and the increase in number of patients accessing ART since 2010, 
cancer mortality in people living with HIV (PLWH) remains high[2]. Mortality from 
HIV associated illnesses decreased substantially since its peak in 2004 mainly due to a 
decrease in the incidence of opportunistic infections. With the introduction of highly 
active ART in 1996, there has been a substantial improvement of clinical outcomes in 
PLWH[3-5]. This has brought an increase in life expectancy and a change in the age 
distribution of PLWH[6,7]. The risk of developing cancer increases with age; and as 
PLWH are now aging, the burden of cancer has substantially increased in this 
population. Since the beginning of the epidemic, HIV was associated with Kaposi’s 
sarcoma, aggressive B-cell lymphomas, and invasive cervical cancer. Diagnosis of 
these cancers in PLWH confers the diagnosis of acquired immune deficiency 
syndrome (AIDS) and are thus termed as AIDS-defining cancers. Other types of 
cancers are non-AIDS defining, such as anal carcinoma, Hodgkin lymphoma, hepato-
cellular carcinoma, and lung cancer. These have been increasingly recognized to occur 
in PLWH and have become a leading cause of death[8-11]. One reason behind the 
increase in the rate of non-AIDS defining cancers in PLWH is increased prevalence of 
oncogenic viruses in this population, one of which is human papilloma virus (HPV)
[12].

HPV is the most common sexually transmitted viral disease in both men and 
women worldwide[13]. HPV targets epithelial cells and includes more than 200 types 
that exist with genomic differences. About 40 types specifically infect the anogenital 
epithelium and upper digestive tract, among which 15-20 types are considered as 
high-risk HPV (HR-HPV), including HPV16 and HPV18[14]. Oncogenic or HR-HPV 
types are associated with the development of high-grade intraepithelial lesions and 
consequently, cancers of the anogenital region and oropharynx. About 99.9% of 
cervical cancers and 80%-90% of anal squamous cell cancers (ASCC) are associated 
with infection with HR-HPV[15]. While the incidence of cervical cancer has remained 
stable over the years, the incidence of ASCC has increased, particularly in PLWH[16]. 
With these increasing trends, it is imperative to screen for anal cancer in this high-risk 
population. However, many of the currently used screening methods, including the 
Pap smear, are invasive and require specialized equipment. In addition, the Pap smear 
is neither specific (specificity is approximately 75%) nor sensitive (approximately 55%)
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[17]. Thus, identification of non-invasive and more effective methods is crucial.
Micro ribonucleic acids (miRNAs) have emerged as clinically useful molecular 

biomarkers for better management and treatment of many types of cancers. In HPV-
associated cancers, miRNAs have been shown to be deregulated and involved in the 
pathogenesis of the disease. Given that the molecular mechanisms involved in anal 
cancer development during HIV infection are still unclear, characterization of miRNA 
expression in the context of HIV infection and anal cancer and the identification of 
relevant biomarkers could help elucidate the potential role of HIV and HPV in the 
progression of ASCC, as well as help prevent and treat anal cancer.

In this review, we will focus on the mechanisms and pathogenesis underlying HIV 
and HPV infections and the epidemiology and risk factors of anal cancer. We will also 
discuss the need for anal cancer screening, especially in HIV-infected individuals and 
the potential implementation of miRNAs as screening and therapeutic tools in high-
risk populations.

HIV INFECTION
HIV-1 is the causative agent of AIDS. HIV-1 is a retrovirus whose genome is composed 
of 2 copies of single-stranded RNA molecules. HIV genome has 9 open reading frames 
and encodes for precursor proteins that give rise to 15 viral proteins. These proteins 
can be classified into structural and regulatory. The structural proteins include Gag, 
Env, and Pol. The matrix, capsid (CA), nucleocapsid, and p6 proteins are generated 
from Gag precursor and make up the core of the virus particle. The Env polyprotein is 
subsequently processed to generate the envelope proteins, gp120 and gp41. The pol 
gene encodes viral enzymes: Protease (PR), reverse transcriptase, and integrase. The 
HIV genome also encodes essential regulatory elements, Tat and Rev, and accessory 
regulatory proteins: Vif, Vpr and Nef[18].

HIV envelope glycoprotein mediates HIV cell entry by binding to its primary 
receptor, CD4 molecule, expressed on target cells, such as CD4+ T cells, monocytes, 
and macrophages. HIV entry also requires binding a chemokine coreceptor, CCR5 or 
CXCR4[19]. Viral entry is followed by reverse transcription of the viral RNA genome, 
integration of the provirus into cellular genome, synthesis of viral genome, and 
assembly and budding of the newly formed virions. When no new viral proteins are 
produced, infected cells can revert to latency[20].

HIV targets and kills CD4+ T cells, monocytes, macrophages, and microglial cells, 
however the main targets of HIV infection and subsequent destruction are the CD4+ T 
cells[21,22].

The mechanisms underlying CD4+ T cell death are still not well defined. The 
permissivity status of CD4+ T cells during HIV infection determines the pathway by 
which these cells die (Figure 1). Abortively-infected[23,24], productively infected[25-
28], and HIV-uninfected (bystander) CD4+ T cells undergo cell death through different 
mechanisms[27].

HIV INFECTION AND CD8+ T CELL RESPONSES
In addition to progressive CD4 lymphopenia, HIV infection is also associated with 
impaired HIV-specific CD8+ T cell responses. CD8+ T cells play an important role in 
eliminating viruses. Recognition of infected cells occurs through T cell receptor that 
binds processed viral antigen expressed by major histocompatibility complex (MHC) I 
molecules on the surface of infected cells. Recognition is followed by a cascade of 
activation events leading to the release of granzymes and perforin and killing of 
infected cell. Activated CD8+ T cells also release anti-viral cytokines that act to control 
viral replication[29]. Despite the over activation of the immune system during HIV 
infection, it seems that HIV-specific CD8+ T cell responses fail to clear viral infection
[30-32] and this can be attributed to several factors. HIV-infected cells sometimes 
revert to latency and are known to act as viral reservoirs. In this case, the absence of 
HIV protein expression on the surface of infected cells hinders recognition by CD8+ T 
cells[33]. Interestingly, several studies have shown that HIV proteins are capable of 
escaping CD8+ T cell recognition by modulating the expression of MHC I on surface of 
infected cells (Figure 2)[34]. Andrieu et al[35] showed that the Nef protein can down-
regulate surface MHC I expression on DC, thereby impairing CD8+ T-cell maturation. 
In addition, HIV viruses are prone to rapid mutations which enables them to escape 
immune surveillance[36,37]. Chronic immune stimulation can have adverse effects on 
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Figure 1 Mechanisms of CD4+ T cell death during human immunodeficiency virus infection. A: Unsuccessful human immunodeficiency virus (HIV) infection can lead to HIV-infected CD4+ T cell death by pyroptosis, an inflammatory 
programmed cell death that occurs via caspase-1 activation. As a result, inflammatory signals, such as Interleukin-1β are released. The accumulation of unintegrated reverse transcripts, following viral entry and reverse transcription, can indirectly activate 
caspase-1 and induce pyroptosis in resting CD4+ T cells with abortive viral infection. Pyroptosis is thought to greatly contribute to the rapid depletion of CD4+ T cells and development of chronic inflammation, as a result of proinflammatory cytokine release 
from dying CD4+ T cells, which in turn causes the recruitment of uninfected and naïve CD4+ T cells into the lymphoid tissues. These cytokines trigger pyroptosis in the recruited cells, leading to a vicious cycle of inflammation, thereby enhancing HIV 
pathogenesis by creating an overactive immune environment and further cell death; B: Cell death can occur in productively infected CD4+ T cells, following successful HIV integration and expression of HIV protease (PR). HIV PR can cleave cellular 
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procaspase-8 and generate Casp8p41. This fragment activates the transcription factor NF-kappaB inhibitor and thus, induces HIV replication by upregulating HIV long terminal repeats (LTRs). Casp8p41 expression promotes inflammatory responses by 
enhancing the production of pro-inflammatory cytokines. Besides, Casp8p41 induces apoptosis by directly co-localizing with the mitochondria and depolarizing its outer membrane. The subsequent release of cytochrome c from mitochondria leads to 
activation of caspase 9 and cell death. Another mechanism by which viral integration triggers cell death is through the activation of deoxyribonucleic acid-dependent protein kinase, resulting in phosphorylation of p53 and activation of p53-dependent cell 
death program. HIV Tat, Nef, and Vpr can have both pro- and anti- apoptotic effects. On the other hand, gp120, Vpu, and protease have pro-apoptotic effects. HIV-infected cells can be killed by cytotoxic lymphocytes, natural killer cells and CD8+ T cells, 
which become highly active during infection; C: HIV-uninfected cells, known as bystander cells, usually die by apoptosis during the course of infection, due to either: upregulation of death ligands (Fas, TRAIL, TNF), activation-induced cell death due to 
chronic inflammation and over activation of immune cells, or direct cytotoxic effects of soluble HIV proteins (Tat, gp120). DNA-PK: DNA-dependent protein kinase.

CD8+ T cell function. Several inhibitory molecules (Figure 2) are expressed by CD8+ T 
cells during chronic inflammation, and therefore impair the function of HIV-specific 
CD8+ T cell response[38]. Importantly, a small fraction of CD8+ T cells become 
infected with HIV and are susceptible to the direct cytotoxic effects of the virus[39,40]. 
It has also been shown that CD8+ T cell counts begin to decline during late stages of 
infection[41]. The pro-apoptotic properties of HIV gp120 protein may contribute to this 
decline[42,43]. Several studies showed that CD4+ T cell loss also impacts the function 
of CD8+ T cell, whereby CD4+ T cells are required to maintain cell-mediated immune 
responses against HIV[44,45]. Tregs, a subpopulation of CD4+ T cells that have a 
regulatory and suppressive role in autoimmune diseases and cancer, have been shown 
to contribute to the progression of AIDS disease by inhibiting HIV-specific CD4+ and 
CD8+ T cell responses[46].

HPV GENOME
HPV can deregulate cellular proteins, including p53 and Retinoblastoma protein 
(pRb), thus mediating epithelial transformation and malignancy. HPV genome 
consists of a circular DNA that encodes the early proteins E1, E2, E4, E5, E6, and E7, 
and the late proteins L1 and L2 (Figure 3). E1 and E2 play an important role during 
HPV replication by binding to the viral replication origin, whereas E4 proteins are 
involved in virion release. E5, E6, and E7 are viral oncoproteins whose increased 
expression and activity is associated with enhanced proliferation of HPV-infected 
epithelial cells. L1 and L2 are structural proteins that form the viral capsid[47].

HPV INFECTION AND CD8+ T CELL RESPONSES
CD8+ T cells play a key role in the immune responses against HPV. In vivo studies 
using mouse models have shown that cells expressing HPV-16 E6 and E7 antigens are 
recognized and killed by cytotoxic T lymphocyte (CTL) cells[48,49]. In fact, E7-specific 
CTLs were detected in lesions containing tumor cells[50]. CD8+ T cells recognize viral 
antigens presented by MHC I/peptide complexes expressed on the surface of infected 
cells. However, this interaction is not sufficient to induce the killing of the infected cell. 
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Figure 2 Possible mechanisms of direct and indirect interactions between human papillomavirus and human immunodeficiency virus to evade the immune system and mediate human papillomavirus 
carcinogenesis. A: Human immunodeficiency virus (HIV) and human papillomavirus (HPV) contribute to HPV-related carcinogenesis and evasion of immune cells through several mechanisms involving direct interaction between HIV and HPV proteins 
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in HPV-infected keratinocytes. HPV E5 oncoprotein downregulates major histocompatibility complex (MHC) II expression and sequesters human leukocyte antigen (HLA) class I complexes in keratinocytes, thereby blocking transport of HLA class I 
complexes to cell membrane surface. HPV E6 exerts oncogenic effects, mainly through deregulation of p53 and induction of cell cycle arrest. HPV E7 exerts oncogenic activity through deregulating pRB. It promotes downregulation of MHC class I 
expression through downregulating peptide transporter 1 associated with antigen processing (TAP1) and binding to TAP transporter, and thus inhibiting peptide loading into MHC I antigens. It also downregulates promotor of MHC I heavy chain. 
Importantly, HIV Tat upregulates the expression of HPV16 E6 and E7, enhancing their oncogenic effects. It also increases the expression of HPV L1. HIV Rev indirectly upregulates HPV L1 expression. HIV Vpr interacts with HPV E6 protein to induce cell 
cycle arrest and oncogenesis; B: HIV infection diminishes immune response to HPV infection, resulting in HPV persistence and pathogenesis. Failure of CD8+ T cells to kill HPV-infected keratinocytes is a major event in HIV and HPV co-infection and 
occurs through multiple mechanisms. In addition to loss of CD4+ T cells due to infection with HIV, downregulation of MHC I expression on dendritic cells (DC) by HIV inhibits CD8+ T cell maturation. A small fraction of CD8+ T cells become infected with 
HIV and are susceptible to the direct cytotoxic effects of the virus. Moreover, HIV gp120 interacts with CXCR4 on CD8+ T cells and affects their function. Other factors also contribute to inhibition of HIV-specific CD4+ and CD8+ T cell responses and 
include activation of Tregs and the expression of inhibitory molecules (programmed death-1 [PD-1], CD160, lymphocyte activation gene 3, cytotoxic T lymphocyte antigen-4 [CTLA-4]) by CD8+ T cells during chronic inflammation induced by HIV.

Signaling from activated dendritic cells and virus specific CD4+ T cells is highly 
important for stimulating and maintaining an efficient CTL activation[51]. It has been 
reported that peripheral blood mononuclear cell (PBMC) cultures from healthy 
individuals showed HPV16-specific CD4+ T-cell and CTL responses directed against 
HPV16 E2, E6 and/or E7[52-55]. Activated circulatory CD4+ and CD8+ T cells migrate 
from peripheral blood to infected tissues in healthy individuals[56]. Interestingly, 
these responses are mostly detected in women without cervical intraepithelial 
neoplasia (CIN)[57], and less commonly in women with CIN[54]. Nakagawa et al[55] 
also showed that the absence of CTL response to E6 proteins is associated with 
persistence of HPV16 infection in HPV-infected women without squamous intrae-
pithelial lesions. HPV deregulates MHC I expression during infection (Figure 2). 
Multiple studies have reported the down regulation of MHC I expression in cervical 
cancer cells[57] and laryngeal papilloma[58]. This may be due to the loss of the peptide 
transporter 1 associated with antigen processing (TAP1), whose promotor appears to 
be downregulated by HPV 16 and 18 E7. The latter proteins also downregulate the 
promotor of MHC class I heavy chain[59]. A study has documented that HPV 11 E7 
binds to the TAP transporter protein, thereby blocking peptide loading into MHC I 
antigens[60]. Other studies have reported that HPV 16 E5 plays a role in sequestering 
human leukocyte antigen class I complexes in the Golgi apparatus, which thus 
prevents their transport to the cell membrane surface[61]. The expression of MHC II is 
also modulated during HPV infection and carcinogenesis. MHC II are usually 
expressed by antigen presenting cells only however, it has been shown that 
keratinocytes, in cervical premalignant lesions and cancer, upregulate the expression 
of MHC II, because of the production of pro-inflammatory cytokines. On the other 
hand, HPV 16 E5 can block the expression of these molecules[62].

Nevertheless, the induction of a systemic T cell-mediated response against HPV 
proteins (E6, E7, and others) results in successful viral clearance in healthy individuals. 
In contrast, HIV infection leads to a progressive loss of CD4+ T cells[63]. Thus, even 
though antigen presenting cells express and present HPV peptides on their cell 
surface, in the absence of CD4+ T cell, CD8+ T cells fail to maintain their activity and 
thus, fail to kill HPV-infected cells.



Al Bitar S et al. miRNAs and anal cancer screening

WJGP https://www.wjgnet.com 66 July 22, 2021 Volume 12 Issue 4

Figure 3 Human papillomavirus genome organization and function. Human papillomavirus (HPV) has a circular double-stranded genome, which is 
divided into three regions: early, late, and non-coding long control region. The latter regulates transcription and replication of viral deoxyribonucleic acid. The early 
and late regions encode eight proteins whose major functions are shown.

HPV and HIV have developed a wide spectrum of mechanisms to evade immune 
responses. Given the ability of both viruses to modulate cellular pathways in infected 
and uninfected cells, and thus immune surveillance and responses[64], many 
mechanisms of immune evasion may be possible (Figure 2). HIV infection may directly 
or indirectly result in protecting HPV-infected keratinocytes from CTL-mediated 
killing. Therefore, HIV may affect both keratinocytes and CD8+ T cells, and thus favor 
HPV pathogenesis. Importantly, HIV proteins have been shown to interact with HPV 
proteins directly and indirectly by enhancing their expression and/or activation, 
promoting cancer[65-68]. HIV Tat increases the expression of HPV16 E6 and E7, 
enhancing their oncogenic effects. It also increases the expression of HPV L1, which 
forms the exterior of the virion and mediates initial attachment to target cells[65,66]. 
Rev indirectly upregulates HPV L1 expression[67]. Vpr interacts with HPV E6 protein 
to induce cell cycle arrest in cervical cancer cells[68]. However, evidence of interaction 
between the two viruses remains scarce and needs further investigation.

ANAL SQUAMOUS CELL CANCER PATHOGENESIS
ASCC are cancers that arise in the transitional or squamous zone of the anal canal and 
are mostly caused by HPV16 and 18. It is believed that the basal layer cells in the 
epithelium of this transitional zone can become infected with HPV after the occurrence 
of micro-abrasions. Most individuals who acquire HPV mount the appropriate 
immune response and clear HPV infection within a year. However, HPV may persist 
in others and could lead to either low-grade or high-grad (HSIL) squamous intrae-
pithelial lesions , and can be further classified into anal intraepithelial neoplasia (AIN) 
1, 2 or 3[69,70].

ANAL SQUAMOUS CELL CANCER EPIDEMIOLOGY AND RISK FACTORS
Anal cancer is uncommon with 48541 new cases reported worldwide in 2018 as by the 
GLOBOCAN estimates[71]. However, its epidemiology has changed over the past 2 
decades. A steady increase in the incidence and prevalence rates of ASCC has been 
reported. In the United Kingdom, a 70% increase in its incidence rates has been noted 
since the early 1990s[72]. The United States has reported similar trends with a 2.9% 
increase in incident rates each year since 1975[73]. In 2021, there will be an estimated 
9090 new anal cancer cases and 1430 new anal cancer deaths[74]. The increase in 
incidence has been associated with multiple factors that include lifetime number of 
sexual partners, smoking, receptive anal intercourse, genital warts, and infection with 
HIV[75-77]. More than 90% of ASCCs have been found to be related to HPV, mainly 
HPV 16 and 18. Among men, the highest proportion of HPV is in men who have sex 
with men (MSM) and ranges between 50%-60%[76,78]. This proportion is even higher 
in HIV-infected MSM and reaches 90% in some studies[79,80]. Additionally, this 
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population is infected with multiple HR-HPV types[81,82]. Not surprisingly, the 
prevalence of HSIL and anal cancer mirrors that of anal HPV in these populations 
where the incidence of neoplasia is higher than that of the general population. 
Compared to heterosexual men, MSMs have a 20 times increased risk of developing 
ASCC. HIV-positive MSMs have an even greater risk[76].

An obvious relationship between HIV, HPV, and anal cancer was illustrated in a 
population study in the United States between 1980-2005[73]. Authors found that HIV 
infection had a strong impact on the trends of anal cancer among males where 
incidence rate increased by 3.4% annually overall and by 1.7% in those without HIV-
infection. A meta-analysis of 53 studies by Machalek et al[76] assessed the prevalence 
and incidence of HPV, AIN, and anal cancer in MSM and reported a substantial 
difference between HIV-positive and HIV-negative men for prevalence of any type of 
HPV (P = 0.005), including any HR-HPV (P = 0.01), prevalence of any anal cytological 
abnormality (P = 0.005), and low-grade anal lesions (P = 0.01). Analysis of recent 
studies reporting on histological abnormalities, high-grade AIN, and anal cancer 
revealed a significant difference between HIV-positive MSM vs HIV-negative MSM
[76]. In another study, the incident rate for anal cancer was reported to be 69 per 
100,000 person-years (PY) in HIV-positive MSMs vs 14 per 100,000 PY in HIV-negative 
MSMs[83]. Contrary to AIDS defining cancers, whose rates have decreased after the 
introduction of ART, the incidence rates of ASCC have shown an increase by 3%[8,76,
84]. This may be attributable to a longer lifespan of PLWH allowing them to live 
longer with oncogenic HPV giving time for the development of HSIL and ASCC. In 
addition, PLWH have been found to have multiple types of HPV with Müller et al[82] 
reporting PLWH having a 7 times higher risk of having multiple types of HPV as 
compared to HIV-negative individuals.

The link between a lower rate of HR-HPV clearance and development of ASCC in 
PLWH is still being investigated. Studies have shown that in HIV-positive individuals, 
HR-HPV infection is cleared at a slower rate than HIV-negative individuals. Geskus et 
al[85] observed that HPV16 had the lowest clearance for both prevalent positive and 
incident positive infection. Additionally, authors reported a decreasing clearance rate 
with increasing HIV viral load. Results from a recently updated meta-analysis showed 
that clearance rate of HPV infection among PLWH was approximately half compared 
to that of HIV-negative individuals, with similar findings reported for HR-HPV[86]. 
Whether CD4 count affects the clearance rate or not is not well established. In the same 
meta-analysis above, Looker et al[86] reported a possible, but non-significant, 
reduction in clearance of HPV with lower CD4 counts. In a nested case-control study 
from the Swiss HIV Cohort Study, lower CD4 counts in PLWH were correlated with 
the development of ASCC. Authors reported that the best predictor was a CD4 count 
6-7 years prior to ASCC diagnosis. Beyond that point, authors found that the ASCC 
risk was less sensitive to CD4 counts, highlighting the importance of starting ART 
early before the establishment of precancerous lesions[87].

ANAL CANCER AND SCREENING
There are no formal guidelines on anal cancer screening due to the lack of trials 
assessing the effectiveness of such screening practices. However, with the accumu-
lating evidence of an increasing incidence of anal cancer in PLWH, there is increased 
advocacy for screening in these high-risk populations, drawing on the proven value of 
cervical cytology in reducing cervical cancer. Additionally, cost-effective models of 
screening MSM for AIN every 2-3 years have shown possible gains in life-expectancy 
and quality of life[88,89].

Screening consists of detection and treatment of anal HSIL. Detection can be done 
through anal cytology, digital rectal examination, high resolution anoscopy (HRA), 
and/or biopsy. While some experts have advocated the use of HRA for initial 
screening because of the high prevalence of AIN in PLWH and MSM, anal cytology 
remains a preferred initial method due to limited availability of HRA especially in 
developing countries[64]. Yet, all the previously mentioned tools have several 
limitations and disadvantages. For example, HRA is invasive, and cytology is neither 
sensitive nor specific. Therefore, a non-invasive method with high sensitivity and 
specificity for detection of precancerous and cancerous anal lesions is needed.
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ROLE OF MIRNAS AS POTENTIAL BIOMARKERS FOR ANAL CANCER 
SCREENING IN PLWH
Circulatory and tissue miRNAs have become of interest to investigators, as these small 
non-coding RNAs possess distinctive properties that make them ideal biomarkers for 
detection and prognosis of cancer. They play an important role in gene regulation by 
inducing the degradation and inhibiting the translation of the corresponding mRNAs
[90,91]. They can also activate the expression of genes by targeting their promotors[92,
93]. They are well known for their pleiotropic effects in many important cellular 
processes, such as apoptosis, proliferation, and differentiation[94]. They are signi-
ficantly stable in the circulation, as well as in plasma and serum[95]. miRNAs are 
dysregulated in many cancers, including HPV-related cancers and their deregulation 
contributes to pathogenesis of disease[96-98]. Although several miRNAs were 
identified in different types of cancer, they have not been used in clinical practice, 
possibly due to the lack of standardized methods, often leading to contradicting data
[98,99]. Exosome-encapsulated miRNAs are currently investigated to overcome the 
challenges associated with free-circulating miRNAs[100,101].

Globular profiling of miRNAs in cancer and normal tissues has been established in 
different types of cancers, including breast[102], lung[103], colon, liver, and pancreatic
[104] cancers, which have allowed for the identification of a series of miRNAs that are 
deregulated in these cancers. However, an invasive method, such as surgery and 
biopsy collection, is needed to analyze the tissues. Thus, researchers are investigating 
the use of plasma and serum miRNAs as potential circulatory biomarkers for different 
purposes. This would allow for non-invasive quantification of these biomarkers and 
potentially for detection of premalignant lesions and screening of early tumorigenesis. 
In the context of HPV-associated cancer, miRNAs have been studied and documented 
as mediators or suppressors of pathogenesis[96,97,105]. Some of these miRNAs have 
been shown to be deregulated by HPV E5, E6, and E7 oncoproteins in different cells 
and tissues (Table 1). By downregulating p53, E6 alters the expression of many 
miRNAs that are transcribed by p53. On the other hand, E7 releases E2F transcription 
factor from pRB-E2F complex by degrading pRB. As a result, E2F becomes free to 
activate the transcription of many miRNAs. The mechanism by which E5 deregulates 
cellular miRNAs is still unclear[106]. The deregulation of many of these miRNAs was 
shown to affect several hallmarks of cancer, including enhanced proliferation, 
inhibition of apoptosis, invasion, and metastasis. A recent study showed that miR-129 
was significantly upregulated in the serum and cervical cancer tissues collected from 
72 patients, suggesting the possibility of using this miRNA as a biomarker for the 
detection of cervical cancer. Interestingly, HPV typing detected HPV16 in all cancer 
samples studied[107]. Another study identified a miRNA signature panel consisting of 
9 miRNAs (miR-9, miR-15b, miR-20a, miR-31, miR-93, miR-183, miR-184, miR-222, and 
let-7b) with a combined area under the curve of 0.89 for CIN3 detection in HPV-
positive self-samples of women with CIN3[108]. Recently, Shi et al[109] identified an 
optimal subset of 7 signature miRNAs, including miR144, miR147b, miR2182, miR425, 
miR451, miR483, and miR486 in cervical cancer. Functional enrichment analysis 
showed that the latter miRNAs are involved in carcinogenic pathways, such as Wnt 
signaling pathway and transforming growth factor-β signaling pathway. Importantly, 
altered miRNAs have been investigated mainly in cervical cancer cell lines[96] and 
cervical carcinoma samples[110]. However, miRNAs have been less studied in anal 
cancer and a single study showed that HPV16-E7 protein is capable of inducing miR-
15b in anal carcinoma biopsies[111].

HIV infection also dysregulates cellular miRNA biogenesis and expression profiles
[112-114]. For example, HIV Tat and Vpr affect miRNA biogenesis by binding Dicer or 
Drosha[115-117], while trans-activation response modulates TRBP, an important 
component of the miRNA generation complex. HIV infection is known to both 
upregulate and downregulate several cellular miRNAs in HIV-infected human PBMC, 
T cells, monocyte-derived macrophages (MDMs), latently infected CD4+ T cells, 
plasma samples, HUT78 cells, and CD4+ T cells from either acute or chronic HIV-
infected individuals. Few studies determined the expression of cellular miRNAs in 
HIV-infected cell lines (Table 2). Recently, Biswas et al[118] established a comparative 
global miRNA expression profile in human PBMC and MDMs infected with HIV-
1/HIV-2. Differentially expressed miRNAs were identified in these cells. Pathway 
analysis using Kyoto Encyclopedia of Genes and Genomes database showed that the 
deregulated miRNAs are likely to be involved in p53 signaling pathway, PI3K-Akt 
signaling pathways, Mitogen-activated protein kinase signaling pathways, FoxO 
signaling pathway, and NF-kappaB inhibitor signaling pathway, all of which play a 
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Table 1 Cellular micro ribonucleic acids deregulated by human papillomavirus proteins

HPV protein miRNA 
target

miRNA 
expression level Sample type Biological effect(s) Ref.

E5 miR-146a + E5-expressing HaCat cells Promoted cell proliferation [106]

miR-203 - E5-expressing HaCat cells Increased expression of p63 [106]

miR-324-5p - E5-expressing HaCat cells Contributed to cervical carcinogenesis [106]

E6 miR-20a + CaSki and SiHa (HPV16+) human 
cervical cell lines

Promoted cell growth through 
downregulating PDCD6 and activating Akt 
and p38

[156]

miR-20b + HeLa (HPV18+), SiHa and Caski human 
cervical cancer cell lines; Cervical 
carcinoma tissues

Reduced TIMP2 expression and induced 
EMT, migration, and invasion

[157]

miR-23b - SiHa and CaSki cell lines Increased expression of uPA and induction 
of migration in human cervical cancer cells

[158]

miR-30c-2* - HPV-infected NSCLC; TL1 cell line Correlated with tumor stage and lymph 
node metastasis 

[159]

miR-34a - CaSki and SiHa cell lines, HPV18-
positive cell lines HeLa and C411, 
HPV68-positive cell line ME180Cervical 
cancer tissues

Inhibited cell proliferation; Increased LDHA 
expression levels, inhibited Warburg effect 
and reprogrammed glycolysis through 
targeting LDHA

[160,161]

miR-145 - Hela, SiHa, and CaSki cell lines; Cervical 
cancer tissues

Modulated invasion and therapy resistance 
of cervical cancer cells

[162]

miR-195 - HeLa and SiHa cell line cervical cancer 
tissue samples

Promoted cell proliferation, invasion, and 
metastasis

[163]

miR-218 - HPV16 positive cervical cell lines and 
tissues; Cervical cancer tissues

Increased expression of LAMB3, SFMFBT1, 
and DCUN1D1, promoted EMT, migration, 
and invasion in cervical cancer associated 
with clinicopathological characteristics of 
patients

[164,165]

miR-375 - SiHa and CaSki cell lines; Cervical tissue 
samples

Modulated EMT in cervical cancer; 
Enhanced invasion and metastasis of 
cervical carcinoma cells through targeting 
SP1

[166,167]

miR-2861 - SiHa and CaSki cell lines; Cervical 
cancer tissues

Enhanced cell proliferation and invasion, 
and inhibited apoptosis in cervical cancer 
cells; Negatively associated with advanced 
tumor stage and lymph node metastasis

[168]

E7 miR-15b + HPV16 E7-expressing tumors from anal 
carcinoma patients; CaSki cell line

Downregulated cyclin E1; Increased 
expression of several E2F-regulated genes

[111]

miR-20a + OSCC tissues Inhibited cell proliferation, invasion, and 
migration

[169]

miR-21 + HPV16 E7-transfected Hela cells; 
Cervical cancer tissue

Enhanced cervical carcinoma cell 
proliferation, growth, and invasion; 
Involved in cervicitis and cervical cancer 
progression

[170,171]

miR-25 + HVK-derived raft tissues infected with 
either HPV16 or HPV18

Increased expression correlated with the 
progression of the cervical lesions, making it 
a potential biomarker for CINs and cervical 
cancer

[96]

miR-27b + HPV 16-positive human cervical 
carcinoma tissues; SiHa and CaSki cell 
lines

Reduced PLK2 expression; Promoted cell 
proliferation and inhibited paclitaxel-
induced cell apoptosis; Inhibited PPARγ 
expression and promoted proliferation and 
invasion 

[172,173]

miR-205 + HPV-positive keratinocytes Activated Akt pathway and upregulated 
cyclin D1 levels, resulting in increased 
proliferation

[174]

miR-323 + Cervical cancer cell lines transfected 
with HPV 16 E7 and SiHa cervical cancer 
cells

--- [175]

HFK-derived raft cultures with HPV16 E6/E7 miR-16 + --- [96]
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infection; HVK-derived raft tissues 
infected with either HPV16 or HPV18; 
CIN3 and Cervical carcinoma tissues 
with HR HPV infection

miR-22 - HVK-derived raft tissues infected with 
either HPV16 or HPV18

Suppressed tumor growth and metastasis [96,176]

miR-24 + HPV-positive keratinocytes Reduced p27 expression level and enhanced 
proliferation

[174]

miR-29a - HVK-derived raft tissues infected with 
either HPV16 or HPV18

--- [96]

miR-92a + CIN and cervical carcinoma tissues with 
HR HPV infection, and raft tissues with 
HPV16 or HPV18 infection

Increased expression correlated with the 
progression of the cervical lesions, and may 
serve as a biomarker for CINs and cervical 
cancer

[96]

miR-100 - HFK-derived raft cultures with HPV18 
infection

--- [96]

miR-125a - Cervical carcinoma tissuesSiHa and 
HeLa cell lines

Increased STAT3 expression and enhanced 
tumorigenesis and metastasis

[177]

miR-146a-5p - HPV16 E6/E7-positive keratinocytes; 
Hela, SiHa, and CaSki cell lines

Enhanced expression of KDM2B; Promoted 
proliferation and migration 

[178]

miR-203 - NHKs and NFKs expressing E6, E7, or 
combination

Increased expression of p63 and promotion 
of cell proliferation

[179,180]

miR-378 + CIN3 and cervical carcinoma tissues 
with HR HPV infection, and raft tissues 
with HPV16 or HPV18 infection

--- [96]

“+”: Upregulated; “-”: Downregulated; miRNAs: Micro ribonucleic acid; HPV: Human papillomavirus; PDCD6: Programmed cell death 6; TIMP-2: Tissue 
inhibitor of metalloproteinase 2; EMT: Epithelial to mesenchymal transition; NSCLC: Non-small cell lung cancer; LDHA: Lactate dehydrogenase A; 
LAMB3: Laminin 5 β3; SFMFBT1: Scm-like with four MBT domains 1; DCUN1D1: Defective in cullin neddylation 1; Domain containing 1; OSCC: Oral 
squamous cell carcinoma; HVK: Human vaginal keratinocytes; PLK2: Polo-like kinase2; CIN: Cervical intraepithelial neoplasia; HFK: Human foreskin 
keratinocytes; CIN3: Cervical intraepithelial neoplasia 3; HR HPV: High risk HPV.

role in carcinogenesis[118,119]. HIV Tat, Nef, and Vpr have been reported to alter the 
expression levels of many miRNAs and contribute to HIV pathogenesis (Table 3). On 
the other hand, cellular miRNAs also target HIV genome, but it is still unclear whether 
these miRNAs are effective during HIV infection[112].

Overall, molecular mechanisms that contribute to anal cancer pathogenesis and 
progression are still elusive. One of the reasons that little progress has been made in 
understanding the mechanisms of carcinogenesis in this type of cancer is the scarcity 
of in vitro and in vivo model systems for investigating anal cancer. Thus, further 
studies are required to gain insight into the mechanisms involved in anal caner. This is 
particularly important as these mechanisms may involve miRNAs, which may be 
further investigated as potential targets for cancer therapy. The use of miRNA-based 
therapeutics has been investigated in clinical trials in several countries. MicroRNA 
mimics and anti-miRNAs (antagomirs) are now under investigation as potential 
therapeutic agents for multiple cancers. miRNA mimics may be administered to 
replace downregulated miRNAs, which usually act as tumor suppressors in cancers. 
On the other hand, many miRNAs have been targeted for inhibition in the treatment of 
several cancers. These miRNAs are referred to as oncomiRs and their overexpression 
in cancer contributes to pathogenesis. In the context of cervical cancer, Lee et al[110] 
showed that treatment with anti-miR-199a suppressed cervical cell growth in vitro. 
Additionally, a study has shown a promising role for the tumor suppressor miR-34a, 
which is downregulated in HPV-positive cancers, in repressing oncogenic transform-
ations. Both miR-34a and miR-125 are downregulated in cervical cancer samples and 
correlate with cervical cancer invasiveness[120]. Interestingly, a recent phase 1 study 
of MRX34, a liposomal miR-34a mimic, was conducted with patients having advanced 
solid tumors[121]. Thereby, this miRNA may be a good candidate for treatment of 
HPV-related cancers, including anal cancer[122]. In addition, anti-miRs targeted at 
miR-122, which has been shown to be upregulated in HIV-1 infected Jurkat cells, 
reached clinical phase II trials and were investigated for treating hepatitis C infection
[123]. Other candidate miRNAs are being tested in clinical trials, paving the way for 
developing miRNA-based drugs for treating several illnesses and cancer diseases[122,
124].
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LIMITATIONS AND CONSIDERATIONS FOR THE USE OF MIRNAS AS 
BIOMARKERS FOR ANAL CANCER SCREENING
In the case of anal cancer, where HIV and HPV pathogenesis play a role in the 
development of the disease in PLWH, a major challenge is to distinguish HIV-specific 
miRNAs, HPV-specific miRNAs, and HIV and HPV co-infection-specific miRNAs. 
Major limitations include the absence of studies implementing computational models 
to identify these miRNAs, technical issues associated with conventional miRNA 
extraction and detection tools, and scarcity of anal cancer in vitro and in vivo models. 
Ongoing studies are still being conducted to study miRNA profiles during HIV[125-
127] and HPV[128-130] infections. With the appropriate application of advanced 
bioinformatic analysis tools and computational models, the identification of the most 
predictive miRNAs, even from complex datasets would be possible. These tools are 
becoming widespread and have already been used to identify potential miRNA 
biomarkers for Ebola[131] and severe acute respiratory syndrome coronavirus 2[132], 
in addition, these tools have been used to decipher potential miRNA biomarkers in a 
wide variety of cancers, including melanoma[133,134], breast[135], colon[136], and 
lung cancer[137].

In addition to the conventional miRNA detection platforms which include Northern 
blotting, in situ hybridization, next generation sequencing, reverse transcription qPCR, 
and microarrays[138], new miRNA extraction and detection platforms have emerged 
to compensate for the limitations of conventional assays[139]. These technologies are 
referred to as point-of-care (PoC) technologies and include isothermal amplification-
based assays[140], lateral flow assay-based systems[141], nanobead-based[142], 
electro-chemical-based[143], and microfluidic chip-based[144] strategies. The latter, 
which is also known as Lab-on-a-chip or microchip, is highly specific, cost-effective, 
and a quick approach for the multiplexed detection of miRNAs[139]. It has been used 
to test miRNAs in several biological samples, including blood of breast cancer patients
[145]. Importantly, this system has been also used to quantify miRNAs in plasma 
extracellular vesicles (EVs), including exosomes. EVs are secreted by body cells and 
are found in body fluids including plasma, urine, and synovial fluid[146]. They have 
been shown to carry and stabilize miRNAs in the blood[147]. A unique feature of 
exosomes is the presence of cell-specific proteins[148], which enables identification of 
exosomes released from cancer cells. Examining specific miRNAs released from 
tumors and tumor niche, instead of whole blood miRNA profiling would provide a 
more accurate way of distinguishing HIV-specific and HPV-specific miRNAs, given 
the unique viral tropism of each. Exosomal miRNAs would enable the identification of 
the cell origin and might be a better source when compared to non-exosomal, cell-free 
miRNAs. Recently, studies that profiled and analyzed miRNAs from different sources 
were reviewed[149]. Authors concluded that 71% of the studies stated that exosomes 
are the best source of miRNAs as biomarkers. Detecting EVs miRNA signature has 
already been proven to be a good prognostic tool in several cancers including 
colorectal[150] and pancreatic cancer[151].

Interestingly, organ-on-chip and organoids are being used to study infectious 
diseases and cancer. These models can be used to assess HPV virus-Langerhans cells 
interactions[152] and HPV-oral mucosa epithelia interactions[153]. Cell-to-cell 
communication can be also studied by co-culturing cancer cells with immune cells, 
and thus allows the study of cancer-immune interaction. Organoids can be used to 
model tumor-derived EVs, also known as oncosomes, in addition to EVs released by 
stromal cells in tumor microenvironment[154]. Very recently, researchers established 
organoid cultures from human ecto-and endocervix. Cells collected using Pap brush 
method were used to derive organoids from cervical tissue. The established patient-
derived model system resembled causative HPV infection[155], and thus could be 
used for modeling HPV-related pathogenesis, in addition to exploring the role of HPV 
and HIV in deregulating miRNAs. The same derivation method can be used to derive 
organoids from healthy or tumor anal tissue to assess miRNA deregulation by HIV 
and/or HPV. These model systems could be used to test the efficacy of engineered 
miRNA-loaded EVs in targeting anal cancer cells to deliver potential miRNA thera-
peutic molecules[156-180].

It is important to note that although extensive research has been conducted to 
identify candidate miRNA biomarkers for cancer screening, the development of new 
techniques, such as PoC for miRNA detection is still at the very early stage and a work 
on progress. Further progress is required to achieve the desired goal of using PoC 
testing for detecting and distinguishing miRNAs deregulated by oncogenic viral 
infections, including HPV. Therefore, the identification of miRNAs deregulated by 
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Table 2 Cellular micro ribonucleic acids deregulated during human immunodeficiency virus infection

Sample type miRNAs deregulated Ref.      

PBMCs from HIV-infected patients ↑ miR-9; ↓ miR-29c, miR-31, miR-125b, miR-146b-5p, miR-150, Let-7g [181]

T cells from HIV-infected individuals ↓ miR-16, miR-146b, miR-150, miR-223 [182]

HIV-1 infected PBMCs ↑ miR-223; ↓ miR-21, miR-26a, miR-29a, miR-29b, miR-29c, miR-155 [183]

HIV-1 infected PBMCs ↑ miR-3195, miR-3656, miR-4492, and miR-6087; ↓ miR-1273h-3p, miR-1273h-5p, miR-671-
5p, and miR-7-5p

[118]

HIV-2-infected PBMCs ↑ miR-18a-3p and hsa-miR-320b [118]

HIV-2-infected MDMs ↑ miR-542-3p, miR-375, miR-195-5p, miR-30c-2-3p, miR-4802-3p, and miR-26b-5p [118]

HIV-1- and HIV-2-infected MDMs ↓ miR-148b-5p, hsa-miR-26a-2-3p, miR-199a-1, miR-199a-2, and miR-874-5p [118]

HIV-1-transfected HeLa cells ↓ miR-16, miR-93, miR-148b, miR-221 [184]

HIV-1 infected Jurkat cells. ↑ miR-122, miR-297, miR-370, and miR-373; ↓ miR-17-5p and miR-20a [185]

latently infected CD4+ T cells ↑ miR-196b and miR-1290 [186]

PBMCs obtained from HIV-1 positive 
individuals with high viral load

↑ miR19b, miR-34a, miR-144, miR-146a, miR-155, miR-382, miR-615-3p [187]

Plasma obtained from patients with HIV 
infection 

↓ miR-3162-3p [188]

HIV-1-infected HUT78 cells and CD4+ T cells 
from chronic HIV-1 infected individuals 

↓ Let-7 miRs [189]

HIV-1 positive plasma samples in the acute 
stage infection

↑ miR-16-5p, miR-20b-5p, miR-24-3p, miR-142-5p, miR-195-5p, miR-206, miR-223-3p, miR-
885-5p, and let-7 g-3p; ↓ miR-34c-3p, miR-181c-3p, miR-202-3p, and miR-409-3p

[190]

HIV-1 infected CD4+ T cells ↓ miR-20a and miR-106b [191]

↑: Upregulation; ↓: Downregulation; miRNAs: Micro ribonucleic acid; HIV: Human Immunodeficiency virus; PBMC: Peripheral blood mononuclear cells; 
MDM: Monocyte-derived macrophages.

HIV, HPV, and HIV-HPV co-infection warrants further research. More accurate and 
standardized methods are required for implementation of miRNAs as biomarkers for 
anal cancer diagnosis[181-198]. Importantly, the widespread use of high-throughput 
sequencing, PoC technologies, and advanced computational analysis tools may 
facilitate discovering and distinguishing these miRNAs.

CONCLUSION
HPV is the most common sexually transmitted infection worldwide. PLWH are at high 
risk of acquiring HPV infection and developing HPV-associated malignancies, 
independent of AIDS. Anal cancer incidence, though rare in the general population, 
has been rising significantly in PLWH. The lack of standard screening programs 
contributes to the increased incidence of anal cancer, and thus, there is a need for anal 
dysplasia screening and treatment in PLWH. The discovery of highly sensitive and 
specific biomarkers would enable the early detection of anal cancer and the improved 
survival of HIV-infected patients. There is a need for relevant biomarkers that could be 
integrated into clinical practice and thus, aid in the detection, diagnosis, and treatment 
of high-risk patients. miRNAs have become valuable tools for detection and treatment 
of many types of cancer. Given their deregulation and potentially significant role in 
HPV-related pathogenesis and in HIV infections, miRNAs may serve as diagnostic and 
prognostic biomarkers that can enhance HIV patients’ outcomes and provide better 
management of the disease. Genome-wide profiling of miRNAs and validation of 
miRNA targets in tissue and blood samples of people infected with HIV and HR-HPV 
is important to establish miRNA expression signatures in this population and would 
help develop non-invasive miRNA therapeutic strategies for treatment of anal cancer.
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Table 3 Cellular micro ribonucleic acids deregulated by human Immunodeficiency virus proteins

HIV 
protein miRNA target Effect Sample type Biological effect Ref.      

Tat miR-21, miR-29a, miR-222, miR-1290 + Tat101-expressing Jurkat cells; Resting 
PBMCs from healthy donors were 
transiently transfected with Tat101-
expressing vector

Targeted mRNAs of genes 
involved in apoptosis, T cell 
migration, and proliferation

[192]

miR-128a, and miR-3182 - Tat101-expressing Jurkat cells ---- [192]

miR-132 + Tat-transfected astrocytes and neurons, 
astrocytes from Tat-transgenic mice, 
and HIV-infected astrocytes

Involved in the direct 
neurotoxicity of Tat

[193]

miR-129, miR-135a, miR-181a, miR-495, 
miR-523, miR-524, miR-539, let-7

- U-87MG (astrocyte cell line), HEK 
293T, and HeLa cells transfected with 
wild-type Tat

Downregulation of β-catenin 
activity

[194]

miR-101 + BMVECs exposed to Tat C Decreased the expression of VE-
cadherin

[195]

miR-34a and miR-138 + Astrocytoma cell line A172 and rat 
primary astrocytes exposed to Tat

Upregulated NF-κB and 
promoted activation of 
astrocytes

[196]

Nef miR-573 and miR-638 + Human monocytic U937 cells that 
stably expressed HIV-1 Nef

Altered several pathways 
involved in HIV pathogenesis 

[197]

miR16-1, miR-18, miR-19a, miR-20a, miR-21, 
miR-27a, miR-29b, miR-125b, miR-146a, 
miR-146b-3p, miR-181a, miR-223, miR-570, 
miR-610 and miR-624

- Human monocytic U937 cells that 
stably expressed HIV-1 Nef

Altered several pathways 
involved in HIV pathogenesis

[197]

miR-17, miR-19a, miR-19b, miR-20a, miR26a, 
miR-28, miR-29a, miR-29b, miR-29c, miR-
92a, miR-125b, miR-149, miR-150, miR-223, 
miR-324-5p, miR-378 and miR-382 

+ Nef exosomes Inhibited HIV replication [197]

Vpr miR-942-5p + PEL cells Targeted IκBα and activation of 
NF-κB signalling

[198]

miR-711 + PEL cells Directly targeted Notch1 and 
reduced levels of IκBα 
transcript

[198]

“+”: Upregulation; “-”: Downregulation; miRNA: Micro ribonucleic acid; HIV: Human Immunodeficiency virus; HEK: Human embryonic kidney cells; 
BMVEC: Human brain microvascular endothelial cells; PEL: Primary effusion lymphoma; NF-κB: NF-kappaB inhibitor.
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