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Abstract
Kidney diseases are a prevalent health problem around the world. Multidrug 
therapy used in the current routine treatment for kidney diseases can only delay 
disease progression. None of these drugs or treatments can reverse the 
progression to an end-stage of the disease. Therefore, it is crucial to explore novel 
therapeutics to improve patients’ quality of life and possibly cure, reverse, or 
alleviate the kidney disease. Stem cells have promising potentials as a form of 
regenerative medicine for kidney diseases due to their unlimited replication and 
their ability to differentiate into kidney cells in vitro. Mounting evidences from the 
administration of stem cells in an experimental kidney disease model suggested 
that stem cell-based therapy has therapeutic or renoprotective effects to attenuate 
kidney damage while improving the function and structure of both glomerular 
and tubular compartments. This review summarises the current stem cell-based 
therapeutic approaches to treat kidney diseases, including the various cell 
sources, animal models or in vitro studies. The challenges of progressing from 
proof-of-principle in the laboratory to widespread clinical application and the 
human clinical trial outcomes reported to date are also highlighted. The success of 
cell-based therapy could widen the scope of regenerative medicine in the future.
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Core Tip: Stem cells have the potential to be the next regenerative medicine to treat 
kidney diseases. There is mounting evidence suggesting that stem cell-based therapy 
has renoprotective effects to attenuate kidney damage while improving kidney 
function. This review summarises the current stem cell-based therapy approaches to 
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treat kidney diseases in experimental models and the outcomes from human clinical 
trials reported to date.
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INTRODUCTION
Kidney disease is a prevalent global health problem. A new analysis suggested that the 
global prevalence of chronic kidney disease (CKD) in the year 2017, was 9.1% (697.5 
million cases)[1,2]. The World Health Organization has estimated that as many as 5 to 
10 million people die annually from kidney diseases worldwide[3]. By 2040, CKD is 
projected to be the fifth leading cause of death worldwide[4].

To date, there has been no significant breakthrough in the medical treatment of 
kidney diseases, whereas the current routine treatment consisting of multidrug 
therapies can only delay the disease’s progression. These drugs cannot reverse the 
progression into the end-stage kidney disease (ESKD). The current therapeutic 
repertoire to prolong the lifespan of ESKD patients is limited to kidney replacement 
therapy, dialysis or organ transplantation[5]. Due to the high medical cost involved in 
dialysis therapy, which also compromises the patients’ quality of life, dialysis is not an 
ideal solution. This is primarily because dialysis does not restore or substitute all 
kidney functions[6]. Meanwhile, the severe shortage of organ donors and potential 
organ rejection risks limit the practice of kidney transplantations[7]. Therefore, it is 
crucial that medical researchers explore novel therapeutics to improve the quality of 
life for patients with kidney diseases and to potentially cure, reverse, or alleviate the 
kidney disease.

Stem cells are defined as cells capable of self-renewal and can differentiate into a 
variety of cell types. Moreover, stem cells possess cellular plasticity and easily expand 
in vitro, which are the beneficial properties of stem cell therapy. Stem cells have been 
extensively explored in treating cardiac, neuron, vascular, immunological, and kidney 
diseases[8,9]. In some countries, there are stem cell therapies based on mesenchymal 
stem cells (MSCs), which are available as commercial products approved by local 
regulatory agencies for specific diseases or health indications[10]. Thus, this form of 
intervention can pave the way as the next regenerative medicine for human diseases. 
Figure 1 showed an overview of stem cell-based strategies to treat kidney disease.

This present article reviews stem cell-based therapy in kidney regeneration based on 
animal models and in vitro studies, as well as discusses its potential for clinical 
application and the challenges in translating from animal models to clinical 
application.

EMBRYONIC STEM CELLS
Embryonic stem cells (ESCs) are pluripotent cells with unlimited differentiation 
potentials. Several research groups have demonstrated that mouse ESCs can integrate 
into kidney compartments, suggesting the potential value of stem cells in kidney 
repair. Implantation of ESCs directly into mouse embryonic kidney culture resulted in 
ESC-derived tubules and proximal tubular cells[11]. Exposing ESCs to specific 
inducers or factors also caused the induction of cells to differentiate into kidney 
lineage cells in vitro[12,13]. Kim and Dressler[14] induced mouse ESCs to differentiate 
into renal progenitor cells and then incorporated these cells' into the tubular epithelial 
by injection into embryonic kidney cultures. In another study, when intact rat kidneys 
were decellularised in this manner, the kidney’s intricate architecture was preserved, 
and the seeded ESCs could proliferate within the glomerular, vascular, and tubular 
structures[15]. Vazquez-Zapien et al[16] further reported that after mice with cisplatin-
induced kidney failure received mouse ESCs via injection, the mortality rate decreased 
significantly and prevented further disease-related histological deterioration.
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Figure 1 Overview of stem cell-based strategies to treat kidney disease. Different types of stem cell were explored for their ability to treat kidney 
disease. One strategy was to direct the differentiation of stem cells into kidney component cells in vitro or in vivo to replace the injured or damaged cells. Other 
strategies were to transplant stem cells or stem cell-derived extracellular vesicles to generate paracrine effect/endocrine effect, and to use kidney organoid formation 
to replace whole kidney organ.

The kidney, on another hand, is a very complex organ made of several cell types 
(Figure 2). Therefore, it is an intricate organ to reconstruct. Many researchers have 
worked on a protocol to induce ESCs into generating complex structures to resemble 
kidneys with multiple renal cell types and capable of self-organization, termed as 
organoids[17,18]. Tan et al[19] reported that mouse ESCs-derived nephron progenitors, 
aggregated with primary ureteric bud, formed kidney organoids with full nephron 
structures.

Despite its clinical potentials, the risk of tumorigenicity, together with legal and 
ethical concerns, continue to hinder the development of ESC-based therapies. 
Additionally, ESC-derived differentiated cells are allogeneic in nature and can 
therefore express specific surface proteins to trigger the recipient’s immune system. 
Therefore, acute and chronic rejection, or graft vs host disease, can occur due to the use 
of allografts if they fail to achieve immunocompatibility with the recipient[20,21].

INDUCED PLURIPOTENT STEM CELLS
Induced pluripotent stem cells (iPSCs) share many regenerative properties to ESCs. In 
2006, Takahashi and Yamanaka showed that mouse adult fibroblasts can be 
reprogrammed into iPSCs, by introducing four transcription factors (OCT4, SOX2, 
KLF4 and c-MYC)[22]. This was a breakthrough finding that became a landmark in 
stem cell research. The development of iPSCs-based therapies could overcome the 
specific issues related to the use of ESCs, such as ethical concerns due to the cells’ 
source and the potential of cell rejection by the recipient patient.

The use of ESCs has its controversies due to certain parties who are in the opinion 
that destroying an embryo for its ESCs is akin to killing an unborn child. Hence, iPSCs 
are an attractive alternative to ESC-like stem cells as the iPSCs can be generated from 
adult cells. These cells also retain the genetic background and peculiar epigenetic-
memory of their parent cell, thus possibly avoiding any strong immune response. To 
date, iPSCs have been generated from fibroblasts[23], umbilical cord blood[24], 
peripheral blood[25,26], and keratinocytes[27]. Researchers have also successfully 
generated iPSCs from mesangial cells[28], renal tubular cells[29], and renal epithelial 
cells[30,31]. Reprogrammed iPSCs from kidney cells are believed to potentially aid in 
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Figure 2 Kidney and its main components. A: Kidney; B: Magnification of the nephron; C: Renal corpuscle; D: Glomerulus. Podocytes, mesangial cells and 
capillary endothelial cells are parts of the glomerulus structure.

the study of genetic kidney diseases, that may lead to the development of novel 
therapies.

The potential of iPSCs in kidney regeneration have been explored, including 
establishing unique methods to stimulate human iPSCs to differentiate into kidney 
lineages[32-34] or three-dimensional structures of the kidney[35]. Toyohara et al[36] 
had established a multistep differentiation protocol to induce human iPSCs to differ-
entiate into renal progenitors capable of constructing three-dimensional proximal 
renal tubule-like structures in vitro. The same group subsequently discovered that 
renal subcapsular transplantation of these human iPSC-derived renal progenitors 
ameliorated the acute kidney injury (AKI) in the animal model.

In addition to relying on the differentiation ability of iPSCs, researchers have also 
used the renotropic factors produced by the iPSCs in kidney regeneration. Trans-
plantation of iPSCs in a murine model with ischemic AKI, reduced the expression of 
oxidative substances, pro-inflammatory cytokines, and apoptotic factors, resulting in 
eventual improvement in survival[37]. Additionally, Tarng et al[38] demonstrated that 
iPSCs-derived conditioned medium attenuated AKI and significantly improved 
survival in an animal model.

From recent developments, iPSCs can now be directed to differentiate and generate 
kidney organoids resembling the human kidney in vitro. An artificially created human 
kidney can be applied in regenerative medicine, and in developmental, toxicity, and 
disease models[39-41]. Furthermore, using patients' own iPSCs to generate high-
quality kidney organoids enables drug validation in a patient-specific manner. This is 
contributed by the tight correlation between the patients’ individual genetic 
background and drug responsiveness[42,43]. Melissa H Little’s group had successfully 
generated human iPSCs-derived kidney organoids that had all the anticipated kidney 
cell types. These organoids possessed nephrons segmented into the glomerulus, 
proximal tubule, loop of Henle, and distal tubule along with the collecting duct, 
endothelial network, and renal interstitium[44-46]. Meanwhile similarly, the Izpisua-
Belmonte’s group had also generated a kidney organoid containing glomeruli with 
podocytes, proximal and distal tubule cells, and endothelial cells[42]. Morizane et al
[47] reported several differentiation protocols for creating kidney organoids with 
epithelial nephron-like structures. These organoids expressed the markers for 
podocytes, proximal tubules, loops of Henle, and distal tubules.

Other research groups reported that iPSCs derived from various cell types are not 
identical in their differentiation capacity[48,49]. This is likely to happen because iPSCs 
maintain the epigenetic memory of their parental cells[50]. Therefore, renal paren-
chymal cells may be a better candidate than cells from other tissues for 
reprogramming to treat kidney diseases.

ENDOTHELIAL PROGENITOR CELLS
Endothelial progenitor cells (EPCs) have essential roles in maintaining vascular 
integrity and in repairing any form of endothelial damage[51]. EPCs can be isolated 
from different cell sources, mainly from the readily available bone marrow, cord 
blood, and peripheral blood[52]. The beneficial effects of EPCs-based therapies have 
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been shown in studies performed using different models of kidney diseases such as 
AKI, CKD, and renal artery stenosis. In an animal model of renal ischemia/ 
reperfusion (I/R)-induced AKI, renal artery-derived EPC-like cells integrated into the 
endothelium after AKI, led to decreased levels of serum creatinine (SCr) and 
albuminuria while blood flow improved[53]. Patschan et al[54] further demonstrated 
that the systemic injection of peripheral blood-derived early EPCs decreased SCr, 
ameliorated interstitial fibrosis, and subsequently reduced the progression to CKD 
after AKI.

The possible effect of EPC treatment on CKD progression was studied in an animal 
model[55]. In this study, bone marrow-derived EPCs that were homed into the injured 
kidney, prevented the inflammatory condition from adversely affecting the kidney, 
and successfully preserved kidney function and structure. Huang et al[56] 
demonstrated a rodent model injected with peripheral blood-derived EPCs and 
observed effective inhibition of the propagation of CKD and the deterioration of 
kidney function. The injected cells enhanced angiogenesis and blood flow, and had 
anti-oxidative capacity while suppressing inflammation, oxidative stress, apoptosis, 
and fibrosis[56]. Meanwhile, in renal artery stenosis models, peripheral blood derived-
EPCs demonstrated renoprotective effects after injection into the stenotic kidney, by 
improving microvascular density and kidney functions along with diminishing 
fibrosis[57-59].

MSCs
MSCs, or as recently referred to as mesenchymal stromal cells, were first discovered by 
Friedenstein and his colleagues from bone marrow[60]. Over the years, researchers 
have found that MSCs can be isolated from various organs or tissues, such as adipose 
tissue[61], umbilical cord[62,63], placenta[64], peripheral blood[65], amniotic fluid[66], 
and skeletal muscles[67].

Bone marrow is the most commonly used source for MSCs in clinical treatments, 
including treating kidney diseases. However, the use of bone marrow derived-MSCs 
(BM-MSCs) became limited because of a high degree of viral exposure, and that the 
cell proliferation/differentiation capability significantly decreases as the donor’s age 
increases[68]. Therefore, researchers began exploring other types of MSCs for kidney 
regeneration. Among the many sources, adipose tissue-derived MSCs (AD-MSCs) and 
umbilical cord-derived MSCs (UC-MSCs) have become desirable candidates because a 
large amount of the MSCs can be obtained using relatively minimal invasive pro-
cedures[69].

In the field of kidney disease, MSCs are among the most efficient type of cell 
population for activating regeneration in a damaged kidney[70]. Pre-clinical reports 
have demonstrated the therapeutic potential of MSCs in animal models of AKI and 
CKD[71,72]. According to a systematic review of more than 70 articles, MSCs are 
among the most effective cell populations to treat experimental CKD[73]. Meanwhile, 
in a meta-analysis involving animal models of chronic and AKI, MSCs led to kidney 
regeneration despite the variable modes of administration (arterial, venous or renal)
[71]. There is evidence suggesting the beneficial effects of MSCs in blocking AKI-CKD 
transition, a term used to describe an incomplete recovery from AKI resulting in long-
term functional deficits, such as CKD[74].

In an experiment performed by Brasile et al[75], when ischemically damaged human 
kidneys were perfused ex vivo with MSCs for 24 h, kidney regeneration was 
documented. The MSCs-based treatment caused the kidneys to synthesize significantly 
lower levels of inflammatory cytokines. Compared to exsanguinous metabolic support 
perfusion alone, there was a significant increase in the number of renal cells 
undergoing mitosis in the MSCs-treated kidneys[75].

Numerous studies have demonstrated that MSCs can either differentiate into renal 
cells in general[76] or specifically into kidney component cells such as renal epithelial 
cells[77-80], mesangial cells[81,82], and endothelial cells[83,84].

BM-MSCs
Many studies have demonstrated the efficacy of BM-MSCs in the treatment of kidney 
disease using animal models of AKI[85,86], podocyte injury[87], and glomeruloneph-
ropathy[88,89]. Morigi et al[90,91] is among the first groups to demonstrate the 
renoprotective role of BM-MSCs and documented the therapeutic potential of human 
BM-MSCs in the treatment of kidney diseases, leading to survival in animal models. 
Transplantation of human BM-MSCs into cisplatin-induced AKI mice resulted in 
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markedly improved kidney function and recovery by accelerating tubular prolif-
eration and reducing the number of tubules affected by apoptosis, necrosis and 
tubular lesions. A similar form of protection was conferred by injected BM-MSCs in a 
glycerol-induced pigment nephropathy model[77,92] and I/R-induced AKI[86,93]. 
More importantly, infused BM-MSCs have shown to enhance kidney functional 
recovery even when administered 24 h after the injury[94]. Furthermore, BM-MSCs 
were more effective in treating AKI in the animal model compared to candesartan, 
which is an angiotensin II blocker[95]. In essence, there is good evidence that when 
MSCs are transplanted in toxic and ischemic animal models, the cells protect the 
animals against AKI and accelerate the recovery phase.

BM-MSCs have also shown promises in the treatment of CKD in animal models. 
BM-MSCs prevented the loss of peritubular capillaries and slowed down the 
progression of proteinuria (protein in the urine)[96]. During the initial phase of the 
immune response before the onset of CKD, these cells also reduced kidney fibrosis
[97]. According to a histological analysis of a rat model with CKD, BM-MSCs reduced 
glomerulosclerosis, resulting in preservation of kidney function and attenuation of 
kidney injury[98]. Additionally, when animal models with CKD were treated with 
BM-MSCs, there were reduced progression of proteinuria and scarce engraftment of 
these cells in the kidneys. These observations suggested that these beneficial effects 
were probably caused by cytokines or growth factors, which are also known as the 
paracrine secretion of mediators[99].

In addition to the ability of BM-MSCs to differentiate into renal cells, more recent 
reports suggested that BM-MSCs exert protective and regenerative effects on kidneys 
by their paracrine anti-inflammatory, anti-fibrotic, and vascularisation properties[93,
100]. According to reports, BM-MSCs can transfer biological cues via the secretion of 
extracellular vesicles (EVs) to promote regenerative processes in injured renal cells
[101-103].

Several studies investigated the effects of BM-MSCs in experimental models of 
kidney organ transplantation[104,105]. Most studies focused on the intervention’s 
efficacy through prolonged graft survival and inhibition of the rejection process[106-
108]. Given the advantage of BM-MSCs having low immunogenicity and immunoreg-
ulatory properties, BM-MSCs can reduce alloimmune injury and immune suppression-
related side effects to optimise preservation of the transplanted kidney’s functions[109,
110].

AD-MSCs
AD-MSCs are highly abundant in adipose tissues and can be easily extracted via 
liposuction, a method which is widely used in the clinical setting. Adipose tissue may 
become the preferred source of MSCs due to its less invasive procurement and higher 
MSCs concentration than those found in the bone marrow[111]. Their allergenic 
transplantation via the intra-renal route contributed to a low degree of necrosis, but 
caused higher vascularisation of the renal parenchyma in Wister rats[112]. There are 
reports on the therapeutic effect of AD-MSCs in AKI-induced animal models. Kim et al
[113] have demonstrated that AD-MSCs reduced apoptotic cell death while simultan-
eously reducing the activation of p53, c-Jun NH2-terminal kinase and extracellular 
signal-regulated kinase, which are inflammation-related molecules. These effects 
resulted in increased survival rate of the AKI-induced animals. Katsuno et al[114] 
further discovered that human AD-MSCs cultured in low serum secreted high levels of 
hepatocyte and vascular endothelial growth factors. When these cells were 
transplanted into AKI-induced rats, they enhanced the attenuation of kidney damage
[114]. Even though adipose tissue is a good source of MSCs, AD-MSCs have been less 
effective in proliferative and kidney regenerative activities compared to BM-MSCs
[112].

UC-MSCs 
The easy collection of UC-MSCs provides a new abundant source of MSCs. The usage 
of UC-MSCs, transforms a medical waste into a beneficial product with clinical applic-
ations[115]. Compared to MSCs from other sources, UC-MSCs have low immuno-
genicity, thus preventing the occurrence of immune rejection in allogeneic 
transplantation[68,116]. Moreover, UC-MSCs have a greater proliferation capacity 
compared to BM-MSCs and AD-MSCs[117,118]. UC-MSCs also show no sign of 
senescence over several passages[119], so mass cell production of UC-MSCs is highly 
possible without causing the loss of cell potency.

More studies are being performed to demonstrate that human MSCs isolated from 
the umbilical cord exert superior therapeutics effects compared to other sources of 
MSCs. Researchers also found that when UC-MSCs were implanted into AKI-induced 
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mice, the cells exerted renoprotective effects by inducing tubular cell proliferation[120] 
and promoting glomerular filtration that prolonged the animals’ survival[121]. 
Meanwhile, in a CKD-induced rodent model, transplanted UC-MSCs inhibited inflam-
mation and fibrosis while the expression of growth factors was promoted. These 
effects protected the injured kidney tissues and prevented disease progression[122,
123].

Other sources of MSCs
In addition to BM-MSCs, AD-MSCs and UC-MSCs, researchers have also used other 
types of MSCs that are less commonly studied for kidney regeneration studies. The 
efficacy of cord blood-derived MSCs (CB-MSCs) administration in the restoration of 
kidney function had been reported in animal AKI models[124]. This study 
demonstrated that CB-MSCs promoted kidney regeneration and prolonged the 
survival of the animal. Based on this study, the paracrine action of CB-MSCs on the 
tubular cells may have been mediated by the reduction of oxidative stress, apoptosis, 
and inflammation. Hauser et al[125] and George et al[126] found that amniotic fluid-
derived MSCs (AF-MSCs) possess the same characterisation as BM-MCSs, facilitating 
functional and structural improvement in a rat model of CKD. Sedrakyan et al[127] 
showed the injection of AF-MSCs in mice delays the progression of renal fibrosis. 
Meanwhile, in a CKD-induced rat model in a study by Cetinkaya et al[128], 
transplanted placenta-derived MSCs (PL-MSCs) alleviated kidney damage and 
inhibited fibrosis-induced apoptosis. PL-MSCs were also used to treat kidney injury 
and inflammation in lupus nephritis (LN) mice[129].

STEM CELL-DERIVED EVs
EVs are small membrane vesicles secreted by various cells and found in most body 
fluids[130]. This review uses the general term, EVs, because there is no method to 
precisely identify the vesicles[131]. EVs can be classified into three major categories, 
which are exosomes, microvesicles, and apoptotic bodies. In the current context, 
researchers suggest that EVs could be transferred to injured cells to restrain tissue 
injury, reduce inflammation, inhibit apoptosis, and induce cell cycle re-entry of 
resident cells, all of which lead to cell proliferation, tissue self-repair and regeneration
[132]. Upon administration with a therapeutic regimen, EVs will mimic stem cells' 
effects in various experimental models.

The use of the stem cell-derived EVs could have multiple advantages in clinical 
application including bypassing most of the safety concerns related to stem cell 
therapy, such as cellular contamination with oncogenic cells, tumorigenicity, and 
emboli formation after transplantation[133]. Similarly, EVs also enable a wide range of 
potential manipulations to carrier molecules for improvements in delivery and desired 
effects[134]. EVs can also be safely stored in medical facilities without losing any of 
their functions[135].

Several studies had provided convincing evidence on the regenerative potential of 
EVs released by stem cells, specifically MSCs, in different models of kidney injury[136,
137]. In vitro studies have demonstrated the potential of MSCs-derived EVs to transfer 
mRNA, miRNA, and proteins to renal cells[132]. Currently, this cell-free therapy is 
being studied in animal models of AKI[138-140] and CKD[141,142]. Intravenous MSC-
derived EVs exert renoprotective effects by reducing renal cell damage and apoptosis 
while enhancing proliferation of the renal cells. These effects lead to improved kidney 
function, similar to those induced by MSCs, as reported in rats injected with EVs from 
EPCs[143,144] and iPSCs[145,146].

When a patient living with ESKD undergoes a kidney transplantation, the patient’s 
quality of life significantly improves[5]. Nevertheless, chronic allograft nephropathy 
limits organ survival, eventuating in the patient having to undergo kidney 
transplantation more than once in a lifespan[147]. The administration of EVs after 
kidney transplantation was found to ameliorate I/R injury in both the acute and 
chronic stages, favour tolerance and prolong allograft survival[148].

The preconditioning of a kidney with stem cells-derived EVs may also conveniently 
limit tissue damage caused by chronic allograft nephropathy. Evidence showed that 
the MSCs-derived EVs delivered in the perfusate during organ cold perfusion for 4 h 
protected the kidney from reperfusion damage and can preserve the organ’s 
enzymatic machinery, which is essential for cell viability[149].
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TRANSLATION FROM ANIMAL MODEL TO HUMAN CLINICAL APP-
LICATION: THE CHALLENGES
Despite numerous animal experiments to demonstrate the effectiveness of stem cell 
therapy in kidney disease, outcomes from those animal models were unsuccessfully 
reproduced in human clinical studies in entirety[150]. The failure to translate the 
promising results from an animal experiment, which has a sound and standardised 
design and conduct, to a clinical application happens due to variations in the animal 
model and the human physiology[151].

Human kidney diseases are typically artificially induced in the animal model. The 
induced injury is generally acute, unphysiological, and cannot epitomise the human 
kidney diseases' complex pathological features[152,153]. It is thus difficult to precisely 
simulate or predict the response of the human kidney disease to treatment by using an 
animal model. CKD animal experiments are insufficient to reflect the disease’s 
conditions because other factors such as age, sex, and comorbidities are not re-
presented[154,155]. CKD patients may also have comorbidities involving multiple 
organs and functions that further aggravate the pathological processes underlying 
CKD[156]. In the animal model, however, these complications were not taken into 
account.

Both humans and animals may have the same protein functions but there are 
species-specific differences in the molecular regulation of genes. This causes difficulty 
in extrapolating an outcome from an animal gene analysis to the physiological 
conditions in the human body[157]. The differences between the animals' and humans' 
immune systems is another reason for the failure to translate therapeutics with 
promising outcome in in vivo studies into a clinical application with potential[158].

ADVANCING CLINICAL TRIALS OF STEM CELLS FOR KIDNEY DISEASE
Up until March 2021, more than 40 clinical trials, either on-going or completed, 
involving the use of stem cell-based therapy in the treatment of kidney diseases have 
been registered in the United States National Library of Medicine (ClinicalTrials.gov). 
Most of these stem cell clinical trials for kidney disease use MSCs in their approach. 
Table 1 showed the completed clinical trials of MSC- and EPC-based therapies in 
kidney diseases.

The first few trials using MSCs from different tissue sources (bone marrow, adipose, 
umbilical cord, etc.) either autologously or allogeneically suggested that these cells can 
be given safely to humans. However, the efficacies of MSCs to treat kidney diseases 
have mixed results. In one study, patients who had a high risk of post-operative AKI 
and underwent cardiac surgery, concurrently received allogeneic BM-MSCs. The 
patients had a shorter hospital stay and did not need readmission. The administered 
BM-MSCs did not have adverse effects and protected the patients against early and 
late post-surgery kidney function deterioration[159,160]. However, Swaminathan et al
[161] reported a contrasting finding, whereby the administration of allogeneic MSCs 
did not decrease the time to recovery of kidney function in patients with a developed 
stage of AKI after cardiac surgery. They also did not detect any significant differences 
between the group treated with allogeneic MSCs and the group treated with placebo 
in the 30-day all-cause mortality study. While the rates of adverse events did not differ 
between groups, the MSC infusion was safe and well-tolerated[161].

More human trials have been conducted using MSCs to treat CKD. A pilot study 
assessing the safety and clinical feasibility of autologous administration of AD-MSCs 
for patients with CKD reported that the cells were safe and did not exert any adverse 
effects[162]. At the same time, improvement in urinary protein excretion was observed
[162]. However, Makhlough et al[163,164] reported no significant changes in estimated 
glomerular filtration rate and SCr during the 18 mo of follow-up after autologous BM-
MSCs were transplanted in these CKD patients.

In studies involving the treatment of autoimmune diseases such as systemic lupus 
erythematosus (SLE) with MSCs, the cells were investigated for their therapeutic 
benefits. Sun L and team conducted phase I/II clinical trials to examine the effects of 
allogeneic BM-MSCs and UC-MSCs infusions in patients with primary and refractory 
SLE[165-167]. They found that the infusion of either allogeneic BM-MSCs or UC-MSCs 
was safe and well-tolerated. Besides improving the SLE Disease Activity Index and 
kidney function, the level of proteinuria declined 24 h after the MSCs transplantation
[168]. Furthermore, among the SLE patients, allogeneic MSCs transplantation resulted 
in renal remission for active LN patients within a 12-mo follow-up period[169]. 
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Table 1 Completed clinical trials of mesenchymal stem cell- and endothelial progenitor cells -based therapies in kidney diseases

Ref. Condition or disease Trial 
registration Source Main findings

MSC infusion was safe

None of the patients developed postoperative AKI 
or subsequent loss of kidney function

Protection against early and late post-surgery 
kidney function deterioration

Togel et al[159], 
Westenfelder  et al[160]

Patients with a high risk of 
developing AKI after undergoing 
cardiac surgery

NCT00733876 Allogeneic BM-
MSCs

Reduction in length of hospital stay

No significant difference between groups in 30-d 
all-cause mortality or dialysis

No reduction in the time to recover kidney 
function

Swaminathan et al[161] Patients who experienced AKI 48 
hr after cardiac surgery

NCT01602328 Allogeneic BM-
MSCs

No difference in adverse events between groups

MSC infusion was safe and tolerated.Makhlough et al[164] CKD NCT02195323 Autologous BM-
MSCs

No significant changes in eGFR and SCr

MSC infusion was safe and not associated with 
adverse effects

Villanueva et al[162] CKD NA Autologous AD-
MSCs

Statistically significant improvement in urinary 
protein excretion but not in GFR

MSC infusion was safe and tolerated

No additional benefit from EPCs up to a follow-
up period

Lee et al[178], Yang et 
al[179]

CKD at stage III or IV NA Autologous CD34+ 
EPCs

Significantly lower unfavourable clinical 
outcomes (dialysis or death) in treatment group

MSC infusion was safe and toleratedMakhlough et al[163] CKD due to autosomal dominant 
polycystic kidney disease

NCT02166489 Autologous BM-
MSCs

No significant changes in eGFR and SCr

MSC infusion was safe and not associated with 
acute adverse events

Packham et al[180] Diabetic nephropathy (type 2) NCT01843387 Allogeneic BM-
MSCs

Stabilisation and improvement in eGFR and 
mGFR

MSC infusion was safe and well tolerated.

Increment in cortical perfusion and renal blood 
flow

Saad et al[181] Atherosclerotic renovascular 
disease

NCT02266394 Autologous AD-
MSCs

Reduction in renal tissue hypoxia within 
poststenotic kidney

MSC infusion was safe and tolerated

Improvement in disease activity

Sun et al[165], Liang et al
[166]

Refractory SLE NCT00698191 Allogeneic BM-
MSCs

Stabilisation in kidney function

MSC infusion was safe and tolerated

Improvement in disease activity

Sun et al[167] Refractory SLE NCT00698191 Allogeneic UC-
MSCs

Stabilisation in kidney function

MSC infusion was safe.Wang et al[168] Refractory SLE NCT01741857 Allogeneic UC-
MSCs

Reduction in proteinuria 24 hr after 
transplantation, with statistical differences at 9- 
and 12-mo follow-ups

Deng et al[171] LN (class III or IV) NCT01539902 Allogeneic UC-
MSCs

No apparent additional effect over and above 
standard immunosuppression

Significant improvement in proteinuria levels 
during the 1st month after treatment

Barbado  at al[170] Active and refractory LN NA Allogeneic BM-
MSCs or UC-MSCs
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The ameliorations were sustained throughout the 
follow-up period

MSC infusion was not associated with adverse 
events and did not compromise kidney transplant 
survival

Lower incidence of acute rejection

Tan et al[177] Kidney transplant NCT00658073 Autologous BM-
MSCs

Reduction in risk of opportunistic infection, and 
better estimated kidney function at 1 yr

MSC infusion was feasible and safeReinders et al[182] Kidney transplant NCT00734396 Autologous BM-
MSCs

Increment in incidence of opportunistic infection

MSC infusion was safe and feasible

Allowed enlargement of Treg in the peripheral 
blood

Controlled memory CD8+ T cell function

Perico et al[172,174] Kidney transplant NCT00752479 Autologous BM-
MSCs

No major side effects during long-term follow-up

MSC infusion was safeErpicum et al[176] Kidney transplant NCT01429038 Autologous BM-
MSCs

Increment in regulatory T cell proportion and 
with improved early allograft function

MSC infusion was safe

Reduction in circulating memory CD8+ T cells 
and donor-specific CD8+ T-cell cytolytic response

Perico et al[172-173] Kidney transplant NCT02012153 Autologous BM-
MSCs

No major side effects during long-term follow-up

MSC infusion was safe

Increment in proliferation of regulatory T cells

Mudrabettu et al[175] Kidney transplant NCT02409940 Autologous BM-
MSCs

Reduction in proliferation of CD4+ T cell

None of the MSC recipients experienced 
immediate or long-term toxicity from the 
treatment

Comparable incidence of acute rejection and 
similar graft function and survival between 
control and study groups

Pan et al[183] Kidney transplant NA Autologous BM-
MSCs

MSCs permitted the use of lower dosages of 
nephrotoxic calcineurin inhibitors

MSC:  Mesenchymal stem cells; EPC: Endothelial progenitor cells; BM-MSCs: Bone marrow derived- mesenchymal stem cells; AKI: Acute kidney injury; 
CKD: Chronic kidney disease; SCr: Serum creatinine; SLE: Systemic lupus erythematosus UC-MSCs: Umbilical cord-derived mesenchymal stem cells; NA: 
Not available.

Barbado et al[170] in their pilot study also reported a dramatic improvement to 
proteinuria level during the first month post-treatment. The ameliorations were 
sustained throughout the follow-up period of nine months[170]. Conversely, a recent 
multicentre randomised, double-blind controlled trial showed that UC-MSCs have no 
apparent additional effects over and above standard immunosuppression therapy
[171].

Given the immunomodulatory properties of MSCs, these cells have been 
transplanted in patients who received kidney transplants to promote immune 
tolerance to kidney transplantation in the setting of peri-transplant T cell-depleting 
induction therapy. Reports showed that transplanted MSCs were safe and without 
major side effects even over a long-term follow-up[172]. Additionally, there was 
increased proliferation of Treg noted[173,174], increment in regulatory T cell 
proportion[175], and improved early allograft function[176]. Simultaneously, the 
transplanted MSCs also controlled memory CD8+ T cells’ functions and reduced 
donor-specific CD8+ T cell cytolitic response[173]. Furthermore, MSCs infusion 
showed a lower incidence of acute rejection leading to a decreased risk of opport-
unistic infections and faster kidney function recovery than the controls[177]. These 
preliminary data suggest that transplanted MSCs are safe, well-tolerated, and can 
suppress host immune responses after kidney transplants with the combination of the 
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appropriate immunosuppressive regimen.
A recent phase I trial using autologous CD34+ EPCs in treating CKD at stage III or 

IV has been reported. Yip HK and team demonstrated that intra-renal arterial 
transfusion of CD34+ EPCs was safe and well-tolerated[178]. However, when the 
efficacy in a phase II randomised controlled trial was further investigated, the infused 
EPCs did not offer additional benefit to patients with CKD up to a follow-up period of 
12 months. Despite the less encouraging outcome, it is worth noting that the 
unfavourable clinical outcomes, such as dialysis or death, were significantly lower in 
the treatment group than those in the control group[179]. Currently, many clinical 
trials are still on-going and will provide more insights into and possibly further 
support these achievements with cell-based therapy for kidney diseases.

CONCLUSION
Although stem cell therapies in kidney regeneration from in vitro and preclinical 
studies are promising, and an encouraging safety profile have been demonstrated in 
early-phased human clinical trials, these cell-based therapies are yet to be translated 
into more significant proof of clinical efficacy. The side effects of stem cell therapies on 
kidney diseases still need further investigation, as the preliminary results available still 
lack long-term follow-up data. Some concerns about the use of live stem cells should 
be kept in consideration. EVs should also be evaluated as a possible alternative to live 
stem cells. The use of stem cells-derived EVs that can mimic its parental cells' effects in 
renoprotection could be pursued. Nevertheless, it appears that stem cell therapy will 
have a great future in the field of kidney regeneration. Further clarification will be 
gained on the stem cells' protective mechanisms in the treatment of kidney diseases 
through further understanding of the mechanisms of stem cells’ actions in vivo. The 
success of this new cell-based therapy could genuinely change the scope of the future 
of regenerative medicine.
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