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Abstract
Stem cell transplantation is an appealing potential therapy for vascular diseases 
and an indispensable key step in vascular tissue engineering. Substantial effort 
has been made to differentiate stem cells toward vascular cell phenotypes, 
including endothelial cells (ECs) and smooth muscle cells. The microenvironment 
of vascular cells not only contains biochemical factors that influence differen-
tiation but also exerts hemodynamic forces, such as shear stress and cyclic strain. 
More recently, studies have shown that shear stress can influence the differen-
tiation of stem cells toward ECs. A deep understanding of the responses and 
underlying mechanisms involved in this process is essential for clinical 
translation. This review highlights current data supporting the role of shear stress 
in stem cell differentiation into ECs. Potential mechanisms and signaling cascades 
for transducing shear stress into a biological signal are proposed. Further study of 
stem cell responses to shear stress will be necessary to apply stem cells for 
pharmacological applications and cardiovascular implants in the realm of 
regenerative medicine.
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Core Tip: Stem cells and shear stress are very important for the success of stem cell-
based therapy for vascular diseases. This review highlights current data supporting the 
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role of shear stress in stem cell differentiation into endothelial cells. Further, potential 
mechanisms and signaling cascades for transducing shear stress into a biological signal 
are proposed. Further study of stem cell responses to shear stress is necessary to utilize 
stem cells in pharmacological applications and cardiovascular implants in the realm of 
regenerative medicine.

Citation: Huang Y, Qian JY, Cheng H, Li XM. Effects of shear stress on differentiation of stem 
cells into endothelial cells. World J Stem Cells 2021; 13(7): 894-913
URL: https://www.wjgnet.com/1948-0210/full/v13/i7/894.htm
DOI: https://dx.doi.org/10.4252/wjsc.v13.i7.894

INTRODUCTION
Cardiovascular disease continues to be the leading cause of death globally, with an 
increase every year[1]. Cell-based therapies have the potential to provide new 
solutions for treating vascular diseases[2]. Endothelial cells (ECs) derived from donors 
or differentiated from stem cells are required for various clinical applications, such as 
promoting angiogenesis in ischemic areas or re-endothelialization of tissue-engineered 
grafts. Patient-derived primary ECs are limited in number, have donor variabilities, 
and their in vitro phenotypes and functions can deteriorate over time[3]. This 
necessitates the exploration of alternative EC sources. Many methods have been tried 
to differentiate various stem cells toward ECs[4], such as exogenous growth factors, 
co-cultivation, and gene transfer. Exogenous growth factors mainly include vascular 
endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), epidermal 
growth factor (EGF), insulin-like growth factor, transforming growth factor and 
platelet-derived growth factor (PDGF)[5]. In recent years, many studies have shown 
that in addition to chemical factors, physical stimulation is an important way to 
regulate the differentiation of stem cells into ECs[6].

The biomechanical patterns of blood flow in vessels are complex[7]. Vascular cells 
are exposed to hemodynamic forces in vivo, including flow shear stress and cyclic 
stretch caused by blood flow[8]. ECs are in direct contact with blood and particularly 
sensitive to changes in shear stress. Shear stress can affect the morphology, orientation, 
metabolic activities, and homeostasis of ECs by affecting receptor regulation and 
signal transmission in ECs (phosphoinositide, and Ca2+ and K+ ion channels, etc.). 
Shear stress is a key regulator of EC function and maintenance of vascular home-
ostasis. Given the crucial role of shear stress in the differentiation of ECs in vivo, it is 
generally accepted that replicating shear stress in cell culture could be crucial for 
differentiating stem cells toward the endothelial phenotype[9]. More recently, studies 
have shown that shear stress can influence the differentiation of stem cells toward ECs. 
A deep understanding of the responses and the underlying mechanisms involved in 
this process is essential for clinical translation.

In this review, we present an overview of the role of shear stress in EC oriented 
differentiation of several types of stem cells, with special reference to experiments 
conducted using mesenchymal stem cells (MSCs), endothelial progenitor cells (EPCs), 
embryonic stem cells (ESCs), and induced pluripotent stem cells (iPSCs). We also 
elucidate potential mechanisms and signaling cascades by which stem cells sense shear 
stress and transduce the effects of mechanical signals into biological signals. We 
address various aspects associated with stem cell differentiation via fluid shear stress 
in the hope of bringing the prospect of regenerative medicine a step closer from bench 
to bedside. Various receptors and signaling pathways could be pharmacological 
targets for which novel drugs could be developed in cardiovascular regenerative 
medicine.

SHEAR STRESS PROMOTES ENDOTHELIAL DIFFERENTIATION OF STEM 
CELLS
MSCs
MSCs are among the most promising and suitable stem cell types for vascular tissue 
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engineering. MSCs, also known as mesenchymal stromal cells, were first identified in 
the bone marrow stroma but are also suggested to be present in other tissues. Chen et 
al[10] proposed that shear stress was able to promote nuclear localization and up-
regulate expression of β-catenin related to cardiovascular development, EC protection 
and angiogenesis in MSCs. Many studies have demonstrated that different types of 
MSCs are able to differentiate into vascular ECs when they are stimulated with shear 
stress[2] (Table 1).

It appears that shear stress promotes endothelial differentiation while downregu-
lating smooth-muscle-cells-oriented differentiation. An early study treated murine 
embryonic mesenchymal progenitor cells with 1.5 × 10-4 N/cm2 of shear stress using a 
parallel plate system. The system consisted of an active pump (for steady flow), a 
gravity head (for steady flow), and parallel-plate flow chambers. In flow chambers, 
fluid flowed through the chambers through a conduit, creating a constant hydrostatic 
pressure that forced culture medium to pass through the cells cultured on the lower 
plate, generating a steady shear stress. They found upregulated EC markers including 
CD31, von Willebrand factor (vWF), and vascular endothelial-cadherin (VE-cadherin, 
CD144), enhanced acetylated-low density lipoprotein LDL (ac-LDL) uptake, and 
increased tubule formation on Matrigel with 12 h of shear stress treatment. The study 
also showed mRNA expression of vascular smooth muscle cell markers, including 
PDGF receptor and PDGF, was downregulated relative to the static control[11]. Dong 
et al[12] seeded canine bone-marrow-derived MSCs onto poly-ε-caprolactone and lactic 
acid scaffolds and applied them to shear stress from 1 × 10-4 to 1.5 × 10-4 N/cm2 over 
the course of 2 d with an additional 2 d at 1.5 × 10-4 N/cm2 of shear stress provided by 
a pulsatile bioreactor. Similar to the structure of the parallel plate system mentioned 
above, the bioreactor consisted of a peristaltic pump, a compliance chamber, a glass 
culture reservoir (for medium circulation and air exchange), and a culture chamber. 
MSCs seeded on the tubular scaffolds were installed horizontally in the culture 
chamber. Mean shear stress (τmean) can be calculated by the equation: τmean = 4 μQ/πr3 
where μ is the viscosity of the culture medium, Q is the flow rate of the bioreactor, and 
r is the radius of the scaffolds. They observed a significant increase in the expression of 
EC markers platelet/EC adhesion molecule 1 (PECAM1, CD31), VE-cadherin, and 
CD34, and a significant decline in the protein levels of α-smooth muscle actin (α-SMA) 
and calponin compared to static controls.

Physiological shear stress levels are advantageous for driving MSCs into an 
endothelial phenotype. In the previous two independent experiments, the magnitude 
of shear stress applied to stem cells was 1.5 × 10-4 N/cm2. There were also other studies 
using higher or lower shear stresses. Yuan et al[13] individually loaded human MSCs 
with a steady laminar shear stress of 2 × 10-5 N/cm2 or 2 × 10-4 N/cm2 for 2 d, and then 
statically cultured for 5 d. They found that shear stress (2 × 10-4 N/cm2) can induce 
cells to express vWF, VE-cadherin and CD31. Kim et al[14] reported that human MSCs 
exposed to a shear stress of 2.5 × 10-5 or 1 × 10-4 N/cm2 for 1 d expressed CD31, vWF, 
and VEGF receptor 2 [VEGFR2, fetal liver kinase-1 (Flk-1)]. At low shear stress, CD31 
was significantly expressed whereas vWF and VEGFR2 expression was only slightly 
higher than that, under 1 × 10 -4 N/cm2. In our previous work[15], we exposed rat 
bone-marrow-derived MSCs to a wide range of shear forces (from 1 × 10 -4 to 2.5 × 10 -4 
N/cm2) and shear force durations (12-48 h). MSCs demonstrated a significant increase 
in expression of CD31, VEGFR-2, and tissue-type plasminogen activator (t-PA) at shear 
stress levels that were ≤ 1.5 × 10-4 N/cm2, while higher and/or prolonged magnitude 
shear stress resulted in rapid decrease in EC oriented differentiation of MSCs.

Coupled mechanical stimuli, relevant to the vasculature, can differentiate MSCs 
toward ECs. Engelmayr et al[16] reported that cyclic flexure and laminar flow (average 
fluid shear stress of 1.1505 × 10-5 N/cm2) induced sheep bone-marrow-derived MSCs 
to express the endothelial-associated markers CD31 and vWF. Maul et al[17] tried 2 × 
10-4 N/cm2 laminar shear stress and 120/80 mmHg cyclic pressure at 1 Hz and found 
that the rat bone-marrow-derived MSCs under this shear stress increased expression 
levels of endothelial-specific genes including prominin 1 (CD133), vWF, E-selectin, and 
PECAM1. Kim et al[18] demonstrated that 2.5 × 10-5 N/cm2 shear stress followed by 3% 
circumferential stretch for 3 d, and an additional 5% circumferential stretch for 4 d 
upregulated expression of several EC markers such as Flk-1, vWF, E-selectin, and VE-
cadherin.

The combination of biochemical and mechanical stimuli promotes MSC differen-
tiation toward ECs. Homayouni Moghadam et al[19] used fluid shear stress as a 
mechanical inducer and platelet lysate and estradiol as chemical inducers. Their 
findings indicated that 1 × 10-4 N/cm2 fluid shear stress in combination with 5% 
platelet lysate directed MSCs to differentiate toward CD34+ cells, indicating the 
initiation of endothelial differentiation of MSCs. In addition, when stem cells from 
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Table 1 Studies on shear stress regulating mesenchymal stem cell to endothelial differentiation

Cell source Condition of shear stress Markers expressed Function tested Ref.

Murine embryonic 
mesenchymal 
progenitor cells

Parallel plate system 1.5 × 10-4 N/cm2 6, 
12 h

CD31, vWF, and VE-
cadherin

Matrigel tube formation 
assay, ac-LDL uptake

Wang et al[11], 2005

Canine bone marrow-
derived MSCs

Pulsatile bioreactor shear stress from 1 × 
10-5 to 1.5 × 10-4 N/cm2 over the course of 
2 d with an additional 2 d at 1.5 × 10-4 
N/cm2 of shear stress

PECAM1, VE-cadherin, and 
CD34

- Dong et al[12], 2009

Human MSCs Parallel flow chamber system 2 × 10-5 or 2 
× 10-4 N/cm2 1 d, 2 d

vWF, VE-cadherin, and 
CD31

- Yuan et al[13], 2013

Human MSCs Flow-engaging system 2.5 × 10-5, 1 × 10-4 
N/cm2 1 d

CD31, vWF, and VEGFR2 - Kim et al[14], 2011

Rat bone marrow-
derived MSCs

Parallel flow chamber system 1 × 10-4, 1.5 
× 10-4, 2 × 10-4, 2.5 × 10-4 N/cm2 12, 24, 48 
h

CD31, VEGFR-2 and t-PA - Bai et al[15], 2010

Sheep bone marrow-
derived MSCs

Cyclic flexure and laminar flow 
bioreactor. Average fluid shear stress of 
1.1505 × 10-5 N/cm2 1, 3 w

CD31 and vWF - Engelmayr et al[16], 
2006

Rat bone marrow-
derived MSCs

Unique experimental protocol 2 × 10-4 

N/cm2 laminar shear stress and 120/80 
mmHg cyclic pressure at 1 Hz 5 d

CD133, vWF, E-selectin, 
and PECAM1

- Maul et al[17], 2011

Human MSCs Bioreactor system 2.5 × 10-5 N/cm2 stress 
followed by 3% circumferential stretch for 
3 d, and an additional 5% circumferential 
stretch for 4 d

Flk-1, vWF, E-selectin, and 
VE-cadherin

- Kim et al[18], 2016

Rat bone marrow-
derived MSCs

Orbital shaker 2 × 10-5, 5 × 10-5, 1 × 10-4 
N/cm2 6, 12, 24 h

CD34, Cadherin5, and vWF Matrigel tube formation 
assay

Homayouni 
Moghadam et al[19], 
2014

Human exfoliated 
deciduous teeth 
(SHEDs)

cultured with or without VEGF (50 
ng/mL) for 12 h 6 × 10-5, 1.2 × 10-4 N/cm2 

4, 8 and 12 h

VEGF, VEGFR2, DLL4, 
Notch1, EphrinB2, Hey1 
and Hey2

In vitro Matrigel 
angiogenesis assay 

Wang et al[20], 2018

Rat bone marrow-
derived MSCs

under normoxia or hypoxia 1.2 × 10-4 
N/cm2 24 h

CXCR4, phosphorylated 
Akt and VEGFA

- Liu et al[21], 2017

Human ASCs Custom-made bioreactor capable of 
applying both shear and tensile stresses 0-
2.5 × 10-5 N/cm2 1, 2, and 7 d

Flk-1, vWF, and VE-
cadherin

- Bassaneze et al[22], 
2010

Human ASCs Parallel plate type flow chamber 1.8 × 10-4 
N/cm2 5 d

PECAM1 and VE-cadherin Tube structure formation in 
3D matrices

Shojaei et al[23], 2013

Human ASCs Orbital shaker 1.2 × 10-4 N/cm2 8 d CD31 In vivo evaluation of the 
thrombogenicity, ac-LDL 
uptake

Fontijn et al[24], 2014

Human ASCs Orbital shaker 1.2 × 10-4 N/cm2 7, 14 d vWF, eNOS, Flt-1, CD31, 
Flk-1 and VE-cadherin

- Fischer et al[25], 2009

Human ASCs Perfusion bioreactor 4.5 × 10-5 N/cm2 1 d vWF, Flk-1 and VE-
cadherin

- Hasanzadeh et al[27], 
2017

Human amniotic fluid-
derived MSCs

Orbital shaker 1.2 × 10-4 N/cm2 2 d CD31 and vWF Matrigel tube formation 
assay, ac-LDL uptake

Zhang et al[28], 2009

Human Placenta-
derived MSCs

Parallel flow chamber system 6 × 10-5, 1.2 
× 10-4 N/cm2 3, 6, 12, 24 h

Flt-1 and Flk-1 Matrigel tube formation 
assay, ac-LDL uptake

Wu et al[29], 2008

ac-LDL: Acetylated-low density lipoprotein LDL; CXCR4: C-X-C chemokine receptor type 4; eNOS: Endothelial nitric-oxide synthase; Flk-1: Fetal liver 
kinase-1; MSCs: Mesenchymal stem cells; NO: Nitric oxide; PECAM1: Platelet/endothelial cell adhesion molecule 1; PECAM1: Platelet/endothelial cell 
adhesion molecule 1; t-PA: Tissue-type plasminogen activator; VE-cadherin: Vascular endothelial-cadherin; VEGFR2: Vascular endothelial growth factor 
receptor 2; vWF: Von Willebrand factor.

human exfoliated deciduous teeth (SHED) cultured with or without VEGF (50 ng/mL) 
for 12 h after shear stress (6 × 10-5, 1.2 × 10-4 N/cm2 for 4, 8 and 12 h), mRNA 
expression of angiogenic markers VEGF, VEGFR2, and CD31 was increased 
significantly[20]. Also, our group’s previous study showed that the combined 
stimulation of shear stress and VEGF resulted in more EC-oriented differentiation of 
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MSCs in comparison to any individual stimulation[15]. Laminar shear stress (1.2 × 10-4 
N/cm2 for 24 h) facilitated rat bone-marrow-derived MSCs cultured in the endothelial 
growth medium (EGM) for endothelial maturation under both normoxic and hypoxic 
conditions[21].

Furthermore, MSCs derived from adipose tissue have been shown to differentiate 
into ECs under shear stress. Adipose tissue is a readily available source of multipotent 
adult stem cells for use in tissue engineering and regenerative medicine. Bassaneze et 
al[22] demonstrated that even though laminar shear stress (1 × 10-4 N/cm2 up to 96 h), 
produced by a cone plate system, failed to induce EC markers (CD31, vWF and Flk-1) 
in human adipose tissue-derived stem cells (ASCs), it stimulated nitric oxide (NO)-
dependent VEGF production. Another study found that 0-2.5 × 10-5 N/cm2 cyclic shear 
stress increased expression levels of Flk-1, vWF, and VE-cadherin[23]. Fontijn et al[24] 
found that SOX18 transduced human ASCs, reorganized under conditions of shear 
stress 1.8 × 10-4 N/cm2 for 5 d in EGM2 plus bFGF displayed VEGF-induced che-
motaxis and formed tubular structures in 3D matrices in an matrix-metalloproteinase 
(MMP)-7-dependent manner, suggesting that shear stress can activate differentiation 
of ASCs into ECs.

Synergy between biochemical factors and shear stress has been shown. Fischer et al
[25] exposed human ASCs to EC growth supplement medium (for up to 3 wk) and 
physiological shear force (1.2 × 10-4 N/cm2 for up to 8 d). The combination synergist-
ically promoted expression of CD31 and ac-LDL uptake. Human ASCs subjected to 
shear stress and VEGF expressed specific endothelial markers, including vWF, 
endothelial NO synthase (eNOS), fms-like tyrosine kinase-1 (Flt-1), CD31, Flk-1 and 
VE-cadherin[26,27]. In addition to bone-marrow-derived MSCs and adipose-derived 
MSCs, MSCs derived from other sources, such as amniotic fluid[28] and human 
placenta[29], can differentiate into ECs under shear stress[6].

Taken together, these studies suggest that different types of MSCs are able to differ-
entiate into vascular ECs when they are stimulated with physiological shear stress. 
Mechanical and biochemical influences synergize in order to increase the expression of 
EC markers and EC functionality.

EPCs
Circulating EPCs are adult stem cells that play a central role in endothelial repair and 
blood vessel formation[30]. Hemodynamic conditions can influence localization and 
cell lineage differentiation of adult vascular progenitor cells[31]. EPCs are mobilized 
from bone marrow into peripheral blood, attach to existing ECs, and then migrate 
across the endothelium into tissues where they proliferate, differentiate, and form new 
blood vessels[32].

Shear stress has been shown to promote EPC differentiation into ECs[33]. 
Yamamoto et al[34] reported that laminar shear stress (1 × 10-6 N/cm2 to 2.5 × 10-5 
N/cm2) accelerated cell proliferation and expression of Flk-1, Flt-1 and VE-cadherin, 
and upregulated capillary-like tube formation of human peripheral-blood-
mononuclear-cell-derived EPCs[34]. Ye et al[35] exposed human EPCs separated from 
cord blood to shear stress of 5 × 10-5 N/cm2 by using a parallel-plate coculture flow 
chamber. They found that shear stress increased the expression of endothelial markers 
CD31 and vWF[35]. Moreover, exposure of human CD34+ hematopoietic progenitor 
cells to shear stress increased expression of VEGF-R2, eNOS, and a VEGFR2 promoter-
driven reporter gene[36]. To identify the effects of shear stress on EPC differentiation, 
EPCs were exposed to 5 × 10-4, 1.5 × 10-4 and 2.5 × 10-4 N/cm2 laminar shear stress for 
up to 24 h or 1.5 × 10-4 N/cm2 laminar shear stress for 5, 10 and 20 h, which resulted in 
upregulation of both in vitro endothelial differentiation and in vivo reendothelialization 
capacity of human EPCs in a nude mouse model in magnitude-dependent and time-
dependent manners[37]. Cui et al[38] treated EPCs with different levels of shear stress 
(2 × 10-5, 6 × 10-5, 1.2 × 10-4 and 2 × 10-4 N/cm2). The results showed a dose-dependent 
increase in the shear-stress-induced gene expression of CD31 and vWF in EPCs above 
2 × 10-5 N/cm2. Cheng et al[39] exposed human umbilical-cord-blood-derived EPCs to 
laminar shear stress of 1.5 × 10-4 N/cm2 using a parallel plate flow chamber system. 
Shear stress enhanced EPC differentiation toward ECs and inhibited smooth muscle 
cells differentiation[39]. In vitro and in vivo assays revealed that shear stress 
upregulated expression levels of vWF and CD31 in EPCs, with sub-sequently 
increased in vivo reendothelialization after arterial injury[40].

Further studies investigated whether EPCs differentiate into arterial or venous ECs 
in response to shear stress[3]. Obi et al[41] have demonstrated that controlled levels of 
shear stress in a flow-loading device increased the expression levels of the arterial EC 
markers ephrinB2, Notch1/3, Hey1/2, and activin receptor-like kinase 1, but 
decreased expression of the venous markers EphB4 and neuropilin 2. Exposure of 
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human umbilical cord blood derived EPCs to shear stress of 1 × 10-6-5 × 10-5 N/cm2 
increased the surface protein expression rate of the endothelial markers including 
VEGFR1 (Flt-1), VEGFR2, VE-cadherin, tyrosine kinase with immunoglobulin and EGF 
homology domain-2 (Tie2), vascular cell adhesion molecule 1, integrin αv/β3, E-
selectin, eNOS, MMP-9 and VEGF. Likewise, in the study of Suzuki et al[42], shear 
stress (1.5 × 10-4 N/cm2) augmented human peripheral-blood-mononuclear-cell-
derived EPCs to express of CD31 and vWF as well as ephrinB2, which is a marker for 
arterial ECs[42].

Shear stress not only has a clear effect on mature ECs, but also significantly 
promotes the homing of EPCs to the site of endothelial injury, encourages EPC differ-
entiation into arterial ECs, and induces EPCs to resist thrombosis and anti-athero-
sclerosis (Table 2).

ESCs
In addition to MSCs and EPCs (adult progenitor/stem cells), ESCs have been shown to 
differentiate into ECs under shear stress. Shear stress is involved in endothelial differ-
entiation during embryonic development and is key to the maintenance of a healthy 
endothelium[2]. Several groups have provided strong evidence that pulsatile/non 
pulsatile shear stress promotes phenotypic differentiation of ESCs, ESC-derived stem 
cell antigen-1-positive (Sca-1+) cells or ESC-derived Flk-1+ into vascular ECs[43].

An early study treated mouse ESCs with a laminar shear stress of 1 × 10-4 N/cm2 
using a cone-plate apparatus that consisted of a rotating cone placed in a tissue culture 
dish filled with fluid[44]. In the cone-plate system, fluid moved along the azimuth 
angle with the rotation of the cone and along the radial direction due to centrifugal 
force. Therefore, shear stress was produced at the plate. They found strongly activated 
transcription from the VEGFR2 promoter and early induction of endothelial markers, 
including VEGFR2 and PECAM1. Other cardiovascular markers, such as SMA, smooth 
muscle protein 22-α, myocyte enhancer factor-2C, and α-sarcomeric actin also 
appeared after exposure to laminar shear stress. When plated on Matrigel-coated 
plates, they formed tubular-like structures. Ahsan and Nerem[45] also loaded mouse 
ESCs with a steady laminar flow of 1.5 × 10-4 N/cm2 using a parallel plate flow 
chamber for 2 d. ESCs exposed to shear stress expressed increased levels of endothelial 
marker proteins (Flk-1, VE-cadherin, and PECAM1) and formed chord-like structures 
in an in vitro Matrigel assay. A similar result was reported on mouse ESCs by Nsiah et 
al[46]. The application of 2 d of fluid shear stress at 5 × 10-5 N/cm2 during early differ-
entiation of mouse ESCs promoted expression of endothelial marker genes Flk1, VE-
cadherin and PECAM1, compared with statically cultured ESCs. To systematically 
investigate the effects of several mechanical parameters, Wolfe and Ahsan[47] applied 
laminar shear stress of 1.5 × 10-5, 5 × 10-5, and 1.5 × 10-4 N/cm2 to ESCs using a parallel 
plate bioreactor system. They found that all of them can increase the number of Flk1+, 
endothelial PECAM1+, and hematopoietic CD41+ cells[47].

Flk-1 and/or Sca-1 are progenitor markers, usually used to isolate vascular 
progenitors from stem cell populations undergoing spontaneous differentiation[36]. 
Zeng et al[48] demonstrated that both mouse ESCs and Sca-1+ cells exposed to laminar 
shear stress (1.2 × 10-4 N/cm2) increased expression of PECAM1, CD133, VE-cadherin, 
VEGFR1, VEGFR2, and eNOS, and formed tube-like structures on Matrigel[48]. 
Yamamoto et al[49] exposed mouse ESC-derived Flk-1+ cells to laminar shear stress 
ranging from 1.5 × 10-5 to 1 × 10-4 N/cm2 with a parallel plate-type device. Flk1+ cells 
under the laminar flow significantly increased expression of endothelial markers (Flk1, 
Flt1, VE-cadherin, and PECAM1) and accumulation of cells in S and G2/M cell cycle 
phases, formed tubelike structures in collagen gel, and developed an extensive tubular 
network significantly faster than the static controls did. Biomechanical forces might act 
to promote hematopoiesis. Also, when murine ESC–derived Flk1+ cells were applied 
with 1 × 10-4 N/cm2 shear stress, mRNA expression of the arterial EC marker ephrinB2 
increased, whereas the levels of the venous EC marker EphB4 decreased in a dose-
dependent manner[50]. Fluid shear stress (5 × 10-5 N/cm2) generated by a dynamic 
flow system increased expression of CD31 (PECAM1), Runt-related transcription 
factor 1, Myb, and Krüppel-like factor 2 (KLF2) in mouse ESC-derived CD41+c-Kit+ 
hematopoietic progenitor cells. Moreover, shear stress increased hematopoietic colony-
forming potential and expression of hematopoietic markers in the para-aortic splanch-
nopleura/aorta–gonads–mesonephros of mouse embryos[51].

Huang et al[52] demonstrated that not only steady but also pulsatile flow can 
promote an EC fate in stem cells[52]. They exposed a cell mixture containing ESC-
derived Flk1+ cells in a compliant microporous polyurethane tube to simulate a 
pulsatile wall shear stress from 9.8 × 10-6 to 2.2 × 10-5 N/cm2 and a circumferential 
strain stress 0.46-0.96 N/cm2 for 2 d. The inner layer of the cells displayed endothelial-
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Table 2 Studies on shear stress regulating endothelial progenitor cell to endothelial differentiation

Cell source Condition of shear 
stress Markers expressed Function tested Signaling molecule Ref.

Human umbilical 
cord blood derived- 
EPCs

Rotating-disk-type flow-
loading device Shear stress 
applied ranged from 1 × 
10-6 to 5 × 10-5 N/cm2 1, 2 
d

VEGFR1, VEGFR2, VE-
cadherin, Tie2, VCAM1, 
integrin αv/β3, E-selectin, 
eNOS, matrix 
metalloproteinase 9, and 
VEGF

- PI3K/Akt/mTOR Obi et al[32], 
2012

Human cord blood 
derived-EPCs

Perfusion system. 
Unidirectional shear stress 
(0.3 ± 0.1, 6 ± 3 × 10-5 
N/cm2) and bidirectional 
shear stress (0.3 ± 3 × 10-5 
N/cm2) 24 h

Tissue factor - - Mazzolai et al
[33], 2011

Human peripheral 
blood mononuclear 
cells-derived EPCs

Rotating disk-type flow 
loading device 0.1 to 2.5 × 
10-5 N/cm2 24 h

Flk-1, Flt-1 and VE-cadherin Matrigel tube formation 
assay

- Yamamoto et al
[34], 2003

Human blood 
mononuclear cells-
derived EPCs

Parallel-plate coculture 
flow chamber 5 × 10-5 
N/cm2 24 h

CD31 and vWF - Akt Ye et al[35], 2008

Human CD34+ 
hematopoietic 
progenitor cells

Cone-and-plate apparatus 
1.5 × 10-4 N/cm2 24 h

VEGFR2, eNOS, and a 
VEGFR2 promoter-driven 
reporter gene

- HoxA9 Rössig et al[36], 
2005

Human peripheral 
blood mononuclear 
cells-derived EPCs

Parallel plate flow 
chamber channel 5 × 10-5, 
1.5 × 10-4 and 2.5 × 10-4 
N/cm2 for 24 h or 1.5 × 10
-4 N/cm2 for 5, 10 and 20 h

Phosphorylated Tie2, 
phosphorylated Akt 
andeNOS

reendothelialization assay 
in nude mouse model

Tie2 /PI3K/Akt Yang et al[37], 
2012

EPCs isolated from 
rat bone marrow

Flow chamber system 2 × 
10-5, 6 × 10-5, 1.2 × 10-4, and 
2 × 10-4 N/cm2 12, 24 h

CD31 and vWF - Integrins Cui et al[38], 
2012

Human umbilical 
cord blood derived- 
EPCs

Parallel plate flow 
chamber system 1.5 × 10-4 
N/cm2 6, 12, and 24 h

VEGFR2, VE-cadherin, vWF, 
and CD31

Matrigel tube formation 
assay

miR-34a/Foxj2 Cheng et al[39], 
2014

Human peripheral 
blood mononuclear 
cells-derived EPCs

Rotating-disk-type flow-
loading device. Shear 
stress applied ranged from 
0.1 to 5 × 10-5 N/cm2 6, 12, 
24 h

EphrinB2, Notch1/3, 
Hey1/2, and activin 
receptor-like kinase 1

- Sp1 Obi et al[41], 
2009

Human peripheral 
blood mononuclear 
cells-derived EPCs

Parallel plate-type device 
1.5 × 10-4 N/cm2 1 d

CD31, vWF, and ephrinB2 - p38 and MAPK 
pathways

Suzuki et al[42], 
2012

Akt: Protein kinase B; ALK1: Activin receptor-like kinase 1; Ac-H3: H3 acetylation; eNOS: Endothelial nitric-oxide synthase; BH4: Tetrahydrobiopterin; 
EPCs: Endothelial progenitor cells; Flk-1: Fetal liver kinase-1; Flt-1: Fms-like tyrosine kinase-1; Foxj2: Forkhead box j2; GTPCH: Guanosine triphosphate 
cyclohydrolase; KLF2: Krüppel-like factor 2; MAPK: Mitogen-activated protein kinase; miR-34a: MicroRNA-34a; PI3K: Phosphoinositide 3-kinase; PTEN: 
Tumor suppressor phosphatase and tensin homolog; Tie2: Tyrosine kinase with immunoglobulin and epidermal growth factor homology domain-2; 
VCAM1: Vascular cell adhesion molecule-1; VE-cadherin: Vascular endothelial-cadherin; VEGFR1: Vascular endothelial growth factor receptor 1; VEGFR2: 
Vascular endothelial growth factor receptor 2; vWF: Von Willebrand factor .

like appearance, and the deeper layer of the cells stained positive for smooth muscle 
markers.

iPSCs have broad differentiation characteristics similar to ESCs, and avoid the 
immune rejection and ethical issues of ESCs, so they have quickly become a research 
hotspot in the field of stem cells. Our group’s previous study showed that exposure of 
mouse iPSCs to shear stress (5 × 10-5, 1 × 10-4, and 1.5 × 10-4 N/cm2) with 50 ng/mL 
VEGF and 10 ng/mL FGF increased expression of the general EC markers and arterial 
markers, during which the stress amplitude of 1 × 10-4 N/cm2 could be regarded as a 
proper promoter, whereas the venous and lymphatic markers had little or no 
expression. Shear stress caused cells to align parallel to the direction of the flow, 
induced cells forming functional tubes, and increased secretion of NO. In addition, 
Notch1 was significantly upregulated, and the Notch ligand Delta-like 4 was activated 
in response to shear stress, while inhibition of Notch signaling by dual antiplatelet 
therapy (DAPT) abolished the shear stress-induced arterial epithelial differentiation
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[53].
Most of the previous experimental systems involved the use of bioreactors or 

viscometers, like parallel plate flow and conical flow reactors[3]. To overcomes the 
limitations of macroperfusion systems in shear application throughput and precision, 
Toh and Voldman[54] used a multiplex microfluidic array that applied shear stresses 
varying by > 1000 times (1.6 × 10-7-1.6 × 10-4 N/cm2) to mouse ESCs. In the microfluidic 
device, they used a fluid column or a syringe pump to drive blood or culture medium 
over cells cultured in capillary tubes or in customized poly(dimethylsiloxane) chips, 
producing shear stress. Shear stress specifically upregulated the epiblast marker Fgf5. 
Epiblast-state transition involved heparan sulfate proteoglycans, which have also been 
shown to transduce shear stress in ECs[3]. Lee et al[55] developed an integrated 
microfluidic culture device consisting of an air control channel and a fluidic control 
channel with 4 × 4 microcolumn arrays. They demonstrated that ESCs cultured for 6 d 
in the integrated microfluidic culture device were more differentiated into PECAM+ 
ECs.

Overall, ESCs and iPSCs are potential sources for cell-based tissue engineering and 
regenerative medicine applications (Table 3). Increasing evidence suggests that 
appropriate shear stress, especially 1 × 10-4-1.5 × 10-4 N/cm2, may be a useful tool for 
promoting ESC differentiation into ECs. The adoption of microfluidic technologies will 
help to circumvent current technical limitations and provide quantitative shear 
application benchmarks for future scalable stem cell culture systems.

SIGNALING PATHWAYS OF SHEAR-STRESS-INDUCED EC DIFFE-
RENTIATION
Mechanotransduction is the process by which mechanical stimuli are converted into 
biochemical signals inside the cell, enabling the cell to adapt to its environment, 
including three stages: Mechanotransmission, mechanosensing and mechanoresponse
[56]. Mechanotransmission, as the name suggests, is the propagation of mechanical 
forces along structures, such as the cytoskeleton. Mechanosensing refers to the process 
in which a force acts on a mechanically sensitive macromolecule after mechanical 
transmission, changing its conformation, and thus, affecting its function. Although the 
biological effects of different mechanical forces in different systems are specific, the 
underlying physical response is similar: the force promotes a change in the 
conformation of the applied force. The process that the perceived mechanical signal 
produces a series of biological effects through the complex cellular signal and 
transcriptional network is called mechanoresponse, which is not as fast and direct as 
the first two processes, and in many cases, these reactions alter the mechanically 
sensitive structures that cause the reactions.

Over the past few decades, it has been widely reported that shear stress plays a 
critical role in endothelial differentiation of types of stem cells to remodel blood 
vessels and repair vascular damages[57]. Evidence of several potential signaling 
pathways involved in shear-stress-induced endothelial specification of different stem 
cells has been identified; however, the connections and interactions of these mechano-
sensitive molecules are still unclear. In detail, the mechanism by which shear stress 
promotes the mobilization of circulating phenotype PSCs from the peripheral blood or 
bone marrow to the injured site, the differentiation of the tissue adhered cells into 
mature ECs, and the restoration of vascular structure and functions is worth invest-
igating. In addition, EPCs are divided into two types according to differences in 
protein expression and function. The cells involved in the early endothelial differen-
tiation, called early EPCs, lack the capacity to differentiate into functional ECs, but 
activate resident ECs through paracrine factors[58], while the cells associated with the 
latter process, named late EPCs, are able to incorporate with vascular endothelium and 
generate new capillaries in vivo[59]. This review shows how the mechanosensors and 
the downstream signals convert mechanical stimuli into biochemical signals inside the 
stem cells during the early (Figure 1) and late (Figure 2) stages of endothelial differen-
tiation mediated by shear stress.

Notch signaling pathway
The Notch signaling pathway, which contains four Notch receptors and five Notch 
ligands (Jagged 1 and 2, and Delta-like 1, 3 and 4) in mice and humans[60], plays a 
fundamental role in promoting arterial-venous differentiation throughout embryonic 
vascular development[61-63]. It has been universally demonstrated that Notch affects 
embryonic vascular development[64-66] and regulation of arterial-venous differen-
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Table 3 Studies on shear stress regulating embryonic stem cell to endothelial differentiation

Cell source Condition of shear stress Markers expressed Function 
tested Signaling molecule Ref.

Mouse ESCs Cone-plate apparatus 1 × 10-4 
N/cm2 1 d

VEGFR2, PECAM1, 
smooth muscle actin, 
smooth muscle protein 22-
α, MEF2C, and α-
sarcomeric actin

Matrigel tube 
formation assay

Epigenetic modification of 
histones and transcription 
complexes bearing 
acetyltransferase activity

Illi et al[44], 
2005

Mouse ESCs Parallel plate flow chamber 1.5 × 10
-4 N/cm2 2 d

Flk-1, VE-cadherin, and 
PECAM1

Matrigel tube 
formation assay

- Ahsan and 
Nerem[45], 
2010

Mouse ESCs Parallel plate flow chamber 5 × 10-5 
N/cm2 2 d

Flk-1, VE-cadherin, and 
PECAM1

- - Nsiah et al[46], 
2014

Mouse ESCs Parallel plate bioreactor system 1.5 
× 10-5, 5 × 10-5, and 1.5 × 10-4 N/cm
2 4 d

Flk1, PECAM1, and CD41 - Flk1 Wolfe and 
Ahsan[47], 2013

Mouse ESCs and 
Sac-1+ cells

Parallel plate flow chamber 1.2 × 10
-4 N/cm2 1 d

PECAM1, CD133, VE-
cadherin, VEGFR1, 
VEGFR2, eNOS

Matrigel tube 
formation assay

Flk-1-PI3K-Akt-HDAC3-p53-
p21 pathway

Zeng et al[48], 
2006

Mouse Flk-1+ cells Parallel plate-type device 1.5 × 10-5 
to 1 × 10-4 N/cm2 1, 2, 3 d

Flk1, Flt1, VE-cadherin, 
and PECAM1

Tube formation 
assay in 
collagen gel

Ligand-independent 
activation of Flk-1

Yamamoto et al
[49], 2005

Murine 
ESCs–derived Flk-
1+ cells

Shear stress-loading device 1 × 10-4 
N/cm2 24 h

EphrinB2 - VEGFR-Notch signaling Noguera-Troise 
et al[50], 2006

Mouse CD41+c-
Kit+ cells

Dynamic flow system 5 × 10-5 
N/cm2 2 d

PECAM1, Runx1, Myb, 
and Klf2

In vivo assay NO Adamo et al
[51], 2009

Mouse Flk1+ cells Pulsatile flow culturing circuit. 
Pulsatile wall shear stress from 0.98 
to 2.2 × 10-5 N/cm2 and a 
circumferential strain stress 0/46-
0/96 N/cm2 2 d

PECAM1 and SMA - - Huang et al
[52], 2005

Mouse ESCs Multiplex microfluidic array 1.6 × 
10-7-1.6 × 10-4 N/cm2 3 d

Fgf5 - HSPGs Toh and 
Voldman[54], 
2011

Mouse ESCs Microfluidic culture device 1-10 
mL/min 6 d

PECAM1 - - Lee et al[55], 
2011

eNOS: Endothelial nitric-oxide synthase; ESC: Embryonic stem cells; Flk-1: Fetal liver kinase-1; Flt-1: Fms-like tyrosine kinase-1; HDAC3: Histone 
deacetylase 3; HSPGs: Heparan sulfate proteoglycans; MEF2C: Myocyte enhancer factor-2C; NO: Nitric oxide; PECAM1: Platelet/endothelial cell adhesion 
molecule 1; PI3K: Phosphoinositide 3-kinase; SMA: Smooth muscles actin; VE-cadherin: Vascular endothelial-cadherin; VEGFR1: Vascular endothelial 
growth factor receptor 1; VEGFR2: Vascular endothelial growth factor receptor 2; vWF: Von Willebrand factor.

tiation[67]. Specifically, Notch 1, Notch 4, Jagged 2, and Delta-like 1 and 4 have an 
important role in arterial specification[68-74]. Notch 1 has been identified as a 
mechanosensor that is responsible for mediating flow-induced arterial homeostasis[75,
76]. However, Kim et al[77] found that in vitro endothelial colony-forming cells 
(ECFCs), one kind of EPCs, derived from human cord blood, with preconditioning of 
Notch activation with an immobilized chimeric Notch ligand (Delta-like1ext-IgG), failed 
to promote vasculogenesis in vivo. Coimplantation of ECFCs and stromal cells 
expressing the Notch ligand has a positive effect on vessel density and area in vivo[77]. 
Moreover, using a c-secretase inhibitor (DAPT) to block the Notch pathway resulted in 
progenitor quiescence and reduction of ECFCs colony-formation potential, reflecting 
loss of progenitor capacity[78]. Therefore, the function of the Notch signaling pathway 
in shear-stress-induced EC differentiation remains to be studied.

Recently, it has been shown that VEGFR-Notch-EphrinB2 signaling is involved in 
shear stress regulation of PSC differentiation into arterial ECs[79-83]. VEGF binding to 
its receptors, VEGFR1 (also known as Flt-1) and VEGFR2 (also known as KDR and Flk-
1), increases the endothelial differentiation of stem cells[84-87], including MSCs[88,
89], EPCs[90], ESCs[91] and iPSCs[92]. VEGFR has been found to be sensitive to sheer 
stress in a ligand-independent manner[93], which activates the Notch pathway and 
determines EC fate[94]. EphrinB2 exists mainly on arterial ECs, and EphB4-preferring 
venous ECs are known to play a key role in embryonic vascular development[95-97], 
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Figure 1 Shear-stress-induced signaling pathways in early endothelial differentiation. This figure describes how the mechanosensitive molecules 
tyrosine kinase with immunoglobulin and epidermal growth factor homology domain-2and C-X-C chemokine receptor type 4 sense the shear stress, induce 
phosphoinositide 3-kinase-protein kinase B signaling activation, and further influence the gene expression of various paracrine factors ultimately regulating vessel 
maintenance and reformation. Akt: Protein kinase B; bFGF: Basic fibroblast growth factor; CXCR4: C-X-C chemokine receptor type 4; EPC: Endothelial progenitor 
cells PI3K: Phosphoinositide 3-kinase; Tie2: Tyrosine kinase with immunoglobulin and epidermal growth factor homology domain-2;VEGF: Vascular endothelial 
growth factor.

which could be regulated by VEGFR-Notch signaling[98]. According to previous 
studies, Notch signaling has been suggested to downregulate expression of EphB4 in 
ESCs, human umbilical vein ECs, and adult ECs, which is reported to be HERP-
dependent[99]. To be more specific, activation of the Delta-like 4/Notch pathway by 
VEGF selectively increases expression of EphrinB2, and thus, promotes angiogenesis
[100]. Shear stress induces EC differentiation via VEGFR-Notch-EphrinB2 signaling. 
For instance, murine ESC–derived VEGFR2+ cells in a shear-stress-loading device with 
a shear stress of 1 × 10-4 N/cm2 for 24 h upregulated EphrinB2 expression, which was 
found to be blocked by DAPT (2.5 μmol/L) and L685 458 (0.1 μmol/L), inhibitors of γ-
secretase, which was required in the sequential proteolytic events in Notch signaling 
pathway activation. The VEGFR kinase inhibitor SU1498 (10 μmol/L) suppresses 
shear-stress-induced cleaved Notch, which is essential in transactivation of various 
gene promoters during embryonic vascular development. Our previous study 
demonstrated that mouse iPSCs cultured with 50 ng/mL VEGF and 10 ng/mL FGF 
induced expression of Notch 1 and Delta-like 4 in response to shear stress (5 × 10-5, 1 × 
10-4, and 1.5 × 10-4 N/cm2) for 4 h. In turn, this caused upregulation of arterial markers 
EphrinB2 and neuropilin-1, which was blocked by DAPT (50 μmol/L)[53]. However, 
shear stress cannot continuously maintain high mRNA expression of EphrinB2 and 
EphB4 in murine tumor models, which might be related to a negative-feedback loop 
between VEGF-Notch signaling[50]. In addition, the mRNA expression of VEGF and 
VEGFR2 was upregulated in SHED cultured with or without VEGF (50 ng/mL) for 12 
h after shear stress values of 4 × 10-5 and 1.6 × 10-4 N/cm2 for 2 h. There were no 
significant changes in the expression of EphrinB2 and EphB4[20]. These results suggest 
that the EC differentiation potential of post-natal MSCs mediated by VEGFR-Notch-
Ephrin B2 signaling is limited.

As mentioned above, Notch is the junctional adhesion receptor activated by binding 
to ligands expressed on adjacent cells. This adhesion appears in shear-stress-induced 
late EC differentiation of PSCs with high plasticity. Therefore, the Notch signaling 
pathway regulates cells to home to ischemic lesions and generate mature endothelial 
progeny under shear stress. More importantly, Ephrin B2, a downstream molecule of 
Notch, plays a key role in arteriovenous differentiation, and is not persistently 
expressed in post-natal MSCs under shear stress conditions. More studies are required 
to clarify the mechanisms.
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Figure 2 Shear stress-induced signaling pathways in late endothelial differentiation. This figure describes how the mechanosensitive molecules 
such as Notch 1/4, vascular endothelial growth factor receptor, integrins respond to the shear stress, accompanied by cytoskeleton reorganization via RhoA, Ras, 
ERK 1/2 and paxillin, and activate phosphoinositide 3-kinase-protein kinase B signaling, regulating various pathways including guanosine triphosphate 
cyclohydrolase-tetrahydrobiopterin, histone deacetylase (HDAC) 1/3/6-P53-P21, HDAC 1/3/6-HoxA9 and sirtuin 1-H3. These signaling cascades influence the gene 
expression of stem cells, ultimately regulating vessel maintenance and reformation. Akt: Protein kinase B; GTPCH: Guanosine triphosphate cyclohydrolase; BH4: 
Tetrahydrobiopterin; ECM: Extracellular matrix; HDAC: Histone deacetylase; KLF2: Krüppel-like factor 2; PI3K: Phosphoinositide 3-kinase; PTEN: Tumor suppressor 
phosphatase and tensin homolog; VEGFR: Vascular endothelial growth factor receptor.

Phosphoinositide 3-kinase-Akt signaling
Shear stress promotes early endothelial differentiation of stem cells mobilized from 
bone marrow, such as MSCs and early EPCs, via phosphatidylinositol 3 kinase (PI3K)-
Akt signaling. Tie2 and its ligand, angiopoietin 2 (Ang2), contribute to the increase in 
proliferation, migration, and survival of CD34+ stem cells derived from human 
umbilical cord blood, and enhance neovascularization to restore injured vasculature
[101-104]. Shear stress (2 × 10-4 N/cm2 for 5 min) activated PI3K and Akt signals via 
Tie/Ang2 signaling in human ECs[105], which might also occur in EC differentiation 
of stem cells. Thus, Yang et al[37] focused on the Tie2/PI3k/Akt signaling pathway in 
early EPCs exposed to laminar shear stress and demonstrated that shear stress 
activated Tie2 and phosphorylated Akt (pAkt) in a dose-dependent manner, thus 
increasing in vitro endothelial differentiation and in vivo re-endothelialization capacity 
of human EPCs in nude mouse model, which was markedly inhibited after Tie2 
knockdown or PI3K inhibition[37]. More importantly, they found that eNOS, one of 
the recognized vascular repair molecules of circulating EPCs[106-108], could be 
directly controlled by shear stress through the Tie2/PI3K/Akt pathway on account 
that shRNA knockdown of the Tie2 gene or pharmacological inhibition of PI3K could 
significantly inhibit shear-stress-induced phosphorylation of Akt and eNOS in EPCs. 
Recently, it was demonstrated that an increase of C-X-C chemokine receptor type 4 
(CXCR4) and pAkt protein expression in MSCs and eEPCs, which could be promoted 
by shear stress (1.2 × 10-4 N/cm2) for 24 h even under hypoxic conditions, facilitated 
these cells toward mature ECs, reflected by an increase in endothelial markers 
PECAM-1 and VEGFA, indicating that the CXCR4-PI3K-Akt pathway was important 
to regulate the early endothelial differentiation in a hypoxic microenvironment[21]. All 
these findings demonstrate that Tie2-PI3K-Akt signaling or CXCR4-PI3K-Akt signaling 
was, at least in part, concerned with the shear-stress-mediated function of MSCs and 
eEPCs both in vitro and in vivo.

PI3K-Akt signaling was also involved in the late stage of endothelial differentiation 
induced by shear stress through increasing adhesion, migration, proliferation, and 
finally, tube formation. The tumor suppressor phosphatase and tensin homolog 
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(PTEN) is activated during angiogenesis of ECs and EPCs by reducing expression of 
the PI3K-Akt pathway, and in turn downregulates angiogenesis and vasculogenesis
[109-111]. Recently, Wu et al[112] demonstrated that shear stress (5 × 10-5, 1.5 × 10-4, and 
2.5 × 10-4 N/cm2 for 5, 10, and 15 h) enhanced the functions of EPCs in vitro and in 
vivo, which was associated with downregulation of PTEN expression, phosphorylation 
of Akt and activation of the guanosine triphosphate cyclohydrolase (GTPCH)-tetrahy-
drobiopterin (BH4) pathway, which is critical to the synthesis of NO. When Akt 
phosphorylation specific inhibitor, LY was added, shear-stress-induced activation of 
the GTPCH-BH4 pathway and tube formation of late EPCs were suppressed, 
suggesting that the PTEN-Akt-GTPC-BH4 pathway contributed to shear-stress-
enhanced functions of late EPCs during angiogenesis[112]. Moreover, VEGFR2 was 
another accepted upstream signaling molecule of PI3K-Akt signaling, which could 
further stably activate histone deacetylases (HDACs). In late EPCs derived from 
human umbilical cord blood, culture with shear stress (2.5 × 10-6, 5 × 10-6, 1 × 10-5, 2.5 × 
10-5 N/cm2) for 24 and 48 h promoted differentiation of the cells into mature ECs, with 
expression of the endothelial marker VEGF-R2 increasing in a ligand-independent 
manner. After treatment with PI3K inhibitor and mTOR inhibitor in EPCs exposed to a 
shear stress of 2.5 × 10-5 N/cm2 for 48 h, expression of endothelial marker proteins 
VEGFR1, VEGFR2, VE-cadherin, and Tie2 was markedly decreased, indicating that 
PI3K-Akt-mTOR signaling is the most potent transduction pathway of endothelial 
differentiation in response to shear stress[113]. Rössig et al[36] found that inhibition of 
HDACs prevented endothelial differentiation from adult progenitor cells. 
Furthermore, overexpression of HoxA9, a homeobox transcription factor, partially 
rescued the negative influence of HDAC inhibitors and mediated EC maturation 
induced by shear stress (1.5 × 10-4 N/cm2 for 24 h). These results indicated that 
inhibition of HDACs decreased expression of HoxA9 and then inhibited the 
endothelial lineage commitment of different progenitor cell sources induced by shear 
stress[36]. Furthermore, 1.2 × 10-4 N/cm2 laminar shear stress for 12 and 24 h enhanced 
the differentiation of ESC-derived progenitor cells into ECs by stabilizing and 
activating HDAC3 through the Flk-1-PI3K-Akt pathway, which in turn deacetylated 
p53, leading to p21 activation, thus promoting EC differentiation in vitro and in vivo
[48]. As for the sirtuin (SIRT) family, class III HDACs, shear stress of 1.5 × 10-4 N/cm2 
for 2, 6, 12, and 24 h upregulated SIRT1 by activation of the PI3k-Akt pathway and 
resulted in deacetylating histone H3, which induced EPC differentiation toward ECs in 
vitro[114]. HDAC6 is important for restoring primary cilia after 24 h of 2 × 10-4 N/cm2 
shear stress applied to iPSC-derived ECs[115]. However, the HDAC inhibitor 
trichostatin A increases expression of EC markers, such as VE-cadherin, vWF and Flk1 
in bone marrow progenitor cells and stimulates vascular network formation in vivo, 
indicating that the HDACs have an opposite effect and suppress endothelial differen-
tiation[116]. Therefore, the role of HDACs in differentiation into ECs and the effect of 
the PI3K-Akt pathway on shear-stress-induced HDACs regulation require further 
research.

PI3K-Akt binding to different upstream and downstream molecules plays an 
important role at any stage of shear-stress-induced endothelial differentiation. Early 
endothelial differentiation is regulated by the Tie2-PI3K-Akt-eNOS signaling pathway 
in early EPCs and CXCR4-PI3K-Akt pathway in MSCs, while the inhibitory effect of 
PTEN on PI3K-Akt signaling and VEGFR2-PI3K-Akt-mTOR pathway occurs in late 
endothelial differentiation of several stem cells, including ESCs, EPCs and iPSCs. 
HDACs are known for their effects in regulating vascular health[117-119]. However, 
the mechanisms by which HDACs regulate shear-stress-induced EC differentiation via 
the PI3K-Akt pathway have not been elucidated.

Integrin-cytoskeleton system
Integrin[120] and cytoskeletal filaments[121] have been verified to contribute to 
mechanotransduction, i.e. mediating the shear-stress-induced endothelial commitment 
of stem cells. Integrin can be activated by shear stress and mediate cell-extracellular 
matrix (ECM) and cell-cell interactions, which trigger downstream signals, including 
RhoA, Rac (belonging to the Ras super-family of proteins), and Cdc42 activation[122,
123]. Cui et al[38] have shown that shear stress at 1.2 × 10-4 N/cm2 for 2, 6, 12 and 20 h 
upregulated the expression of integrin β1 and β3 and increased expression of EC 
differentiation markers in late EPCs isolated from rat bone marrow, in a time-
dependent manner. This process could be inhibited by anti-β1 integrin and anti-β3 
integrin antibodies that blocked the binding of integrins to the ECM. Therefore, 
integrins β1 and β3 play a key role in regulating the shear-stress-induced late EPC 
differentiation[38]. During integrin β1-related signals, Ras, one of the small G proteins, 
was the earliest link between mechanical perception and the downstream signal 
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transduction cascades[124]. Moreover, integrins associated with RhoA participate in 
the process of cytoskeletal rearrangement, and further EPC differentiation after 
applying shear stress[125]. Cheng et al[126] have demonstrated that Ras, ERK1/2 and 
paxillin activated by integrin β1 are important mechanosensors involved in 
cytoskeletal remodeling, which subsequently upregulate expression of endothelial 
markers vWF and CD3 in late EPCs from rat bone marrow exposed to shear stress at 
1.2 × 10-4 N/cm2 for 5, 30 or 60 min and promotes re-endothelialization in rats with 
arterial injury[126]. Additionally, to determine the order in which these signaling 
molecules act, pretreatment of EPCs with the anti-integrin β1 antibody (50 mg/mL), 
Ras-negative mutant (RasN17), ERK1/2 specific inhibitor PD98059, and the mediated 
silencing of the paxillin under shear stress at 1.2 × 10-4 N/cm2 for 1 h was applied. This 
suggested that cytoskeletal remodeling is associated with shear-stress-induced 
endothelial differentiation by activating integrins, especially integrin β1 and β3, Ras, 
ERK1/2 and paxillin in sequence.

Cytoskeletal rearrangement associated with integrins might mediate the translo-
cation of numerous signaling molecules, which in turn facilitate activation of the 
downstream signal transduction cascades that regulate endothelial differentiation on 
encountering shear stress. For instance, VEGFR-2/Flk-1 might be of importance to 
transduce signals through the integrin-cytoskeleton system and contribute to shear 
stress-induced endothelial differentiation because of the upregulation of integrin 
expression by VEGF during angiogenesis in mature ECs[127,128]. Also, cytoskeletal 
rearrangement contributes to the shear-stress-induced PI3K and Akt activation 
mediated by integrins, which in turn facilitates endothelial differentiation. More 
recently, the Notch signaling-regulating role of cytoskeletal protein vimentin has been 
addressed during arterial remodeling accelerated by shear stress[129]. In this research, 
1 Pa shear stress for 24 h enhanced Jagged 1 levels and further increased Notch signal 
activation. When the Notch reporter cells cocultured with vimentin knock-out cells 
were exposed to shear stress, the regulation of Jagged 1-Notch signaling was inhibited, 
indicating the importance of vimentin in Jagged 1-Notch transactivation during shear 
stress. Chu et al[130] also pointed out that KLF2, a member of the zinc finger 
transcription factor family, was essential for the regulation of the integrin-cytoskeleton 
system in endothelial differentiation of rat late EPCs under shear stress (1.2 × 10-4 
N/cm2)[130]. Downregulation of KLF2 expression by siRNA resulted in inhibition of 
endothelial differentiation, with decreased protein levels of EC markers, CD31, and 
vWF. Moreover, blocking integrin β1/β3 with antiintegrin antibodies, or disrupting 
cytoskeletal protein F-actin with cytochalasin D, interfered with activation of KLF2. 
Upregulation of KLF2 expression is involved in shear-stress-induced differentiation of 
EPCs toward mature ECs, which may be associated with the integrin-cytoskeleton 
system.

The association of integrins and the cytoskeleton mediated by RhoA, Ras, ERK1/2, 
paxillin and focal adhesion kinase in turn happens at focal adhesions[131], indicating 
that the integrin-cytoskeleton system reacts to shear-stress-induced endothelial differ-
entiation of attached tissue type EPCs. In addition, the integrin-cytoskeleton system, as 
a critical mechanosensor, responds to shear stress and activates signaling pathways 
that regulate EC differentiation, such as VEGFR-2/Flk-1, PI3K-Akt pathway, Notch 
signaling and KLF2.

CONCLUSION
The present review summarizes recent results on how shear stress influences stem cell 
differentiation into ECs. The underlying mechanisms involved in this process include 
integrin-mediated signaling, cytoskeletal reorganization, activation of intracellular 
signaling cascades, such as Notch signaling, PI3K-Akt pathway, VEGFR-2/Flk-1, 
KLF2, and nuclear translocation, leading to expressions of a variety of genes, which 
finally promotes an endothelium-oriented phenotype in stem cells.

However, many questions concerning the relationship between shear stress and the 
responses of stem cells remain unanswered. For example, stem cells can differentiate 
into ECs, muscle cells, osteocytes, adipocytes, and neural cells in vitro, and also are 
stimulated by shear stretch and compressive stress in vivo. How do the stem cells sense 
these physical forces to go in a specific direction? Further investigation on this issue 
would enhance our control or manipulation of stem cell differentiation. Individual 
shear stress discussed here does not seem to drive stem cells toward arterial or venous 
ECs. It is unlikely that a single factor will be able to determine the clear demarcation 
between arterial and venous phenotypes. Hence, it is necessary to combine a variety of 
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biophysical and biochemical cues to support more effective phenotypic specification. 
In addition, it is unknown if the blood flow under physiological or pathological 
conditions influences the EC-oriented differentiation of stem cells. Finally, with the 
advent of nanotechnology and microfluidic technologies, elucidating microfluidic 
dynamics would help our understanding of how shear stress affects stem cell differen-
tiation. Taken together, the deeper understanding of how stem cells respond to 
mechanical forces would be able to produce a mechanical-force-mediated tissue-
engineered vessel and enhance the clinical translation of stem-cell-based strategy.
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