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Abstract

Background: Given increasing concerns about the relevance of research to policy and practice, 

there is growing interest in assessing and enhancing the external validity of randomized trials: 

determining how useful a given randomized trial is for informing a policy question for a specific 

target population.

Objectives: This paper highlights recent advances in assessing and enhancing external validity, 

with a focus on the data needed to make ex post statistical adjustments to enhance the applicability 

of experimental findings to populations potentially different from their study sample.

Research design: We use a case study to illustrate how to generalize treatment effect estimates 

from a randomized trial sample to a target population, in particular comparing the sample of 

children in a randomized trial of a supplemental program for Head Start centers (the REDI study) 

to the national population of children eligible for Head Start, as represented in the Head Start 

Impact Study.

Results: For this case study, common data elements between the trial sample and population 

were limited, making reliable generalization from the trial sample to the population challenging.

Conclusions: To answer important questions about external validity, more publicly available 

data are needed. In addition, future studies should make an effort to collect measures similar to 

those in other datasets. Measure comparability between population datasets and randomized trials 

that use samples of convenience will greatly enhance the range of research and policy relevant 

questions that can be answered.
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1. Introduction

Randomized controlled trials remain the “gold standard” for research designs to estimate the 

effects of interventions. However, a shortcoming of nearly all randomized trials across a 

variety of fields (including medicine, public health, education, and social program 

evaluation) is that their measured effects are formally only generalizable to the subjects (e.g., 

students, patients, service providers) within the trial itself, leaving open the question of 

whether the intervention would be effective in a different target population. Important policy 

questions regarding program implementation may involve populations quite different from 

those in the trial, in which case practitioners and stakeholders must evaluate how well an 

existing trial can inform a particular policy decision. This issue is of particular relevance 

given increasing concerns about gaps between research and practice. Recent evidence across 

a number of fields has indicated that the subjects in a trial are often quite different from the 

individuals of policy or practice interest (e.g., Humphreys, Weingardt, & Harris, 2007; 

Rothwell, 2005; Stirman et al., 2005; Westen, Stirman, & DeRubeis, 2006). The topic has 

received particular attention in mental health. For example, Braslow et al. (2005) found that 

minorities were often under-represented in studies of psychiatric treatment and Susukida et 

al. (in press) found that, on average, individuals who participate in randomized trials of drug 

abuse treatment have higher levels of education and are more likely to be employed than are 

individuals seeking drug abuse treatment nationwide. In education, Bell et al. (in press) have 

shown that these differences can translate into bias when estimating population effects.

More formally, randomized trials offer internal validity: unbiased estimation of treatment 

effects in the sample of individuals in the trial, but do not necessarily offer external validity: 

“whether the causal relationship holds over variation in persons, settings, treatment, and 

measurement variables” (Shadish, Cook, & Campbell, 2002, p. 20). Bareinboim and Pearl 

(2013) define a closely related term, “transportability,” as “a license to transfer causal effects 

learned in experimental studies to a new population, in which only observational studies can 

be conducted.” (Bareinboim & Pearl, 2013, p. 107). Cook (2014) gives a broad overview of 

the challenges in generalizing from one sample to another, including discussion of 

extrapolation to new settings and contexts. What we are concerned with in this paper is how 

we can estimate the average treatment effect in a target population of interest, given data 

from a randomized trial. In other words, how can policy makers and practitioners who want 

to implement best practices in their programs, schools, and clinics use existing randomized 

control trial evidence to evaluate the effects of an intervention in their target population? 

How feasible for practitioners are methods for evaluating the effects of existing randomized 

control trials in different populations of interest?

In this process, defining the target population is a crucial step, and the choice of target 

population will depend on the specific policy or practice question of interest; for some 

questions the appropriate target population may be a national population, for others it may 

be a more narrow sub-population, such as participants in a federal program in a particular 

state. (And in fact the same randomized trial may be used to generalize effects to multiple 

target populations). Throughout this paper we assume that the target population is well-

defined and appropriate for the question of interest.
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Fundamentally, problems of external validity arise when there are factors that moderate 

treatment effects and that differ between the trial and the population (Cole & Stuart, 2010; 

Olsen et al., 2013). If the composition of subjects in the trial differs from that in the 

population of interest on effect moderators, then the average effect in the trial may not 

reflect the average that would be observed in the population. Given increasing concerns 

about external validity (see, e.g., Orr, 2015), statisticians and methodologists have begun to 

develop statistical methods to assess and enhance external validity. An ideal research process 

for improving external validity is to begin by formally defining a target population and then 

carrying out a randomized trial in a sample selected to be representative of that population. 

However, this sample selection process is generally difficult to carry out and quite rare; 

Olsen et al. (2013) document that only 7 of the 273 studies in the Digest of Social 
Experiments (Greenburg & Schroder, 2004) were conducted in random samples from the 

population of interest. (And in fact in many cases the target population itself is also not well 

defined). Additional approaches for assessing and enhancing external validity utilize 

multiple studies on the same intervention (e.g., individual patient meta-analysis that 

combines multiple randomized trials, or cross-design synthesis, which combines 

experimental and non-experimental evidence). See Stuart, Bradshaw, and Leaf (2014) for an 

overview of these design and analysis approaches.

The turn towards an emphasis on external validity is driven by an interest in using the results 

of internally valid randomized controlled trials to inform practice in other settings and with 

different target populations. Other papers (as cited above) introduce and illustrate statistical 

methods for assessing and enhancing generalizability; the current paper examines the 

practical issues that arise in the process of employing one of the proposed methods for 

estimating target population treatment effects using a randomized trial sample and 

population data. In this paper we focus on settings where a single randomized trial has been 

conducted, and where there is interest in generalizing the results of that trial to a specific 

target population, but where we do not have information in the population about possible 

treatment receipt (only covariates and possibly outcomes are available). Some recent work 

(e.g., Cole & Stuart, 2010; Stuart et al., 2011; O’Muircheartaigh & Hedges, 2014) has 

proposed reweighting approaches that weight the trial sample to look like the target 

population on a set of key characteristics. However, there has been relatively little use of 

those methods and little investigation of how well they perform, or how feasible they are in 

practice. This paper focuses on the assumptions and data needed to utilize a reweighting 

method to estimate treatment effects in target populations, and highlights recommendations 

for the design of future studies and datasets to help facilitate such estimation.

2. Methods

2.1 Formal setting for external validity

We first clearly define the quantity of interest using the concept of potential outcomes 

(Rubin, 1974). Consider a setting where we are interested in estimating the effect of a 

supplemental enrichment program for children in Head Start. After identifying the treatment 

and comparison conditions of interest, the next step is clearly defining the target population 

of interest. For our case study, detailed further below, the target population is the entire 
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population of students affected by Head Start policies: all children in Head Start programs 

across the U.S. Each individual in the population of interest has two potential outcomes: 

their outcome (e.g., a measure of emergent literacy skill scores) if they receive the 

intervention of interest (e.g., the supplemental enrichment program), denoted Y1i, and their 

outcome (emergent literacy skill scores) if they receive the comparison condition of interest 

(e.g., standard instruction), denoted Y0i. The treatment effect for individual i is defined as 

the difference between these two potential outcomes: Δi = Y1i - Y0i. In this paper, our 

interest is in estimating the population average treatment effect (PATE), denoted Δ: the 

average Δi across all N individuals in the target population: Δ = 1
N ∑i = 1

N Δi.

In this case study, we utilize data from an existing randomized trial of a supplemental 

enrichment program, the REDI program, in which children in Head Start centers were 

randomized to receive the supplemental program or not. Let Pi denote membership in the 

population of interest (Pi=1 for children in the population and Pi=0 for those in the trial 

sample). We assume that the same specific individuals are not in both the sample and the 

population, although a slight modification of the weights defined below allows for the 

individuals in the sample to be a subset of the individuals in the population dataset, as in 

Stuart et al. (2011). Let Ti denote treatment assignment in the trial (Ti=1 for intervention, 

Ti=0 for control). If treatment assignment is randomized, the difference in potential 

outcomes between the observed treatment and control groups in the trial sample (those for 

whom Pi=0), Δ = Y P = 0, T = 1 − Y P = 0, T = 0 (where Y P = p, T = t denotes the sample mean 

of Y for individuals in population p and treatment condition t), provides an unbiased 

estimate of the treatment effect in the trial sample, but may not provide a good estimate of 

the PATE. We define the external validity bias as the difference between the impact 

estimated in the evaluation sample and the true population impact, Δ − Δ.

Imai, King, and Stuart (2008) provide a framework for thinking about this bias, 

decomposing the overall bias when estimating a population treatment effect using an 

experimental or non-experimental study sample into four pieces: internal validity bias due to 

observed characteristics, internal validity bias due to unobserved characteristics, external 

validity bias due to observed characteristics, and external validity bias due to unobserved 

characteristics. When interest is in estimating the PATE, standard beliefs about a randomized 

trial being the gold standard design may not hold, if, for example, the external validity bias 

is larger than the internal validity bias of a small, non-representative randomized trial. This 

paper focuses on trying to reduce the bias due to observed differences between the sample 

and population. Cole and Stuart (2010) and Olsen et al. (2013) provide analytic expressions 

for external validity bias as a function of the extent of treatment effect heterogeneity, and the 

differences between a trial sample and the target population of interest.

2.2 Measures for assessing external validity

Stuart et al. (2011) and Tipton (2014) propose indices that summarize the similarity between 

a randomized sample and a population. The Stuart et al. (2011) index is based on the mean 

difference between the predicted probabilities of participating in the trial, compared between 

the units in the trial and those in the target population (similar to the idea of assessing 

propensity score overlap in a non-experimental study). The Tipton (2014) index is based on 
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the Bhattacharyya coefficient (1943), which measures the similarity of the densities of 

predicted logit probabilities between the trial and population. Tipton (2014) provides some 

rules of thumb for interpreting the index as a measure of the similarity between the trial 

sample and the population, and for when the trial is sufficiently similar to the population to 

enable generalization. In Section 3.2 we illustrate the calculation of these metrics in the case 

study for this paper.

2.3 Reweighting approach to estimate population treatment effects

In this paper we consider a reweighting approach for equating a randomized trial sample and 

a target population, with the goal of estimating the target population average treatment 

effect. It is useful for settings where there is interest in generalizing from a trial to a target 

population, and the only available data are data from a single trial and covariate data on the 

population. (If there are multiple trials conducted, other approaches, such as cross-design 

synthesis, may be more useful). While in this paper we focus on the reweighting approach, 

other model-based approaches, such as Bayesian Additive Regression Trees (BART; Kern et 

al., 2016) could be used instead, and would generally have the same data needs as the 

reweighting approach.

The reweighting approach is related to inverse probability of treatment weighting (IPTW) 

for estimating causal effects in non-experimental studies, and non-response weighting 

adjustments for handling survey non-response. The main idea is to weight the randomized 

trial sample to look like the population of interest on a set of key covariates. The specific 

procedure is as follows:

1. Create a combined (stacked) data set with the randomized trial sample and the 

population dataset, with a set of covariates X observed in both groups.

2. Create an indicator variable for being in the target population (P).

3. Estimate a model of membership in the population (P) as a function of the 

covariates X, e.g., using logistic regression.

4. Create weights for individuals in the trial sample, defined as wi =
pi

1 − pi
, where 

pi = P (Pi = 1 Xi)

5. Estimate treatment effects using the individuals in the randomized trial by 

running a weighted regression of outcome as a function of treatment status and 

the covariates, with the weights calculated in Step 4.

Details of this process using the case study are provided below.

There are three structural assumptions underlying the reweighting approach investigated (see 

Stuart et al., 2011, for more details):

(A-1) Given the observed covariates X, every subject in the population has a non-zero 

probability of participating in the randomized trial. If this were not true, there would be 

some set of individuals in the population who would not be represented at all in the trial; 

generalizing to them would require extrapolating outside the range of the data in the trial.
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(A-2) Unconfounded sample selection: there are no unobserved variables related to selection 

into the trial and treatment effects, given the observed covariates X. The implication of this 

assumption is that we need to observe and adjust for all factors that drive selection into the 

trial and moderate treatment effects. However, we do not need to adjust for factors that relate 

to only one of these mechanisms (e.g., a factor that is related to inclusion in the trial but that 

does not moderate treatment effects).

(A-3) Treatment assignment is random in the trial.

These are important assumptions to consider in any empirical example, and are discussed 

further in the context of the case study below.

2.4. Data needs for using these approaches

In order to utilize the reweighting approach one must have data on both the randomized trial 

of an intervention of interest and a specific target population. The necessary data elements 

from the randomized trial sample include a treatment indicator (treatment vs. control), 

covariates, and the outcome(s) of interest. In the target population dataset one needs 

covariate information. Although some approaches, such as BART, can utilize outcome data 

from the population, the reweighting approach focused on in this paper does not use such 

data; it only requires covariate data in the population. (And in fact if outcome data on the 

population is available, methods using BART may be preferable; Kern et al., 2016). If 

outcome data under the control condition is available in the population (e.g., if the control 

condition in the trial was “usual care” and no one in the population received the treatment of 

interest), that data can also be useful as a check on the similarity between the weighted trial 

sample and the population (Stuart et al., 2011).

For the reweighting approach, covariates within the sample and population datasets must 

possess sufficient overlap to allow for the generation of a group of “common” covariates that 

can be used to estimate membership in the target population and that will plausibly satisfy 

Assumption A-2 above; in particular, the reweighting approach can only adjust the 

randomized trial to look like the population with respect to observed characteristics. If the 

trial and population differ on an unobserved variable (or variables) that moderates treatment 

effects (a violation of Assumption A-2), the estimated PATE will be biased (except in 

pathological cases where biases caused by different variables may cancel each other out). 

Because of this, it is generally appropriate to include as many covariates in the set of 

covariates X as possible; this is similar to the advice in the propensity score literature that it 

is generally better to err on the side of including covariates rather than excluding them when 

using propensity scores to estimate treatment effects in non-experimental studies (Stuart, 

2010; Myers et al., 2011). It is especially crucial to include likely effect moderators, either 

based on data analysis of the randomized trial data (e.g., subgroup analyses or other methods 

for assessing treatment effect heterogeneity) or through a conceptual model of impacts (e.g., 

which factors program developers think may moderate treatment effects; that conceptual 

model would also presumably influence the potential moderators measured and examined in 

the trial). For example, a particular intervention may be hypothesized (or observed in the 

trial) to be more effective for individuals with particularly low baseline levels of 
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achievement, in which case it would be important to observe those baseline achievement 

levels in the trial and population.

2.5. Background and selection of the case study

The overall goal of this paper, and thus the selection of a motivating case study, is to 

illustrate the feasibility of using these newly developed statistical methods for estimating 

population treatment effects using existing data. A clean and “well-behaved” case study 

would be one that has a randomized trial conducted with a clear and well-defined target 

population, and a comprehensive set of covariates available for both the trial and the target 

population; this is the type of case study often used in papers describing new statistical 

methods. In contrast, the case study detailed below was not selected because it is particularly 

“well-behaved” or ideal for the statistical method, but rather to focus on the practical 

implications and challenges in using the generalizability method in the real world. The 

growing focus on external validity (Orr, 2015) demands practical examples to illustrate the 

weaknesses and strengths of our current methods of data collection and statistical 

methodologies for the purposes of evaluating external validity and estimating treatment 

effects in populations outside trial-specific samples.

To illustrate the use of these methods for estimating population treatment effects, and their 

complications in practice, we chose to select a case study in the area of early childhood 

education. This choice was driven by a growing interest in methods to assess and enhance 

generalizability in that field (e.g., as exemplified by a 2014 meeting on external validity 

organized by the Office of Planning, Research, and Evaluation within the Administration for 

Children & Families of the US Department of Health and Human Services), and the lack of 

examples of their use in that area. Within the broad field of early childhood education, we 

chose to focus on interventions that evaluated academic outcomes in order to identify a 

randomized trial and a target population to illustrate the statistical methods.

Even though significant resources have been invested in making information from 

randomized control trials in education available to practitioners through resources such as 

the What Works Clearinghouse and Institute for Education Sciences websites, a search of 

these and other online sources (detailed in the Appendix), produced few available options for 

access to randomized trial sample and target population data. The appendix details the 

process we used, and some of the challenges we encountered in identifying a case study, 

particularly a lack of public use data from randomized trials and a lack of comparable 

measures across data sources.

The randomized trial we ultimately identified for our case study was of the Head Start REDI 

intervention, which involved an enrichment program that included lessons, extension 

activities, teaching strategies and teacher support. The enrichment was randomly assigned to 

Head Start classrooms: 44 classrooms were assigned to the intervention or to a control group 

that consisted of maintaining “usual practice.” The intervention took place over the course of 

one year in Head Start for 356 four-year-olds. The Head Start classrooms that participated in 

the REDI study are all located in three counties in Pennsylvania. The outcomes of interest 

for the REDI study were language development, emergent literacy, and social-emotional 

competencies. The battery of assessments included child assessments, teacher ratings, parent 
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ratings, and direct classroom observations (Bierman et al., 2008). The study found 

significant effects of the intervention on 7 of 11 language, emergent literacy, emotional 

understanding, and social problem-solving skill measures. For our case study we chose to 

focus on a single academic outcome, the Elision test, a measure of phonological awareness 

and an indicator of emergent literacy skills, which showed significant positive effects in the 

REDI trial.

2.6. Selection of the Target Population

In a practical application of the reweighting method, a practitioner or policymaker will have 

a target population in mind, for which she is interested in evaluating the potential impact of a 

given intervention. For our case study, we are interested in determining how well the REDI 

intervention would work for Head Start students across the country. To evaluate the impact 

of the intervention in a target population, one must obtain data on that population of interest. 

For the REDI case study two main datasets provide the potential for population level, early 

childhood data: the Early Childhood Longitudinal Birth Cohort (ECLS-B) study and the 

Head Start Impact Study (HSIS). Since the REDI trial was conducted in Head Start centers, 

we chose the Head Start Impact Study as our target population dataset to illustrate the 

reweighting method. The positive impact from the REDI trial raises the question of whether 

similar effects would be observed if the intervention were more broadly implemented in 

Head Start classrooms nationally. The program evaluators argue that their findings of a 

positive effect of the intervention on students’ literacy skills suggest that, “it is possible to 

integrate empirically validated strategies for promoting these critical emergent literacy skills 

in ways that are consistent with Head Start practices” (Bierman et al., 2008, p. 1813). We 

thus used the nationally representative HSIS dataset available through ICPSR2 to evaluate 

the impact of integrating the REDI intervention in the national Head Start population.

The HSIS is a nationally representative sample of Head Start programs and children (U.S. 

Department of Health and Human Services, 2010). In fact, the HSIS is itself a randomized 

controlled trial designed to evaluate the effects of Head Start; it was carried out among 

centers with waiting lists (to facilitate random assignment) and thus results are formally 

representative of the population of children in centers with waiting lists. Children who 

applied for Head Start were randomly assigned, in separate three-year-old and four-year-old 

cohorts, to the treatment group, which was allowed to enroll in Head Start, or a control 

group, which could not enroll in Head Start that year. Using the Head Start Impact Study 

data allows us to evaluate the impacts of REDI in the target population of Head Start eligible 

students; however, other policy makers or practitioners might be interested in the effects of 

the REDI program in a different target population. For example, there may be interest in the 

effects of the REDI intervention on all four-year-olds, including a more socioeconomically 

diverse population of children than those eligible for Head Start, in which case a nationally 

representative dataset of children in the U.S., such as the Early Childhood Longitudinal 

Study - Birth Cohort, would be a more appropriate population dataset.3

2http://doi.org/10.3886/ICPSR29462.v5
3http://nces.ed.gov/ecls/birth.asp
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3. Results

This section details the use of the REDI and HSIS data to evaluate the generalizability of the 

REDI program to Head Start-eligible children nationwide, as represented by the HSIS. 

Given the HSIS sampling, we work from the specific motivating question, “What would the 

impacts of the REDI intervention have been for children in all Head Start centers in the 

nation (with waiting lists) in approximately 2002?”

For our analyses we use both the REDI randomized controlled trial sample of four-year-olds 

enrolled in Head Start centers in Pennsylvania (N=352), and the nationally representative 

sample of Head Start eligible four-year-olds in the Head Start Impact Study (N=1,983)4. For 

the analyses we utilize the HSIS child base weight, which weights the HSIS sample to be 

nationally representative. For simplicity in this illustrative case study we will treat the 

children as the units of analysis (rather than Head Start classrooms or centers); calculation of 

standard errors accounts for clustering at the center level. To address missing data on 

covariates and outcomes, we ran a single imputation in each dataset separately (REDI and 

HSIS), and then appended the datasets to generate the common covariates (detailed below). 

The largest missing values in the REDI dataset were for mother’s education and mother’s 

marital status, both with 11% missing values. The Elision outcome variable had 6% missing 

values, while other common covariates had less than 3% missing values in the REDI dataset.

3.1 Measures

3.1.1 Outcomes—The outcome of interest examined was the Elision assessment of 

phonological processing from the Test of Preschool Early Literacy (TOPEL).5 The Elision 

test measures the ability to remove phonological segments from spoken words to form other 

words.6 Preschoolers who possess this and other early phonological awareness skills are 

more proficient in reading skills during first and second grade, even after controlling for 

vocabulary skills and student IQ (Bryant et al., 1990; Catts et al., 1999). The Elision test 

showed a significant intervention effect in the REDI program evaluation.

3.1.2 Common covariate measures—In addition to the outcome measure, we were 

able to create a total of 7 covariates measured comparably across the two datasets: male, 

race/ethnicity (Black, Hispanic, and White/Other), household size, mother’s marital status, 

mother’s education level, a baseline measure of the Applied Problems mathematics test from 

the Woodcock Johnson III, and a baseline measure of the Elision test score.7 Some were 

easily defined, such as child gender, while others we were able to make comparable by 

combining or altering existing variables in the appropriate datasets; full details on how they 

were made comparable across the two datasets is provided in Appendix B.

4Although the HSIS sample was separated into treatment and control, we use the full sample of 4-year-olds, which is a nationally 
representative group of Head Start eligible 4-year-old children. This is appropriate since no outcome data from the HSIS is used.
5Note that the HSIS used an earlier but comparable version of this measure, which could be used in future work to do further 
diagnostics regarding the generalizability of the REDI results to the HSIS.
6For example: If the word is toothbrush, and you take away brush, what word does that make?
7A measure of the household language being Spanish was also available in both sources but not able to be used because of collinearity 
with the indicator of Hispanic ethnicity.
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As detailed in Appendix B, 3 covariates required significant editing to generate variable 

structures that could be applied to both REDI and HSIS, including race, mother’s marital 

status, and mother’s education. The difficulty in generating common variables for such 

simple demographic measures demonstrates the importance of survey data collection 

processes for future applications of the proposed reweighting method and other post-hoc 

analyses to assess generalizability. When survey items are designed differently, or when 

surveys collect different types of demographic information, generating common variables 

can be difficult.

Additionally, some similar constructs in both the REDI and HSIS datasets were measured 

using different tests or assessments, such that they could not be used to generate common 

covariates. For example, the HSIS used the Peabody Picture Vocabulary Test (PPVT), while 

REDI used the Expressive One-Word Picture Vocabulary Test (EOWPVT). Although both 

assess an ability to use words to describe pictures, the use of different tests made it difficult 

to make these variables comparable, and ultimately they were excluded from the model.

3.2 Estimation of Weights and Covariate Diagnostics

As a reminder, the generalizability method illustrated in this paper aims to reweight the trial 

(REDI) sample to look like the target population (HSIS) in order to equate the two samples 

with respect to a set of observed covariates. To do this, the reweighting method begins with a 

logistic regression model to estimate the probability of membership in the HSIS target 

population. The dependent variable is membership in the HSIS population (Pi=1 for 

individuals in the HSIS target population; Pi=0 for individuals in the REDI trial sample); the 

model is weighted by the HSIS base weight to reflect the population. Predictors in the model 

were variables for gender, race, family size, mother’s marital status, mother’s highest level 

of education, a baseline measure of the Applied Problems mathematics test, and a baseline 

measure of the Elision test score. The predicted probabilities from this logistic regression 

model were then used to calculate the weights for the REDI sample, using the equation in 

Section 2. This weight is used to weight the REDI subjects to resemble the nationally 

representative HSIS target population; see Kern et al. (2016) and Hirano, Imbens, and 

Ridder (2003) for more details on this weighting, which is analogous to “weighting by the 

odds” when estimating the average treatment effect on the treated in non-experimental 

studies.

Before describing the weights themselves we present the Tipton (2014) and Stuart et al. 

(2011) measures of similarity between the REDI randomized trial sample and the population 

of Head Start eligible students. In this case study the Tipton metric was 0.93, a value that 

implies “very high” generalizability according to Tipton (2014). This interpretation indicates 

that the REDI sample is like a random sample drawn from the broader Head Start 

population, at least with respect to the observed covariates. The Stuart et al. (2011) metric 

produces a less optimistic evaluation of the overlap between the sample and target 

population, producing an absolute standardized difference in means between the propensity 

scores for the sample and population of 0.73. This indicates that differences between the 

sample and population may be large enough to result in unreliable estimates due to 

extrapolation. The difference between the Tipton and Stuart metrics is potentially consistent 
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with results in Tipton et al. (under review) showing that simply by chance the standardized 

mean difference can be large in small and moderate random samples. Another explanation 

could potentially be that given the small size of the study sample relative to the size of the 

population the average propensity scores are all quite large and clustered around 1 (Figure 

1). However, the different results for the two metrics indicate the need for more work to 

understand the differences between these metrics, and the implications for our 

conceptualization of external validity.

The resulting weight included some large values, as can happen with inverse weighting 

(Schafer & Kang, 2008). To limit the influence of extreme weights, the weights were 

trimmed at the 95th percentile, with all values above the 95th percentile set equal to the value 

at the 95th percentile (as in Lee, Lessler, & Stuart, 2011). In particular, 18 cases had their 

weights truncated to approximately 3000 (the 95th percentile); the largest weight before 

trimming was approximately 8000 but most trimmed weights were closer to 4500 before 

trimming. (Note that the mean of the weights is also large, due to the large size of the HSIS 

population relative to the REDI sample). It is important to note that a set of individuals with 

large outlying weights could indicate large differences between the trial sample and the 

target population, and possibly segments of the population that are not well represented in 

the trial. This can also be identified through density plots of the propensity scores 

themselves, as shown in Figure 1. If large areas of non-overlap are found, researchers may 

need to refine the definition of the target population to reflect a subset for which more 

reliable generalizations can be obtained; see Tipton et al. (in press) for a strategy for doing 

so.

In addition to examining the weights, another diagnostic, the standardized mean difference 

(SMD), can be used to compare unweighted and weighted covariate means between the trial 

sample and population. The standardized mean difference is calculated as the difference in 

means between groups (e.g., unweighted REDI sample and HSIS population) divided by the 

standard deviation of the pooled values; if the weighting is successful the samples should 

look more similar after the weights are applied. Table 1 compares the REDI and HSIS 

samples with respect to the 7 commonly measured covariates, before and after the 

propensity score weighting. In Table 1 “REDI unwt.” refers to the original REDI sample, 

without the propensity score weights. “REDI wtd.” refers to the REDI sample, but with the 

propensity score weights applied. Similarly, the SMD columns indicate “unwtd.” and “wtd.” 

to reflect without and with the propensity score weights, respectively. All HSIS calculations 

(e.g., the HSIS mean column) use the HSIS base weights to ensure national 

representativeness, as denoted by the “base wt.” notation.

The SMD calculations shown in Table 1 generally indicate that there is improved covariate 

balance after the weighting; most variables show a smaller standardized mean difference 

following the weighting indicating that the REDI sample looks more similar to the HSIS 

population. There are a few exceptions, including gender, mother having some 

postsecondary education, and Black that had mean values after weighting that were slightly 

further from the HSIS mean as compared with their unweighted means. Although propensity 

score theory says that in large samples all covariates should see more similarity following 

the weighting (Rubin & Thomas, 1996), in real data (especially small samples) it is not 
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uncommon for some variables to become more different following the propensity score 

adjustment. This is particularly common for variables that did not show large differences 

before the weighting, as we see in Table 1; gender, black, and mother having some 

postsecondary education had the smallest SMDs before the weighting (and still relatively 

small SMDs following the weighting). This pattern occurs because the variables showing 

large differences between the sample and population are the ones that drive the propensity 

score model; for further discussion of this see Stuart, Lee, and Leacy (2013).

3.3 Estimating the SATE and PATE

In the full evaluation of the REDI intervention, the Elision test was positively and 

significantly affected by the intervention, with an effect size of 0.35, p = 0.001. In the 

program evaluation, the intervention effect was modeled using a hierarchical linear model, 

with child race, child gender, and a pre-intervention score as Level 1 covariates, and site 

(central or Southeastern Pennsylvania), cohort, and intervention status as Level 2 covariates 

(Bierman et al., 2008).

For our case study, we can only replicate the REDI evaluation model to a certain extent. We 

use the common covariates we were able to generate to run a simple regression, using the 

covariates that were also in level 1 of their hierarchical model: child gender, child race, and 

the pre-test score for the Elision test. For the analysis, we run two models. First, an 

unweighted model, to estimate the SATE: the effect of the intervention on the Elision test in 

the randomized controlled trial sample. Second, a weighted model that uses the weights 

defined above to estimate the PATE: the effect of the REDI intervention in the target 

population, the nationally representative population of Head Start eligible 4-year-olds. The 

standard error calculations use survey methods (Taylor series linearization) to account for 

the weighting and clustering (see, e.g., McCaffrey et al., 2004).

As a reminder, interpreting the results of the weighted model as an estimate of the PATE 

requires the three assumptions detailed above:

(A-1) Given the observed covariates X, every subject in the population has a non-zero 

probability of participating in the randomized trial. The density plot and SMD diagnostics 

make this assumption seem reasonable in this data, in that generally good covariate balance 

is obtained, and there is overlap across the range of propensity scores.

(A-2) Unconfounded sample selection: there are no unobserved variables related to selection 

into the trial and treatment effects, given the observed covariates X. This assumption is 

likely more questionable in this example, especially given the difficulty in finding common 

measures. For example, it is plausible that family income would moderate the effects of the 

program, but this measure is not available for adjustment. Similarly, effects could vary 

across levels of cognition or other measures of reading or other skills not captured by the 

Applied Problems standard score pre-test or the Elision pre-test.

(A-3) Treatment assignment is random in the trial. This assumption is satisfied given the 

conduct of the HSIS.
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Table 2 shows the estimates of the SATE and PATE. The SATE estimate is not statistically 

significant at the alpha = 0.05 level. However, the PATE estimate is larger and marginally 

significant with a p-value=0.05. This indicates that the REDI intervention, if implemented 

for the entire target population of Head Start eligible 4-year-olds would have a positive and 

marginally significant effect on students’ Elision test, an indicator of phonological 

awareness, if Assumptions A-1 to A-3 are met in this analysis. It should be noted that the 

more sophisticated estimation techniques used in the original evaluation of the REDI sample 

do find significant effects for the treatment on students’ outcomes in the randomized 

controlled trial sample. The more simplistic case study analysis provides some evidence that 

these positive findings would be replicated if the intervention was scaled up and expanded to 

all Head Start centers nationally. While in this case study similar conclusions are obtained 

with respect to the SATE and PATE, this is not guaranteed and other examples may see large 

differences between the SATE and PATE.

One note is that the standard errors of the PATE estimate are larger than those of the SATE 

estimate, which is common when trying to generalize results from sample to population, in 

part because of the extrapolation (and thus uncertainty) inherent in doing that generalization. 

Larger weights, indicating more extrapolation, will make the increase in standard errors even 

greater.

It is important to note that although the common covariates we generated allow for an 

estimation of the treatment effect on the Elision post-test score in some capacity, the number 

of common covariates we were able to produce remains small, limiting our ability to develop 

the best possible model for generating a weight for the REDI sample to use in these 

analyses, as discussed further below. However, our model serves as a basic illustration of the 

reweighting methodology for assessing the generalizability of the effect estimate for the 

Elision test in the REDI randomized controlled trial, and we find the potential for a positive 

effect of the REDI intervention in a broader target population.

3.4 Evaluating Effect Heterogeneity

As discussed above, the reason why the SATE and PATE may differ is if there are variables 

that moderate treatment effects and that differ between the sample and population. Thus, 

methods to detect treatment effect heterogeneity are inherently related to methods that assess 

generalizability. To develop a greater understanding of why the PATE estimate may be larger 

than the SATE estimate in the motivating example, we (post-hoc) examine whether the 

variables with large differences between the REDI sample and HSIS target population 

moderate treatment effects. In particular, we investigated whether there is evidence of any 

effect heterogeneity across racial and ethnic subgroups (White, Black, Hispanic) or across 

levels of the Applied Problems standard score. The Applied Problems test is a math test that 

assesses students’ quantitative reasoning and math knowledge. Completing this test requires 

students to construct mental math models through the use of their language comprehension, 

calculation, and math skills (Wendling, Schrank, & Schmitt 2007). This was one variable 

that showed the largest standardized mean differences between the trial sample and the 

population (Table 1).
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To investigate potential effect heterogeneity across these variables we estimated impacts in 

the (unweighted) REDI sample using three separate models to include interaction terms for 

Black, Hispanic, and the Applied Problems standard score. The models also included the 

same covariates from the SATE and PATE estimates: child gender, child race, and pre-test 

score for the Elision test. For the Applied Problems standard score, we included the Applied 

Problems pre-test in the model as well as the interaction term of Applied Problems with 

treatment. We test for effect heterogeneity because we might hypothesize for example, that 

due to lower scores on the Applied Problems pre-test in the HSIS population (mean=87.0), 

on average, than in the REDI sample (mean=94.9), weighting the REDI sample to look like 

the HSIS population could make the impact go up, since individuals with higher impacts 

(lower applied problems test scores) are more represented in the HSIS population than in the 

REDI sample.

These analyses, however, demonstrated no evidence of effect heterogeneity across the 

Applied Problems score or the racial and ethnic categories (Table 3); none of the interaction 

terms reach statistical significance.

Conclusions drawn from subgroup analyses should be interpreted cautiously given that these 

analyses are beset by the challenges in all randomized trials (Supplee et al., 2013), in 

particular worries about multiple comparisons and concerns about limited power to detect 

effect moderators. However, evaluating the possibility of effect heterogeneity is an important 

step in the analysis process because these analyses may help explain differences between 

PATE and SATE estimates.

4. Discussion

This paper has provided a case study of using an existing randomized controlled trial, 

combined with data from a target population of interest, to estimate the population average 

treatment effect of a treatment condition of interest. Although new statistical methods are 

promising for estimating population treatment effects using existing data, this paper shows 

that the feasibility of these methods in more general practice depends on 1) generating 

relevant population datasets, and 2) ensuring measure comparability between trials and 

population datasets.

Data availability is crucial for answering questions about generalizability. In particular, data 

are needed on randomized trials and on target populations for all the important moderators 

of intervention impact. The data gathering process for this case study involved multiple 

steps, including evaluating studies for high quality randomized controlled trials and 

accessing restricted data through license applications or contacting investigators. The small 

number of publicly available high quality randomized controlled trials with individual level 

data available is a significant limiting factor to generalizability assessments for policy 

makers and practitioners. There are many high quality trials that have evaluated 

interventions in early childhood education, and the results of these studies are collected and 

made available to researchers and practitioners through tools such as the What Works 

Clearinghouse and the Institute for Education Sciences websites. As a result, practitioners 

generally only have access to results valid for the participants in the randomized controlled 
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trial, without the tools necessary to evaluate the external validity of these results and the 

tools to evaluate the effects of these trials in their particular population of interest. Some data 

are available through restricted access, including the Head Start Impact Study used in our 

case study, and in these cases the data licensing step serves as an important component of 

the data procedures to protecting respondent confidentiality. However, many studies (even 

those funded through federal grants which frequently include policies for making data 

publicly available) do not have procedures in place that would allow practitioners or 

researchers to apply for access to these datasets. Greater access to individual level data from 

these studies would enhance our abilities to use them to answer questions that may go 

somewhat beyond the specific aims of the original studies. We note that in K-12 education 

there is often school level data available (e.g., through the Common Core of Data), which 

can be used to establish populations of interest, but such data are still often limited in terms 

of the measures available, which could reduce confidence in Assumption A-2 (no 

unmeasured effect moderators).

In addition, even when datasets exist and are accessible, many are extremely limited in terms 

of the overlap of key measures. The key underlying assumption of many of the existing 

methods for generalizing treatment effect estimates is that the variables that differ between 

the sample and population and that moderate treatment effects are observed. We had 

difficulty finding randomized trials and population data that had enough common covariates 

to make that assumption plausible. In the REDI and HSIS case study we were able to utilize 

only 7 commonly measured covariates, even though over 75 variables were available in the 

REDI dataset and several hundred available in the HSIS dataset. This allows us to 

demonstrate the reweighting method, but the set of covariates is insufficient to avoid 

concerns about the potential for bias in the PATE estimate. As a result of these concerns, the 

REDI case study presented here faces the problem of inadequate data to ensure reliable 

generalization from the sample to the population. The potential for evaluating the effects of 

local randomized controlled trials in population datasets in the future, depends heavily on 

establishing common measures across population and trial datasets. Thus, in addition to 

making data more easily available, researchers should endeavor to collect standard (and 

standardized) measures in their studies, to help facilitate combining such data with other 

sources.

Of course the measurement goals of a researcher carrying out a randomized trial are often 

quite different from the measurement goals of the designers of large population datasets; 

individuals carrying out an evaluation are often interested in whether impacts are seen on a 

measure specific to the core components and goals of the intervention. However, we 

encourage researchers and survey designers to consider the inclusion of a battery of common 

measures to facilitate the combining of datasets to answer more complex and nuanced 

research questions. There is increasing interest in such integrative data analysis and data 

harmonization, and although there is some progress in developing methods that allow the 

combining of somewhat different measures (e.g., Bauer & Hussong, 2009), a set of common 

measures can go a long way in making the data more usable. As one model, some fields are 

moving towards a “common data model,” including initiatives such as the NIH Toolbox 

(NIH Toolbox CB, 2013), PROMIS (Cella et al., 2007), and PhenX (Hamilton et al., 2011). 

Orr (2015) argues that evaluators should adopt a two stage model, with Stage 1 used to 
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conduct a streamlined experimental evaluation, with a larger more complete evaluation at 

Stage 2 for those interventions that show particular promise in Stage 1. For studies that show 

promise in Stage 1, the inclusion of common measures in Stage 2 may help generate 

sufficient data for additional analyses of the generalizability of the effect estimates, 

expanding the potential use of the outcomes of a single trial for practitioners in different 

settings or serving different populations.

This key underlying assumption that we can adjust for all of the effect moderators 

(Assumption A-2) also points to the need for more empirical and theoretical work 

understanding treatment effect heterogeneity. Our confidence in whether or not we can 

generalize results from a trial to a target population depends on whether we are confident 

that we have measured the relevant effect moderators. Although there have been recent 

advances in detecting effect heterogeneity (e.g., Kent et al., 2010; Schochet, Puma, & Deke, 

2014; Weiss, Bloom & Brock, 2013), many studies are underpowered to detect effect 

heterogeneity and more work is needed in this area.

We also highlight that the reweighting approach for equating a randomized trial sample and 

a target population that we illustrate was developed only recently, and more work is needed 

to determine when this and other similar approaches work well, and how sensitive the results 

are to the underlying assumptions. Results in Kern et al. (2016) indicate that when the 

assumption of no unmeasured effect moderators is satisfied, flexible modeling approaches 

such as BART or reweighting approaches can work well, but when that assumption is not 

satisfied neither of the methods performs well. Further work should also consider how to 

extend these methods to multilevel settings to better account for the clustering of children 

within sites or schools. Additional work is also needed to evaluate the best methods for 

analyzing external validity and estimating generalizability under different conditions related 

to the underlying assumptions. To make these models useful to policy makers and 

practitioners, clear guidelines about the best-practice models under different conditions will 

be necessary.

Finally, a premise of the methods discussed here is that there is a well-defined target 

population. Any discussion of “generalizability” needs to be couched within the question 

“generalizability to whom?” In addition, a particular randomized trial may be used to 

generalize effects to multiple target populations (e.g., to individual states, for state-level 

decision making, or to the nation as a while), and a study may be generalizable to one 

population but not to another (see, e.g., Tipton, 2014).

In conclusion, as research studies in fields such as early childhood education become more 

and more rigorous in terms of their internal validity, there is growing interest in also 

assessing their potential external validity or generalizability. Researchers and policymakers 

would like to be able to answer more questions from existing data, e.g., whether a 

policymaker can use the results from a given randomized trial to inform their decision-

making for their population of interest (e.g., the Head Start director of a particular state). 

Statistical methods are beginning to be developed to estimate population treatment effects, 

but the data to use those methods appropriately are still lacking. That work is important and 

should continue. However, this paper highlights, in the context of a very real-world example, 
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that even with improving statistical methods, the research field is still far away from being 

able to confidently generalize results from randomized trials to target populations. And 

existing data limitations make it difficult to utilize these methods for practical evaluations of 

the effects of randomized controlled trials in populations of interest. Given the growing 

interest in generalizability, researchers conducting trials, and entities generating population 

data, need to incorporate considerations of external validity as part of their decision-making 

process about study design and data collection. Increased coordination within research 

fields, to move towards the collection of common measures, will greatly improve the 

potential for assessing external validity and generalizability, enhancing our ability to make 

informed decisions about the value of interventions in different settings and with different 

populations.
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APPENDIX A:: Identification of case study

To choose a recent randomized controlled trial for the case study, we established our area of 

interest as studies of early childhood education with an academic outcome measure for 

literacy or math skills. To locate population data and a randomized trial, we utilized three 

main websites: the What Works Clearinghouse (WWC)8, Inter-university Consortium for 

Political and Social Research (ICPSR)9, and Childcare & Early Education Research 

Connections10, with a final check for additional data sources using the Institute for 

Education Sciences website11. We additionally limited our search to high quality 

randomized controlled trials, considering only studies in the What Works Clearinghouse that 

“meet evidence standards without reservations,” and we applied the same type of strict 

criteria for the design of randomized controlled trials when evaluating other potential study 

options on the additional websites.

The search for a recent randomized controlled trial study of early childhood education 

resulted in a list of 16 potential studies. However, several issues narrowed this list. First, 

some randomized controlled trials evaluated childcare subsidies or funding for pre-school 

programs. Although these interventions included academic outcome measures, they are less 

likely to be interventions existing practitioners could easily implement in a different setting. 

8http://ies.ed.gov/ncee/wwc/
9https://www.icpsr.umich.edu/icpsrweb/landing.jsp
10http://www.researchconnections.org/childcare/welcome
11http://nces.ed.gov/pubsearch/
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Second, a number of studies focused on non-academic outcomes such as social-emotional 

development. We chose to turn our attention to studies that included academically oriented 

intervention programs. Among these studies, a number were focused on subgroups of 

students, such as students with specific disabilities. Population data on students with specific 

disabilities can be more difficult to locate (although the Pre-Elementary Education 

Longitudinal Study (PEELS) does provide a nationally representative sample of children 

with disabilities.)

In the end, we narrowed our list to approximately six studies that fit our criteria of high 

quality randomized controlled trials of early childhood academic interventions focused on 

literacy or mathematics. Of these six studies only one, Project Upgrade, had open access, 

publicly available data.

Project Upgrade, a two-year randomized controlled trial, tested the effectiveness of three 

different language and literacy interventions in childcare centers in Miami-Dade County, 

Florida. We first examined this dataset as a potential case study. The success of the 

reweighting approach relies on being able to adjust for a relatively large set of covariates that 

may differ between the trial sample and population and that moderate treatment effects. 

However, it proved difficult to identify many such covariates between Project Upgrade and a 

target population dataset. We compared Project Upgrade to the Head Start Impact Study 

(HSIS; U.S. Department of Health and Human Services, 2002–2006), since both target low-

income student populations. However, we found that although on the surface HSIS and 

Project Upgrade measured similar covariates for children, the studies utilize different 

specific measures of these covariates at both the classroom level and the individual level. For 

example, the HSIS classroom observation tool includes the Early Childhood Environment 

Rating Scale—Revised (ECERS-R), a rating scale that measures the quality of the classroom 

environment. In comparison, Project Upgrade utilizes a measure called Observation 

Measures of Language and Literacy Instruction in Early Childhood Education Classrooms 

(OMLIT). This battery of measures includes a series of questions related to the classroom 

environment, but the variables are measured differently than those included in the ECERS-R 

scale. In fact, Project Upgrade documentation includes a footnote indicating that they 

considered using the ECERS-R and rejected it in favor of the OMLIT, which they perceive 

to be a better measure of classroom environment and time use related to early childhood 

literacy. As a result, the two studies have topically similar assessments but a very limited 

number of common covariates. The two datasets did contain one identical scale, the Arnett 

Caregiver Rating Scale. However, even though the measure was the same, the Project 

Upgrade open access data file had the scale score variables already generated, rather than 

including the individual items. These variables were standardized to have a mean of 0 and a 

standard deviation of 1, but we believe this standardization used the mean for the Project 

Upgrade sample, rather than a national mean. As a result, when we generated a standardized 

score within the HSIS, the two standardized variables were not comparable, regardless of the 

fact that they had the same standardized mean and standard deviation.

Given the lack of sufficient covariate overlap between the Project Upgrade data and the 

Head Start Impact Study we turned back to the results of our initial search for early 

childhood randomized controlled trials, examining the five remaining randomized controlled 
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trial studies of early childhood literacy or math. None of these studies had data that were 

readily available to researchers, so we contacted the principal investigator for the evaluation 

of the Research-Based, Developmentally Informed (REDI) intervention in Head Start 

centers to request data access. We were given permission to use requested parts of the data 

for a generalizability assessment and coordinated with the principal investigator to receive 

the necessary data files.

APPENDIX B:: Covariate definitions and comparability

This appendix details the creation of the 8 common covariates between the REDI and HSIS 

samples and how the variables in each dataset were made comparable.

• Male – This variable was generated from a single variable for child’s gender in 

each of the two datasets.

• Race Dummy Variables – We created common race dummy variables by using 

multiple race variables in REDI to match the mutually exclusive categorical 

child’s race variable that was already generated in the HSIS. The HSIS variable 

was broken into three categories: white/other, Black, and Hispanic. The REDI 

data contained survey responses that were not mutually exclusive categories; 

instead, the parents “marked all that apply” when indicating their child’s race. 

We created a common set of race dummy variables by generating REDI variables 

to match the HSIS variables. All the white and Black respondents who indicated 

that they were Hispanic and Latino in the REDI data were coded as Hispanic. All 

non-Hispanic Black respondents were categorized as Black, and finally, all non-

Hispanic white, Asian, and Other respondents were grouped in a white/other 

category.

• Spanish Speaking – Both surveys ask the parent whether the student spoke 

Spanish at home, however the REDI survey asks the more general question of 

whether Spanish is a language used at home, while the HSIS survey asks the 

more specific question of which language is the primary language spoken at 

home. Thus, there may be students who speak Spanish in the HSIS dataset, but if 

they do not use it as their primary language at home they may not be captured as 

Spanish speaking in this variable. Although this variable was generated as a 

potential covariate, the variable was ultimately not used in the propensity score 

model because of its collinearity with the Hispanic race/ethnicity dummy 

variable.

• Household Size – This common variable was created from two variables in each 

dataset, a variable counting children living in the household and a variable 

counting adults living in the household. In both datasets the variables included 

the focal child and the survey respondent.

• Mother’s Marital Status – The HSIS survey includes a question about maternal 

marital status. The REDI dataset asked about the respondent’s marital status. In 

most instances the REDI respondent was the child’s mother, but this was not 

universally true. So, to generate an equivalent measure in the REDI data we 
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combined several variables. The adult respondent was asked about their marital 

status, so if the respondent to the REDI survey was female, related to the child as 

a parent, and indicated that she was married we combined those three variables 

to indicate that the child’s mother was married.

• Mother’s education – The HSIS data had a specific measure of child’s mother’s 

highest level of education. In the REDI dataset, we used the highest level of 

education indicated by the respondent if she was female and related to the child 

as a parent to generate mother’s highest level of education.

• Applied Standard Score – This is the Applied Problems mathematics test from 

the Woodcock Johnson III that assesses quantitative reasoning, but the test relies 

on language comprehension. Both datasets included this measure as a single 

variable in both the baseline data and post-intervention wave of data collection. 

We utilize the baseline measure for both datasets.

• Elision Score – Both datasets include a raw score for the Elision measure as a 

pre- and post-test.
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Figure 1: 
Distribution of logit propensity scores in the REDI sample and HSIS population
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Table 1:

Comparison of REDI and HSIS samples

Variables
REDI unwtd. 

Mean
HSIS base wt. 

Mean
REDI wtd. 

Mean
Std. Mean 

Difference unwtd.
Std. Mean 

Difference wtd.

Male 0.46 0.51 0.44 0.1 0.13

White/Other 0.66 0.32 0.38 −0.71 −0.12

Black 0.16 0.18 0.21 0.06 −0.06

Hispanic 0.19 0.5 0.42 0.63 0.16

Family size 4.59 4.93 4.69 0.19 0.14

Mother married 0.36 0.5 0.42 0.29 0.16

Mother High School Ed. 0.42 0.32 0.31 −0.22 0.02

Mother Postsecondary Ed. 0.28 0.26 0.29 −0.07 −0.09

Applied Standard Score Pre-test 94.88 87.04 89.44 −0.48 −0.15

Elision Pre-Test 8 6.79 7.23 −0.34 −0.12

*
The column labeled “base wt.” use the Head Start Impact Study weight that ensures the mean is nationally representative. “unwtd.” refers to no 

weighting. The “std. mean Difference wtd.” column refers to weighting by the generalizability population weights defined in Section 2.
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Table 2:

Estimates of the Sample Average Treatment Effect (SATE) and Population Average Treatment Effect (PATE)

Variables SATE (Std. Error) p-value PATE (Std. Error) p-value

Treatment 0.66 (0.45) 0.16 1.11 (0.54) 0.05

Constant 9.34 (0.70) 0.00 9.56 (0.89) 0.00

N 352 352

Eval Rev. Author manuscript; available in PMC 2021 July 28.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Stuart and Rhodes Page 26

Table 3.

Interaction Terms from 3 Models Predicting Elision scores and examining effect moderation

Interaction Term Coefficient (Std. Error) P-value

Treatment * Black 0.14 (1.06) 0.894

Treatment * Hispanic 0.87 (1.00) 0.395

Treatment * Applied Problems Standard Score −0.06 (0.03) 0.099
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