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Abstract

Summary: Gene co-expression networks can be constructed in multiple different ways, both in the use of different
measures of co-expression, and in the thresholds applied to the calculated co-expression values, from any given
dataset. It is often not clear which co-expression network construction method should be preferred. COGENT
provides a set of tools designed to aid the choice of network construction method without the need for any external
validation data.

Availability and implementation: https://github.com/lbozhilova/COGENT.

Contact: deane@stats.ox.ac.uk

Supplementary information: Supplementary information is available at Bioinformatics online.

1 Introduction

Gene expression data are a powerful resource for understanding
genetic function under different conditions. A common way of
exploring this data is through gene co-expression networks (Lee
et al., 2004). In these networks, genes are represented by nodes and
highly co-expressed gene pairs are connected by edges. Such net-
works have been used in many ways, including for gene function
prediction and the identification of disease- or tissue-relevant gene
modules (van Dam et al., 2017).

Gene expression data typically take the form of a matrix, in
which rows correspond to genes and columns correspond to sam-
ples. Network construction commonly consists of three steps—the
data are pre-processed, a measure of co-expression is calculated for
every pair of genes and a score cut-off is applied. Different
approaches to data pre-processing and normalization exist (Abbas-
Aghababazadeh et al., 2018; Park et al., 2003). Further, after nor-
malization co-expression can be calculated in a number of different
ways—e.g. via a correlation coefficient or mutual information. A
score cut-off is then usually imposed in order to identify gene pairs
which are highly co-expressed. Alternatively, weighted networks
can be analysed, in which edge weights correspond to levels of co-
expression (Langfelder and Horvath, 2008).

There are many available methods for network construction
which can be applied to the same dataset, and which then lead to
different networks. Enrichment analysis or comparison to orthogon-
al data, such as protein interaction data, is commonly used for net-
work selection and validation. However, for many species and
datasets poor or non-existent functional annotation makes this type
of validation difficult. It is therefore often not clear which of
the available network construction methods should be prioritized
(De Smet and Marchal, 2010).

Here, we introduce COGENT (COnsistency of Gene Expression
NeTworks), an R package designed to aid the choice of a network
construction pipeline without the need for annotation or external
data. COGENT can be used to choose between competing co-
expression measures, as well as to inform score cut-off choice. While
designed for gene expression data, COGENT can be applied to other
cases where network construction relies on similarity profiling, e.g.
microbiome or synthetic lethality data.

2 Software description

2.1 Method overview
Consistent co-occurrence of two gene products in the cell points to-
wards a functional relationship between the genes. Gene product
abundance, as well as co-occurrence, is a continuous-time phenom-
enon, which is experimentally observed at discrete time points or
samples. The construction of a gene co-expression network can
therefore be thought of as an estimation problem—we aim to infer
general co-expression patterns from a limited set of data points. One
way of investigating the success of such a procedure is through
resampling. Networks constructed from a subset of all available
samples will be noisier than the network constructed from the full
dataset. However, they should still resemble each other: if subsetting
the data results in networks with little to no overlap, then the
network construction procedure may be too sensitive to noise in
the data.

COGENT evaluates network construction methods through it-
erative resampling. At each step, the gene expression samples are
split into two possibly overlapping sets of equal size. The same net-
work construction function f ð�Þ is applied to both sets in order to
obtain two gene co-expression networks G1 ¼ ðV;E1Þ and
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G2 ¼ ðV;E2Þ. COGENT then calculates several measures of consist-
ency between these two networks. An example workflow for calcu-
lating consistency is shown in Figure 1; see Supplementary Section
S2 for workflow details and Supplementary Section S4 for different
consistency measures.

The entire procedure is repeated multiple times in order to obtain
robust results. Network construction methods which result in highly
similar pairs of networks G1 � G2 are considered to be consistent.
When two or more competing methods are considered, the method
exhibiting higher internal consistency should be preferred.

2.2 Edge set consistency
Consistency in COGENT is measured through a network compari-
son step at each iteration. The two networks G1 and G2 are consid-
ered to be similar if their edge sets are similar (E1 � E2). We
measure agreement between E1 and E2 using a (weighted) Jaccard
index to produce two measures of edge set consistency—global and
local similarity (Kao and Porter, 2018; see Supplementary Section
S4.1).

Since global similarity scales with network density, a density ad-
justment is required when methods resulting in different network
densities are compared. This is particularly important when choos-
ing a score cut-off. Density adjustment in COGENT is carried out
through comparison to random networks generated using a config-
uration model (see Supplementary Section S4.2).

2.3 Node metric consistency
Density-independent network comparison can also be performed by
calculating a node metric such as degree or betweenness for all
nodes in each of the two networks, and then comparing the obtained
metric values. If the aim of downstream network analysis is e.g. to
identify genes with many co-expression partners, the degree is a nat-
ural node metric to use.

At each COGENT iteration, a node metric set by the user can be
applied to G1 and G2, resulting in two node metric vectors d1 and

d2, respectively. These two can be compared in three different ways:
via a correlation coefficient, rank k-similarity (Bozhilova et al.,
2019; Trajanovski et al., 2013) and Euclidean distance; see

Supplementary Section S4.3 for details.

3 Application

Global and local similarity and adjusted edge consistency, as well as
node metric comparisons can all be used to evaluate network con-
sistency. By iteratively resampling the data and measuring network

consistency, COGENT can be used to prioritize different network
construction pipelines, as well as to inform co-expression cut-offs

without the need for external validation data. A full worked ex-
ample can be found in Supplementary Section S5 and in the
COGENT tutorial. COGENT has also been used to assess signed

distance correlation as a measure of gene co-expression (Pardo-Diaz
et al., 2021). This application further shows that network construc-

tion methods prioritized by COGENT also capture more protein–
protein interaction data than methods which were not prioritized.

While originally developed for gene expression data, COGENT

can also be used for the inspection of other data types. For example,
it can be applied to microbiome data in order to identify symbiotic

organisms, or to synthetic lethality data in order to identify genetic
interactions with high confidence.
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Fig. 1. COGENT workflow schematic. In this example, the input data are a gene ex-

pression matrix with rows corresponding to genes—in this case A;B;C;D;E—and

columns corresponding to samples (far left). First, the expression matrix columns

are randomly split into two possibly overlapping groups of equal size (left). Then, a

network is constructed from each of the sample groups (right). Finally, the two

resulting networks are compared and the consistency between them is calculated

(far right). In this example, the two networks have six edges each, and overlap at

four of these edges. One measure of their consistency is the Jaccard index between

their edge sets (see Supplementary Section S4), which in this case is 0.50

COGENT 1929

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa787#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa787#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa787#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa787#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa787#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa787#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa787#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa787#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa787#supplementary-data

