TABLE 1.
Energetics of all the species relevant to this study calculated at the B3LYP/6-31G* level of theory. The zero-point-energy corrected total electronic energy (E0) is in Hartree, the adiabatic ionization energy (AIE) and adiabatic electron affinity are in eV, and the binding energy at 0 K is in kJ mol−1. [SA⋅CO2] stays for the endo superalkali⋅CO2 complex.
| Species | E0 | AIE | AIE liter | AEA | AEA liter | BE | BE liter |
|---|---|---|---|---|---|---|---|
| CO 2 | −188.569349 | 13.6 | 13.78 Herzberg (1966) | −1.27 | −0.60 Wang et al. (1988) | − | − |
| −1.60 de Vries et al. (1992) | |||||||
| Li 3 F 2 (C 2v ) | −222.473494 | 3.91 | 3.80 Hartman and Hisatsune (1966) | 0.63 | 0.59 Hartman and Hisatsune (1966) | − | − |
| Li 3 F 2 (D 3h ) | −222.459703 | 4.24 | 3.86 Hartman and Hisatsune (1966) | 0.36 | 0.75 Hartman and Hisatsune (1966) | − | − |
| C 60 | −2285.799198 | 7.08 | 7.54 Sikorska and Gaston (2020) | 2.25 | 2.68 Knapp et al. (1986) | − | − |
| Li 3 F 2 (C 2v )⋅CO 2 | −411.112817 | 5.42 | 5.21 Park and Meloni, (2017) | 0.97 | 0.36 Park and Meloni (2017) | 184 | 163 Park and Meloni (2017) |
| Li 3 F 2 (D 3h )⋅CO 2 | −411.096882 | 5.25 | − | 0.80 | − | 178 | − |
| C 60 ⋅CO 2 | −2474.312373 | 7.08 | − | 2.27 | − | −147 a | − |
| C 60 ⋅Li 3 F 2 (D 3h ) | −2508.304346 | 5.64 | − | 2.45 | − | 119 a | − |
| C 60 ⋅[SA⋅CO 2 ] | −2696.601627 | 5.73 | − | 2.56 | − | a | − |
This binding energy at 0 K corresponds to the negative solvation energy at 0 K that C60 exerts on the encapsulated species, reactants, Li3F2 and CO2, and product SA⋅CO2 (see text).