Skip to main content
. 2021 Jul 14;9:712960. doi: 10.3389/fchem.2021.712960

TABLE 1.

Energetics of all the species relevant to this study calculated at the B3LYP/6-31G* level of theory. The zero-point-energy corrected total electronic energy (E0) is in Hartree, the adiabatic ionization energy (AIE) and adiabatic electron affinity are in eV, and the binding energy at 0 K is in kJ mol−1. [SA⋅CO2] stays for the endo superalkali⋅CO2 complex.

Species E0 AIE AIE liter AEA AEA liter BE BE liter
CO 2 −188.569349 13.6 13.78 Herzberg (1966) −1.27 −0.60 Wang et al. (1988)
−1.60 de Vries et al. (1992)
Li 3 F 2 (C 2v ) −222.473494 3.91 3.80 Hartman and Hisatsune (1966) 0.63 0.59 Hartman and Hisatsune (1966)
Li 3 F 2 (D 3h ) −222.459703 4.24 3.86 Hartman and Hisatsune (1966) 0.36 0.75 Hartman and Hisatsune (1966)
C 60 −2285.799198 7.08 7.54 Sikorska and Gaston (2020) 2.25 2.68 Knapp et al. (1986)
Li 3 F 2 (C 2v )⋅CO 2 −411.112817 5.42 5.21 Park and Meloni, (2017) 0.97 0.36 Park and Meloni (2017) 184 163 Park and Meloni (2017)
Li 3 F 2 (D 3h )⋅CO 2 −411.096882 5.25 0.80 178
C 60 ⋅CO 2 −2474.312373 7.08 2.27 −147 a
C 60 ⋅Li 3 F 2 (D 3h ) −2508.304346 5.64 2.45 119 a
C 60 ⋅[SA⋅CO 2 ] −2696.601627 5.73 2.56 a
a

This binding energy at 0 K corresponds to the negative solvation energy at 0 K that C60 exerts on the encapsulated species, reactants, Li3F2 and CO2, and product SA⋅CO2 (see text).