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ABSTRACT

Over the last several hundred years, donkeys have
adapted to high-altitude conditions on the Tibetan
Plateau. Interestingly, the kiang, a closely related
equid species, also inhabits this region. Previous
reports have demonstrated the importance of
specific genes and adaptive introgression in
divergent lineages for adaptation to hypoxic
conditions on the Tibetan Plateau. Here, we
assessed whether donkeys and kiangs adapted to
the Tibetan Plateau via the same or different
biological pathways and whether adaptive
introgression has occurred. We assembled a de
novo genome from a kiang individual and analyzed
the genomes of five kiangs and 93 donkeys
(including 24 from the Tibetan Plateau). Our
analyses suggested the existence of a strong hard
selective sweep at the EPAST locus in kiangs. In
Tibetan donkeys, however, another gene, i.e.,
EGLN1, was likely involved in their adaptation to
high altitude. In addition, admixture analysis found
no evidence for interspecific gene flow between
kiangs and Tibetan donkeys. Our findings indicate
that despite the short evolutionary time scale since
the arrival of donkeys on the Tibetan Plateau, as well
as the existence of a closely related species already
adapted to hypoxia, Tibetan donkeys did not acquire
adaptation via admixture but instead evolved
adaptations via a different biological pathway.

Keywords: Kiang; altitude;

Adaptation; Selection

Donkey; High

INTRODUCTION

Domestic donkeys have been used as draft animals by
humans for over 5 000 years (Beja-Pereira et al., 2004).
Despite the highly restricted distribution of their wild
progenitor, the arid-adapted African wild ass (Beja-Pereira et
al., 2004; Ma et al., 2020), donkeys demonstrate a propensity
to adapt to a wide range of environments, including high-
altitude habitats on the Tibetan Plateau.

The genetic mechanisms underlying high-altitude adaptation
have been studied extensively in multiple mammalian species,
including dog, yak, chiru, human, and many other animals

(Beall et al., 2010; Foll et al., 2014; Ge et al., 2013; Gou et al.,
2014; Huerta-Sanchez et al., 2014; Lorenzo et al., 2014; Qiu
et al.,, 2012; Qu et al., 2013; Simonson et al., 2010; Wang et
al., 2014; Wang et al., 2016). Various studies have
demonstrated the importance of the endothelial PAS domain-
containing protein 1 (EPAST) gene, also known as hypoxia-
inducible factor-2-alpha (HIF-2a), which exhibits activity under
low oxygen conditions (Beall et al., 2010; Huerta-Sanchez et
al., 2014; Miao et al., 2017; vonHoldt et al., 2017). Specifically,
these studies show that both dogs and humans from Tibet
obtained the EPAST allele, which is necessary for their
adaptation to high-altitude conditions, via hybridization with
closely related lineages that were already adapted to the
Tibetan Plateau (Huerta-Sanchez et al., 2014; Miao et al.,
2017; vonHoldt et al., 2017).

Interestingly, kiangs, which belong to a lineage that shared
a common ancestor with donkeys ~1.47—-1.75 million years
ago (Jonsson et al., 2014), also inhabit the Tibetan Plateau.
The close geographic proximity of these two closely related
species suggests the possibility that, as for dogs (Gou et al.,
2014), cattle (Wu et al., 2018), and humans (Huerta-Sanchez
et al.,, 2014), adaptive admixture may have facilitated the
adaptation of donkeys to low-oxygen conditions. This scenario
is likely given the propensity of equid species to interbreed,
including kiangs and donkeys, despite their large karyotypic
differences (2Ngonkey=62, 2Niang=52) (Jonsson et al., 2014).
Alternatively, the kiang and Tibetan donkey may have
acquired their high-altitude adaptations independently,
potentially via the same or different biological pathways. To
test these hypotheses, we de novo assembled the genome of
a kiang individual and analyzed the genomes of 93 domestic
donkeys (24 from Tibetan Plateau, 28 from Chinese lowland,
eight from Iran, 26 from Africa, and seven from Middle Asia)
and five kiangs.

MATERIALS AND METHODS

De novo assembly of kiang genome

A blood sample of a male kiang was collected from Beijing
Zoo in 2015. We de novo assembled its genome via a whole-
genome shotgun approach. DNA was isolated from blood
tissue using standard cetyltrimethylammonium bromide
(CTAB) extraction and libraries were prepared following the
protocols provided by lllumina. Multiple paired-end and mate-
pair libraries were constructed with variable fragment lengths
ranging from 220 bp to 17 kb (Supplementary Table S1). All
libraries were sequenced through the lllumina HiSeq 2000 &
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2500 sequencing platform. In total, 400.92 Gb of raw reads
(~174x coverage of the kiang genome) with an average read
length of 126 bp were generated for genome assembly. Using
these data, the de novo genome was assembled by
ALLPATHS-LG (Gnerre et al., 2011).

Positively selected genes (PSGs) based on dy/ds ratio
(non-synonymous substitutions per non-synonymous site
(dy) to synonymous substitutions per synonymous site
(ds))

Human, donkey, horse, pig, and rhino genome sequences
were downloaded from the Ensembl database. In
consideration of alternative splicing variants, the longest
transcripts were selected to represent genes. First, we
performed all-to-all BLASTp analysis with an e-value cutoff of
1e75. To weigh the similarity between gene pairs, we assigned
an H-score (BLAST bit score) ranging from 0 to 100,
calculated by score (G1G2)/max (score (G1G1), score
(G2G2)). Next, we built a hierarchy graph by hcluster_sg (Li et
al., 2006), requiring the minimum edge (score) to be greater
than 5 and the minimum edge density to be larger than 0.34 to
form a cluster. Gene family clustering ceased immediately
once there was more than one out-group gene.

We used MUSCLE (Edgar, 2004) and MAFFT (Katoh et al.,
2002) software for multiple sequence alignments to identify
gene families. After that, the protein alignments were back
translated to nucleotide alignments to build a phylogenetic tree
with TreeBeST (http://treesoft.sourceforge.net/treebest.shtml),
which uses a built-in algorithm to construct the best tree
reconciled with a species tree and roots the tree by minimizing
the number of duplications and losses. Using gene trees, the
pairwise relationships (orthologous and within-species
paralogous genes) can be inferred.

Multiple sequence alignments of the one-to-one orthologous
genes were performed using PRANK (Léytynoja & Goldman,
2008). After alignment and trimming, we identified 5 778 high-
confidence one-to-one orthologous genes in the kiang,
human, donkey, horse, pig, and rhino genomes. The branch
site model in the Codeml program in the PAML package
(Yang, 2007) was used to detect PSGs in the kiang lineage,
with 164 PSGs thus identified.

Expression profile analysis of PSGs in kiang using human
expression data

As it is difficult to obtain expression data for kiangs, we used
publicly available human expression data to examine the
expression patterns of genes that are positively selected in
kiangs. Analysis was performed as described in our previous
study (Li et al., 2013). Human gene expression data (Human
U133A Gene Atlas) from 84 tissues or cells were downloaded
from BioGPS (Wu et al., 2016) (http:/biogps.org/#goto=
welcome) with the GEO code GSE1133. To avoid bias
expression in different tissues, the expression levels of PSGs
were normalized by dividing each tissue value by the average
whole-genome expression level. Only the top 10 tissues/cell
lines are presented.

Genome re-sequencing
Tissues for DNA extraction were stored in alcohol at —80 °C.
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Genomic DNA was prepared by standard phenol-chloroform
extraction. Sequence libraries were constructed according to
the lllumina library preparation pipeline and sequenced using
the Hiseq 2500 platform. The genomes of five kiangs and 75
domestic donkeys (24 from Tibetan Plateau, 13 from Chinese
plains, eight from Iran, 23 from Africa, and seven from Middle
Asia) were re-sequenced in this study (genomes of 18
domestic donkeys were provided by Wang et al. (2020)
(Supplementary Table S9). Zebra data were downloaded from
a previously published study as an outgroup (Jénsson &
Schubert, 2014).

Read mapping and variant calling

Before alignment, reads were trimmed based on their quality
scores using the quality trimming program Btrim (Kong, 2011).
Quality-filtered reads were mapped to our kiang de novo
reference using the alignment algorithm BWA-MEM (Pavlidis
et al.,, 2013). Single nucleotide polymorphisms (SNPs) were
detected using the Genome Analysis Toolkit (GATK)
(McKenna et al.,, 2010). Duplicate read pairs were first
identified using the Picard tools (http://picard.sourceforge.
net/). We applied hard filters according to GATK guidance,
with the following criteria used to filter raw SNPs: QD<2.0,
FS>60.0, MQ<40.0, HaplotypeScore>13.0, MappingQuality
RankSum<-12.5, ReadPosRankSum<-8.0, -cluster 3 -window
10. All SNPs were annotated using the ANNOVAR program
(Wang et al., 2010).

Population structure analysis

To infer the population relationships among different
domesticated donkey populations, population structure was
deduced using ADMIXTURE, a tool for maximum-likelihood
(ML) estimation of individual ancestries from multi locus SNP
genotype datasets (Alexander et al., 2009), with different K
values from 2 to 5.

Detection of selective sweep

We calculated the genome-wide distribution of population
fixation statistics Fgt and nucleotide diversity 8m with a
window size of 50 kb and a step size of 25 kb. Putative
selection targets were extracted with the top 5% of log ratios
for both 6 and Fgr. Our approach was to identify genomic
regions with high differentiation between Chinese plain
donkeys (n=28) and Tibetan donkeys (n=24). The locus-
specific branch length (LSBL) of Tibetan donkeys was
calculated by pairwise Fg7 distances with dyp, dtg, and dpg (P
represents Chinese plain donkeys, F represents foreign
donkeys, T represents Tibetan donkeys), where LSBLyipetan=
(drp+dre—dpg)/2 (Shriver et al., 2004).

To detect whether a selective sweep (a beneficial allele that
recently reached fixation due to strong positive natural
selection) has occurred in the kiang population, we calculated
nucleotide diversity around exonic substitutions with a non-
overlapping window size of 10 kb using vcftools v0.1.11
(Danecek et al., 2011).

SweeD analysis
The SweeD v4.0.0 program (Pavlidis et al., 2013) was used to
detect selective sweeps for the three populations (i.e., kiangs,
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Tibetan donkeys, and plain donkeys) using a 10 kb non-
overlapping window. This program implements the composite-
likelihood ratio (CLR) statistic, which identifies regions with
significant deviations from the neutral site frequency spectrum
(SFS).

Coalescent simulation

To determinate the threshold for detection of outlier windows,
we conducted coalescent simulations using the msms v3.2rc
program (Ewing & Hermisson, 2010) based on demographic
parameters derived from the best-fitting model inferred by dadi
(Gutenkunst et al., 2009) (Supplementary Table S21). For
neutrality, only intergenic SNPs with more than 40-fold
coverage at the population-level and minor allele frequencies
(MAF)>0.01 were considered. Fixed sites in the kiang
population were considered as ancestor alleles. A total of 15
divergence models were considered among the three
populations, i.e., Chinese plain, Tibetan, and Foreign plain
donkeys (Nigeria, Kenya, Egypt, Iran, and Kyrgyzstan). The
model with the maximum log-likelihood value was chosen as
the best one. We simulated genotypes corresponding to a
50-100 kb region with the same sample size as the real data
10 000 times according to the estimation from the best model.
We converted the .ms format files into .vcf format by a custom
Perl script. We calculated the Fg1, LSBL, and log mr-ratio using
the same pipeline as mentioned above for these sequences.
The statistical significance between the simulated and
observed data was measured using the randtest function in
the ade4 R package. The recombination rate used here was
1 cM/Mb, and the mutation rate and generation time were
7.242x107° per site per generation and eight years,
respectively (McVean et al., 2004; Orlando et al., 2013). The
commands used for running the msms software were as
follows: For Chinese plain, Tibetan, and Foreign plain donkey:
java -jar msms3.2rc-b163.jar -ms 186 10000 -N 10000 -I 3 82
56 48 -t 14.484 -r 400 50000 -n 1 0.9474 -n 2 1.0707 -n 3
1.0904 -m 1222049 -m 2 1 21552 -m 2 3 1.9153 -m 3 2
2.0253 -g 1 0.928 -g 2 0.898 -g 3 0.769 -ej 0.00195 3 2 -en
0.001953 2 0.8279 -ej 0.00897 2 1 -en 0.00897 1 0.5171 -
threads 10. For kiang: java -jar msms3.2rc-b163.jar -ms 12
10000 -t 107.2 -r 400 100000 -threads 10.

Analysis of genetic introgression

We inferred gene flow among the different donkey
(Kyrgyzstan, Nigeria, Kenya, Egypt, Iran, Tibet, and Chinese
plain) and kiang populations, with zebra as the outgroup
species, based on maximum-likelihood (ML) implemented in
TreeMix. The command was "-i input -noss -m migration
events —root zebra -o output”, and migration events from 1 to
4 were gradually added to the ML tree. Genetic introgression
events were also detected using the D-statistic (ABBA-BABA
test) in ADMIXTOOLS (Patterson et al., 2012). We calculated
the f, statistic, a modified version of the D-statistic described
in Martin et al. (2015), using sliding window analysis with 50
kb windows.

Gene enrichment analysis
Gene Ontology (GO) enrichment analyses were performed
using the DAVID program (https://david.ncifcrf.gov/).

RESULTS

Kiang genome assembly

We first de novo assembled the kiang genome using ~400 Gb
of data sequenced by the lllumina Hiseq 2000 & 2500 platform
from multiple paired-end and mate-pair libraries constructed
with varying length fragments (220 bp to 17 kb). The scaffold
and contig N50 sizes of the draft genome were 17 Mb and 264
kb, respectively (Figure 1A; Supplementary Text, Figures S1,
S2 and Tables S1-S3). We assessed the completeness of our
assembly by aligning the protein-coding genes of the horse to
the kiang genome using BLAT software (Kent, 2002). We
retrieved 22 308 of 22 632 horse coding sequences (>98%) in
the kiang assembily, indicating a gene region completeness of
over 98.00% (Supplementary Table S4). This completeness
was also supported by a high BUSCO (Benchmarking
Universal Single-Copy Orthologs) score (Simao et al., 2015) of
>96%, which indicated that our assembly contained the vast
majority of near-universal single-copy orthologs
(Supplementary Table S5). The gene model sets predicted by
multiple methods were integrated using GLEAN to form a
comprehensive and non-redundant gene set. After filtering
short genes (<150 bp), we identified a total of 27 178 protein-
coding genes with an average gene length of ~17 204 bp and
a mean exon length of ~157 bp (Supplementary Tables S6,
S7). Approximately 760 Mb of repeat sequences were
identified by RepeatMasker, accounting for ~32% of our
assembly (Supplementary Table S8).

Rare genetic introgression between kiangs and Tibetan
donkeys

To assess the possibility of introgression between kiangs and
Tibetan donkeys, we analyzed the genomes of five kiangs and
93 domestic donkeys (24 from Tibetan Plateau, 28 from
Chinese lowland, eight from Iran, 26 from Africa, and seven
from Middle Asia), including the 80 genomes generated in this
study (Figure 2A; Supplementary Table S9), with a median
depth of 7.50% and coverage of 96.79% of the assembled
genome. We mapped the re-sequenced reads to the draft
kiang genome for polymorphism calling for analysis of
population genetics. After mapping the sequenced reads to
the kiang reference genome, we called a total of 22 056 186
SNPs, including 81592 non-synonymous and 68 064
synonymous SNPs, using the GATK pipeline (Supplementary
Tables S10, S11 and Figures S3-S5).

ADMIXTURE analysis separated kiangs from Tibetan
donkeys without any admixture signals (Figure 2B). TreeMix
analyses did not detect a migration edge between the Tibetan
donkeys and kiangs, further suggesting that introgression
between these lineages did not occur (Figure 2C;
Supplementary Figure S6). Considering potential introgression
between the Asian wild ass and domestic donkey (Jénsson et
al., 2014), we calculated the D-statistic (ABBA-BABA test) of
ADMIXTOOLS in the form (Tibetan donkey, Somali wild ass;
Kiang, Zebra), which yielded a D-value<O (|Z|>3; Figure 2D;
Supplementary Figure S7 and Table S12). This pattern
suggested gene flow between the Somali wild ass and kiang
or between the Tibetan donkey and zebra. Additional analyses
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Figure 1 Genome evolution in kiangs

A: Distribution of structural variants compared with horse genome. Tracks (outside to inside) show chromosomes, a: indel density, b: insertion
density, c: deletion density, d: translocation density, e: gene density, f: repeat density. Density of indels, insertions, deletions, and translocations,
was calculated from a 1 Mb non-overlapping sliding window, and 500 kb non-overlapping sliding window for gene density and repeat density of the
horse. B: Expression analysis of REGs based on human expression data. Analysis was performed as described previously (Li et al., 2013). Human
gene expression data (Human U133A Gene Atlas) in 84 tissues or cells were downloaded from BioGPS (Wu et al, 2016)
(http://biogps.org/#tgoto=welcome). Relative expression level of REGs in each tissue was calculated by mean expression value of REGs in tissue
divided by average whole-genome expression value. Only top 10 tissues/cell lines are presented. Species tree of six mammals was used to detect
positively selected genes in kiang lineage (as foreground lineage) by branch site model in PAML. C: McDonald-Kreitman (MK) test identified several

genes related to immunity, DNA damage, energy metabolism, and angiogenesis under positive selection in kiang lineage.

using the f; statistic (Martin et al., 2015) did not identify any
gene flow signals between kiangs and Tibetan donkeys
(Supplementary Table S13).

We then computed the f, statistics in non-overlapping 50 kb
sliding windows across the Tibetan donkey genome to further
assess whether undetected low-level gene flow (i.e., below the
detection threshold of ADMIXTURE and D-statistics) could
have left a localized footprint in the genome. The level of
divergence (dxy) between the kiang and Tibetan donkey in the
top 1% of f, regions, was, on average, slightly higher (0.3337)
than in the rest of the genome (0.3105). This pattern did not
support genetic introgression. Furthermore, we manually
checked the windows with the top four highest f, values. The
phylogenetic tree suggested a potential genetic introgression
signature in these segments from Tibetan donkeys to kiangs
(Supplementary Figure S8), although it may also be
attributable to incomplete lineage sorting. Therefore, these
results suggest rare genetic introgression between kiangs and
Tibetan donkeys, although we cannot absolutely exclude
introgression at some small regions.

Genomic substitutions underlying kiang evolution

The lack of admixture between kiangs and Tibetan donkeys
indicates that these species acquired their adaptation to high
altitude independently. To assess whether these processes of
adaptation involved similar pathways, we used the dy/dg ratio
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to identify rapidly evolving genes (REGs) in the kiang genome.
After identifying 5 778 high-confidence one-to-one orthologous
genes among the kiang, human, donkey, horse, pig, and rhino
genomes, we used the branch site model in the Codeml
program of PAML (Yang, 2007) to detect genes under positive
selection in the kiang lineage. This analysis yielded 164
protein-coding REGs with elevated d\/ds ratios in the lineage
leading to kiangs (P<0.05) (Supplementary Table S14) (Zhang
et al., 2005).

We then used the BioGPS dataset (Wu et al., 2016), which
contains expression data from 84 human tissues/cell types, to
characterize the function of the REGs, as described in our
previous study (Li et al., 2013). The REGs displayed high
expression levels in cell lines and tissues related to the
immune system, thus supporting the function of some REGs in
immunity (Figure 1B). The rapid evolution of immune genes
has been commonly reported in different mammals and is
likely due to an evolutionary “arms race” with pathogens
(Kosiol et al., 2008). Additional gene enrichment analysis did
not identify any significantly enriched terms but indicated that
eight REGs were involved in the pathway “regulation of
growth”, and four REGs (EP300, P2RX3, CREBBP, and
ALDH?2) were involved in the pathway “response to oxygen
levels” (Supplementary Table S15).

We then examined gene interactions among REGs using
the BioGRID database (Stark et al., 2006) (https://thebiogrid.
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and TreeMix.

org/). We found frequent gene-gene interactions among the
REGs. Interestingly, many of these interactions involved
EP300 as a hub gene, which showed the second highest
number of interactions with other genes (Supplementary
Figure S9). EP300 has been identified as a co-activator of
HIF1a and plays a role in the stimulation of hypoxia-induced
genes such as VEGF (Zhang et al., 2013). However, as
EP300 has many other functions, future studies are necessary
to identity the functional consequences of rapid EP300
evolution.

False-positive branch site tests can be high due to many
confounding factors, like multi-nucleotide mutations (Venkat et
al., 2018). Therefore, we further leveraged our re-sequencing
data to identify fixed amino acid substitutions in the kiang
lineage using the McDonald-Kreitman (MK) test in the
PopGenome package (Pfeifer et al., 2014). This analysis
identified a total of 30 genes under positive selection in the
kiang lineage, including genes related to immunity, DNA
damage, energy metabolism, and angiogenesis (Figure 1C;
Supplementary Table S16, P<0.05). None of these genes,
however, overlapped with the REGs identified by PAML, likely

due to the different statistical principles used. PAML assumes
that amino acid differences are fixed. This assumption,
however, is likely to be violated when comparing closely
related lineages such as kiangs and donkeys.

Interestingly, the MK test detected some genes involved in
vascular development, an important component for hypoxia
adaptation. For example, the TEK gene encodes the TEK
receptor tyrosine kinase, a receptor that binds to the ligand
angiopoietin-1 and mediates a signaling pathway during
embryonic vascular development (Puri et al., 1999). NOTCH1
encodes the notch receptor 1 in the notch signaling pathway,
a key pathway for angiogenesis (Limbourg et al., 2005).

Hard selective sweep in EPAS1 in kiangs

To detect positive-selection signals in the kiang population, we
explored population genetics including nucleotide diversity (in
10 kb windows) and CLR of a sweep model using the SweeD
program (Pavlidis et al., 2013). We identified a total of 248
genes in the top 1% of CLR values and 1 141 genes in
windows that showed the lowest 1% of nucleotide diversity. A
total of 34 genes were found to overlap between these
analyses (Supplementary Table S17). Demographic history
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simulation also indicated that these genes evolved under
positive selection compared to the null demographic model
(P<0.01). However, no GO category was significantly enriched
in this set of 34 genes. The functional consequences of these
candidate PSGs were unclear, and thus require future
validation and study. In addition to the high-altitude
environment, there may be other forces driving the rapid
evolution of these genes.

The adaptive evolution of EPAS17 is tightly coupled to
hypoxia adaptation in Tibetan people and animals (Beall et al.,
2010; Gou et al., 2014; Huerta-Sanchez et al., 2014; Lorenzo
et al., 2014; Simonson et al., 2010; Wang et al., 2014). Here,
simulation of demographic history supported signatures of
selective sweep across EPAST in the kiang population with
significantly lower nucleotide diversity and higher CLR values
(P<0.01). By comparing population re-sequencing data from
donkeys and kiangs, at the EPAS1T locus, we found a non-
synonymous substitution in the kiang population (Figure 3).
However, using the same methodology, we found no evidence
of positive selection at EPAS1 in the Tibetan donkey and no
evidence that it was affected by adaptive admixture from the
kiang (see following section).

The signature of selection in EPAST corroborates the hard
selective sweep, in which a beneficial allele has recently
reached fixation due to strong positive natural selection. We
further evaluated the hard selective sweep mode of adaptation
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at the genome-wide scale in the kiang. A hard selective sweep
will deepen diversity around those changes most likely to have
functional consequences (i.e., amino acid substitutions)
(Enard et al., 2014). As described in previous research
investigating the patterns of hard selective sweeps in humans
(Hernandez et al., 2011), we explored diversity levels across
non-synonymous and synonymous mutations fixed in the
kiang population (Figure 4) Consistent with the finding in the
human population (Hernandez et al., 2011), the diversity
around the non-synonymous mutations was similar to that
around the synonymous mutations (Figure 4). This indicates
that genome-wide hard selective sweeps may be rare in
kiangs, as reported in humans (Hernandez et al., 2011).

Evidence for selective sweep at EGLN71 in Tibetan
donkeys

To investigate the potential genetic mechanism underlying
high-altitude adaptation in Tibetan domestic donkeys, we
performed population genetics analyses on the genomes of 93
donkeys. The phylogenetic tree and ancestry estimate
analysis by ADMIXTURE (Supplementary Figures S10, S11)
indicated that Tibetan donkeys are a genetically
homogeneous subpopulation that diverged from the other six
populations of donkeys (Kyrgyzstan, Nigeria, Kenya, Egypt,
Iran, and lowland China) sequenced in this study. The pattern
of population variation also supports the out-of-Africa theory
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Figure 3 Hard selective sweep in EPAS1 in kiangs

A: Composite-likelihood ratio (CLR) detected by SweeD and nucleotide diversity levels around EPAST gene in different populations, including kiang,
Tibetan donkey, and plain donkey. Results indicate that this gene likely experienced a hard selective sweep in kiangs. B: Haplotype of nucleotide
mutations in EPAS1 showing high level of divergence between kiangs and domestic donkeys. Pink, yellow, blue, and black indicate genotypes of
Homozygous variant, Heterozygote, Homozygous reference, and No call, respectively. C: Partial EPAS1 amino acid sequences among different

species.
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for the domestic donkey, with a higher level of genetic
diversity (Supplementary Table S18), private variants
(Supplementary Figure S12), and a higher decay rate of
linkage disequilibrium (LD) (Supplementary Figure S13).

To investigate natural selection in the Tibetan donkey, we
first computed the Fst (Akey et al., 2002) between Tibetan
and Chinese plain donkeys across their genomes. Here, we
found that the genic region exhibited a significantly higher Fst
value than the intergenic region (Figure 5A, P<2.2e-16). In
addition, we divided SNPs into different classes according to
the Fgr value (e.g., 0-0.1, 0.1-0.2, 0.2-0.3, 0.3-0.4, 0.4-0.5,
>0.5), and found that population differentiation was more
pronounced at non-synonymous SNPs than other types of
SNPs (Figure 5B, P=0.003 by chi-square test; Supplementary
Figure S14). A pattern of excess genic SNPs with high Fst
values (>0.4) between Tibetan domestic donkeys and lowland
donkeys was found when we constrained the analyses to
SNPs presenting similar minor allele frequencies (Figure 5C;
Supplementary Figure S14). This suggests that positive
natural selection has, at least partly, driven population
differentiation between Tibetan and lowland donkeys.

To further explore the genetic mechanisms underlying high-
altitude adaptation, we identified PSGs in the Tibetan donkey
lineage by computing the Fgt, LSBL, and nucleotide diversity
ratio (Am) between Tibetan and Chinese plain donkeys using
sliding windows across the donkey genomes (Figure 5D;
Supplementary Figure S15). These summary statistics were
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Figure 4 Rare hard selective sweep in kiangs at genome-wide
scale

Normalized nucleotide diversity was calculated as nucleotide diversity
level in kiang population divided by donkey-kiang divergence around
fixed substitutions using a non-overlapping window size of 10 kb.

compared to simulated ones based on a neutral demographic
model inferred by dadi (Gutenkunst et al., 2009). A total of 158
candidate genes were identified by all three methods (FDR-
corrected P<0.01) (Supplementary Figure S16 and Table
S19). However, no gene category was found to be significantly
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Population differentiation was more pronounced in non-

synonymous SNPs than other types of SNPs. Statistical significance was calculated by chi-square test. C: A pattern of excess genic SNPs with high
Fs7 values (>0.4) between Tibetan domestic donkeys and lowland donkeys was found when constraining analyses to SNPs presenting similar minor
allele frequencies (MAF). Statistical significance was calculated by chi-square test. D: Landscape of Fgr, Pi (nucleotide diversity), and LSBL values
corroborates strong positive selection on EGLN7 gene. —log10 transformed FDR P-values are presented.
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enriched. We also manually checked the candidate PSGs
detected by each method. One specific candidate was
particularly noted: i.e., EGLN1. This gene displayed a
significantly  higher LSBL (FDR-corrected P=0.0044),
significantly lower nucleotide diversity (FDR-corrected P=
0.0043), and borderline significant Fgr (FDR-corrected
P=0.014) (Figure 5D). The EGLN1 gene, which encodes for
HIF prolyl 4-hydroxylase 2 (PHD2), is a key gene for hypoxia
adaptation in Tibetans, alongside EPAS1 (Bigham et al., 2010;
Lorenzo et al., 2014; Peng et al., 2011; Simonson et al., 2010;
Xiang et al., 2013; Xu et al., 2011). Therefore, our results
indicate that Tibetan donkeys did not acquire their ability to
withstand high altitude via adaptive introgression or through
mutations of the EPAST gene, suggesting that kiangs and
Tibetan donkeys acquired adaptations independently and
through different biological pathways.

Potential independent adaptation to high altitude between
kiangs and Tibetan domestic donkeys

Although EPAS1 and EGLN1 do not appear to have evolved
in parallel in kiangs and Tibetan donkeys, it is possible that
their parallel adaptation to high altitudes involved other genes.
To test this hypothesis, we aligned sequencing reads from
kiangs and donkeys to the horse reference genome (outgroup)
and ran SweeD using these alignments. This allowed us to
limit any issue arising from reference bias and identify
candidate PSGs in both kiangs and Tibetan domestic donkeys
(Figure 6). Among the 2 243 10 kb windows (top 1%) under
potential positive selection, only 11 windows (0.49%)
distributed on different chromosomes were shared between
the two populations, covering 22 protein-coding genes
(hypergeometric P=8.08e-11), none of which were related to
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o 4000
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high-altitude adaption (Supplementary Table S20). Thus, our
results suggest that no parallel adaptation to high altitude
occurred between these two closely related species.

DISCUSSION

The extreme environment of plateau regions can lead to
hypoxia in animals, representing a considerable challenge for
life, particularly for introduced livestock. In the present study,
we assembled a draft de novo genome of the kiang and
performed large-scale re-sequencing of kiang and domestic
donkey genomes. Our findings demonstrated that kiangs and
Tibetan donkeys have utilized different genes (EPAS?1 and
EGLN1, respectively) to adapt to the low-oxygen conditions
associated with living at high altitudes. Interesting, both
EPAS1 and EGLN1 are the two most important genes for
high-altitude adaptation in Tibetans and other plateau animals
(Beall et al., 2010; Foll et al., 2014; Ge et al., 2013; Gou et al.,
2014; Huerta-Sanchez et al., 2014; Lorenzo et al., 2014; Qiu
et al., 2012; Qu et al., 2013; Simonson et al., 2010; Wang et
al., 2014; Wang et al., 2016). This suggests that the number of
potential biological pathways involved in high-altitude
adaptation in mammals may be limited.

While EPAST is a clear candidate for adaptation to high
altitudes in kiangs, other genes not detected in our analyses
may also be involved. This is likely to be the case given the
small sample size (n=5) of kiang genomes available for this
study. Future study based on additional samples will help to
clarify the population structure and demographic history of
kiangs, as well as identify signatures of positive natural
selection.

Our findings indicate that Tibetan donkeys did not acquire
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their ability to withstand high altitudes via adaptive
introgression with kiangs. Although hybrids between kiangs
and horses, donkeys, and wild asses have been reported in
captivity (Gray, 1972; Hay, 1859; Kinloch, 1869), e.g., a male
kiang-donkey hybrid was born in London Zoological Gardens
in 1920 (Flower, 1929), no evidence exists that kiang hybrids
can reproduce. Rare genetic introgression between kiangs
and Tibetan donkeys may also be due to limited encounters
given the short time that donkeys have been living on the
Tibetan Plateau. Given their biological similarities, however,
the adaptive variants in both EGLN1 and EPAS1 described
here could provide markers for breeding more resilient
donkeys in other high-altitude regions of the world.
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