TABLE 2.
The performance of the different classifiers.
| Classifiers | Accuracy (%) | Precision (%) | Recall (%) | F-score (%) | AUC |
| Fine tree | 80.7 | 83.5 | 79.5 | 81.5 | 0.85 |
| Medium tree | 76.3 | 81.4 | 74.5 | 77.8 | 0.82 |
| Coarse tree | 72.5 | 78.3 | 70.8 | 74.4 | 0.76 |
| Linear discriminant | 78.7 | 75.8 | 81.1 | 78.3 | 0.87 |
| Quadratic discriminant | 63.4 | 98.4 | 58.3 | 73.2 | 0.89 |
| Logistic regression | 80.5 | 80.3 | 81.1 | 80.7 | 0.88 |
| Linear SVM | 80.0 | 79.2 | 81.1 | 80.1 | 0.88 |
| Quadratic SVM | 89.1 | 87.1 | 91.0 | 89.0 | 0.96 |
| Cubic SVM | 93.9 | 93.8 | 94.2 | 94.0 | 0.97 |
| Fine Gaussian SVM | 93.5 | 94.6 | 92.7 | 93.7 | 0.98 |
| Medium Gaussian SVM | 84.3 | 80.9 | 87.3 | 84.0 | 0.92 |
| Coarse Gaussian SVM | 75.5 | 77.7 | 75.0 | 76.3 | 0.84 |
| Fine KNN | 94.2 | 94.4 | 94.2 | 94.3 | 0.94 |
| Medium KNN | 87.8 | 89.7 | 86.9 | 88.2 | 0.95 |
| Coarse KNN | 77.5 | 75.9 | 79.1 | 77.4 | 0.85 |
| Cosine KNN | 87.2 | 86.5 | 88.1 | 87.3 | 0.95 |
| Cubic KNN | 87.0 | 88.7 | 86.1 | 87.4 | 0.94 |
| Weighted KNN | 92.6 | 91.8 | 93.6 | 92.7 | 0.98 |
| Boosted trees | 82.9 | 82.8 | 83.4 | 83.1 | 0.92 |
| Bagged trees | 90.8 | 91.9 | 90.2 | 91.0 | 0.97 |
| Subspace discriminant | 77.1 | 75.1 | 78.9 | 77.0 | 0.86 |
| Subspace KNN | 93.7 | 93.7 | 94.0 | 93.8 | 0.98 |
| RUSBoosted trees | 77.2 | 82.6 | 75.1 | 78.7 | 0.85 |
Bold values indicate the best.