Skip to main content
. 2021 Jul 14;15:690633. doi: 10.3389/fnins.2021.690633

TABLE 2.

The performance of the different classifiers.

Classifiers Accuracy (%) Precision (%) Recall (%) F-score (%) AUC
Fine tree 80.7 83.5 79.5 81.5 0.85
Medium tree 76.3 81.4 74.5 77.8 0.82
Coarse tree 72.5 78.3 70.8 74.4 0.76
Linear discriminant 78.7 75.8 81.1 78.3 0.87
Quadratic discriminant 63.4 98.4 58.3 73.2 0.89
Logistic regression 80.5 80.3 81.1 80.7 0.88
Linear SVM 80.0 79.2 81.1 80.1 0.88
Quadratic SVM 89.1 87.1 91.0 89.0 0.96
Cubic SVM 93.9 93.8 94.2 94.0 0.97
Fine Gaussian SVM 93.5 94.6 92.7 93.7 0.98
Medium Gaussian SVM 84.3 80.9 87.3 84.0 0.92
Coarse Gaussian SVM 75.5 77.7 75.0 76.3 0.84
Fine KNN 94.2 94.4 94.2 94.3 0.94
Medium KNN 87.8 89.7 86.9 88.2 0.95
Coarse KNN 77.5 75.9 79.1 77.4 0.85
Cosine KNN 87.2 86.5 88.1 87.3 0.95
Cubic KNN 87.0 88.7 86.1 87.4 0.94
Weighted KNN 92.6 91.8 93.6 92.7 0.98
Boosted trees 82.9 82.8 83.4 83.1 0.92
Bagged trees 90.8 91.9 90.2 91.0 0.97
Subspace discriminant 77.1 75.1 78.9 77.0 0.86
Subspace KNN 93.7 93.7 94.0 93.8 0.98
RUSBoosted trees 77.2 82.6 75.1 78.7 0.85

Bold values indicate the best.