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Abstract

Background: Lymphovascular space invasion is an independent prognostic factor in early-stage cervical cancer.
However, there is a lack of non-invasive methods to detect lymphovascular space invasion. Some researchers found
that Tenascin-C and Cyclooxygenase-2 was correlated with lymphovascular space invasion. Radiomics has been
studied as an emerging tool for distinguishing tumor pathology stage, evaluating treatment response, and
predicting prognosis. This study aimed to establish a machine learning model that combines radiomics based on
PET imaging with tenascin-C (TNC) and cyclooxygenase-2 (COX-2) for predicting lymphovascular space invasion
(LVSI) in patients with early-stage cervical cancer.

Methods: One hundred and twelve patients with early-stage cervical squamous cell carcinoma who underwent
PET/CT examination were retrospectively analyzed. Four hundred one radiomics features based on PET/CT images
were extracted and integrated into radiomics score (Rad-score). Immunohistochemical analysis was performed to
evaluate TNC and COX-2 expression. Mann-Whitney U test was used to distinguish differences in the Rad-score,
TNC, and COX-2 between LVSI and non-LVSI groups. The correlations of characteristics were tested by Spearman
analysis. Machine learning models including radiomics model, protein model and combined model were
established by logistic regression algorithm and evaluated by ROC curve. Pairwise comparisons of ROC curves were
tested by Delong test.

Results: The Rad-score of patients with LVSI was significantly higher than those without. A significant correlation
was shown between LVSI and Rad-score (r=10.631, p < 0.001). TNC was correlated to both the Rad-score (r=0.244,
p=0.024) and COX-2 (r=0.227, p=0.036). The radiomics model had the best predictive performance among all
models in training and external dataset (AUCs: 0.914, 0.806, respectively, p < 0.001). However, in testing dataset, the
combined model had better efficiency for predicting LVSI than other models (AUCs: 0.801 vs. 0.756 and 0.801 vs.
0.631, respectively).
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sample of patients will be used to test the model.

Conclusion: The machine learning model of the combination of PET radiomics with COX-2 and TNC provides a
new tool for detecting LVSI in patients with early-stage cervical cancer. In the future, multicentric studies on larger

Trial registration: This is a retrospective study and there is no experimental intervention on human participants.
The Ethics Committee has confirmed that retrospectively registered is not required.

Keywords: PET/CT, Radiomics, Machine learning, Lymphovascular space invasion, Cervical squamous cell carcinoma

Background

According to current global cancer statistics, cervical
cancer ranks second among female tumors, and the
number of new cases in developing countries is increas-
ing annually and involving younger women [1]. Some
studies have shown that LVSI is an independent prog-
nostic factor in early-stage cervical cancer [2—6]. LVSI
was detected in 17.8% of early-stage cervical cancer cases
in the initial pathological examination [7]. Herr et al. [3]
found that the presence of satellite LVSI was associated
with significantly reduced overall survival and disease-
free survival, compared with lack of any LVSI. According
to Memarzadeh et al. [4], 86% of patients with perineural
involvement in the parametria had evidence of parame-
trial LVSI, and the multivariate analysis revealed that
large tumor size (>4 cm), parametrial perineural inva-
sion, cervical LVSI, and tumor depth (> 2/3) were signifi-
cant simultaneous predictors of recurrence for early-
stage cervical cancer (p<0.05). Subsequently, Pol et al.
[5] also confirmed that conjoined and satellite LVSIs
were significantly associated with recurrence and sur-
vival. In a retrospective cohort study, LVSI was shown to
be an independent factor that affects overall survival
(p=0.009) and progression-free survival (p =0.006) in
patients with early-stage cervical cancer [6]. However,
LVSI could only be confirmed by postoperative
pathology.

In recent years, radiomics based on PET/CT imaging
has been studied as an emerging tool for distinguishing
tumor pathology stage, evaluating treatment response,
and predicting prognosis [8, 9]. Lambin et al. [10] pro-
posed the radiomics hypothesis that intratumoral het-
erogeneity evaluated by imaging could be the expression
of genomic heterogeneity, as tumors with genomic het-
erogeneity are more likely to metastasize.

In previous studies, some protein molecules expression
have been shown to be associated with lymphangiogen-
esis, lymph node metastasis [11], and lymphovascular in-
vasion in the early-stage cervical cancer. Hoellen et al.
[12] determined that cyclooxygenase-2 (COX-2) expres-
sion was significantly associated with LVSI (p =0.017).
The expression of tenascin-C (TNC) in invasive cervical
carcinoma was markedly increased [13]. Pilch [13] et al’s
research showed that, in 84% of the cases examined, a
strong TNC immunoreactivity was noted around and

within the tumor cell nests. TNC is not only associated
with epithelial-mesenchymal transition, proliferation,
and migration of cancer cells, but it also facilitates the
formation of cancer stroma, including desmoplasia and
angiogenesis [14]. Thus, we aimed to explore the associ-
ation of radiomics derived from '®F-fluorodeoxyglucose
PET/CT imaging combined with COX-2 and TNC ex-
pressions with LVSI in early cervical cancer and to es-
tablish a machine learning model of the combination of
PET/CT radiomics, COX-2, and TNC to predict LVSI in
patients with early-stage cancer.

Patients and methods

Patient cohort

This monocentric and retrospective study was per-
formed at the Department of Radiology at Shengjing
Hospital in Shenyang, China. Between January 2015
and December 2019, 131 female patients with cervical
cancer confirmed by biopsy pathology underwent pre-
treatment 'SF-FDG PET/CT. Inclusion criteria: (1)
histologically confirmed cervical cancer with stage Ia—
IIa determined by the 2018 International Federation
of Gynecology and Obstetrics (FIGO) classifications
[15]; (2) absence of other malignant tumors; (3) nor-
mal serum glucose levels before undergoing PET/CT.
Of these patients, 19 subjects were excluded because
of previous chemoradiotherapy before the examination
(n=5), tumor volume<1cm® leading to image data
being unsuitable for textural feature measurement
(n=10), and surgery performed in another hospital
(n=4). Finally, 86 patients (42 LVSI and 44 non-
LVSI) were randomly divided into two groups, includ-
ing the training and testing datasets, according to a 7:
3 ratio. An additional 26 patients were used as an ex-
ternal dataset for model validation.

Immunohistochemistry

All tissue specimens of cervical carcinoma were pre-
pared by the Department of Pathology in our hospital.
Immunohistochemical staining was performed using
Leica  BOND MAX™ (Leica Biosystems, Shanghai,
China). For immunohistochemical detection of COX-2
and TNC protein expressions, the sections were incu-
bated with goat anti-human COX-2 (1:400 dilution) or
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rabbit anti-human TNC (1:400 dilution) polyclonal pri-
mary antibodies (both from Abcam, Shanghai, China) at
4°C overnight. After washing, the sections were incu-
bated with species-appropriate enzyme-conjugated anti-
rabbit and anti-goat secondary antibodies. Dewaxing,
antigen epitope exposure, blocking, incubation with pri-
mary antibody, development of diaminobenzidine oxida-
tion color, hematoxylin staining, and dehydration were
automatically completed by the computer.

After the tissue was sliced, it was placed on Pannora-
mic MIDI tissue slice scanner (3DHISTECH Ltd.,
Budapest, Hungary), which simultaneously moved and
scanned the image, forming a file that contained all the
information on the tissue section. The file could be mag-
nified 1-400 times using the Pannoramic viewer soft-
ware, and the picture could be intercepted at any
location. The QuantCenter (3DHISTECH Ltd.) is an
analysis software that supports the Pannoramic viewer.
After image scanning is completed, the DensitoQuant
software in the QuantCenter automatically recognizes
and sets all dark brown areas on the tissue section as
strong positive, brown yellow as moderate positive, light
yellow as weak positive, and blue cell nucleus as nega-
tive. Furthermore, all strong-positive, moderate-positive,
weak-positive, and negative areas (in pixels); the percent-
age of positive areas; and the H-score (Immunohisto-
chemical score) were analyzed for each tissue [16].
According to the previous study, H-score = staining in-
tensity [negative (0), mild (+ 1), moderate (+2), intense
(+3)] * percentage (%) of positive stained cells [negative
(0), < 5% positive stained cells (+ 1), 5-20% cells positiv-
ity (+2), 21-50% cells positivity (+ 3), (>50% cells posi-
tivity (+4)]. All cases were divided into three groups
according to the extent of staining and H-score: negative
or weak-positive(H-score, 1 and 2), moderate-
positive(H- score,3,4 and 6), and strong-positive
groups(H-score,8,9 and 12) [17].

'8E_.FDG PET/CT acquisition and features extraction

The patients rested quietly for 60 min before PET/CT
(Discovery PET/CT 690; GE Healthcare, Chicago, IL,
USA) scanning. All CT and PET scans were acquired
with free breathing for attenuation correction and image
fusion. First, low-dose non-enhanced CT images were
acquired with a bulb voltage of 120kV, auto mA (30—
210 mA; noise index, 25), and slice thickness of 3.27
mm. Then, the PET data were acquired after CT scan-
ning using a three-dimensional acquisition mode at a
speed of 1.5 min/bed (7-8 beds in total) and a matrix
size of 192 x192. The time-of-flight and point-spread
function techniques were also used in the reconstruc-
tion. A volume of interest (VOI) of tumor was automat-
ically obtained on an AW4.5 workstation (GE
Healthcare) using a threshold of 42%SUVmax. The
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metabolic tumor volume (MTV), total lesion glycolysis
(TLG), and maximum (SUV,,.), mean (SUV,c.n), and
peak (SUVpea) standard uptake values were measured
automatically corrected with body weight inside the seg-
mented VOL

The VOI based on PET images was manually drawn
layer by layer around the cervical squamous cell carcin-
omas by two nuclear medicine physicians, who per-
formed the task independently. Both had more than 10
years of experience and were blinded to patients’ clinical
data. In order to ensure the stability of segmentation,
every nuclear medicine physician independently seg-
mented VOI of all images. Then, 40 VOIs of PET image
from two doctors were randomly selected to extract
radiomics features and calculate intraclass correlation
coefficient (ICC). In the end, the VOIs of one doctor
were randomly selected to be used for research. The
radiomics features were extracted from the PET images
using AK software (Artificial Intelligence Kit, GE Health-
care, Shanghai, China) [18].

Calculation of Radiomics score

All data analyses were processed with R version 3.5.1
(The R Foundation, Vienna, Austria). Data normalization
steps such as feature transformation and standardization
are needed for radiomics features due to the intrinsic
differences in the range, scale, and statistical distribu-
tions of these features [19]. All features were normalized
with the Z-score method.

To reduce overfitting of the machine learning model,
the least absolute shrinkage and selection operator
(LASSO) algorithm with 10-fold cross validation was
used to filter radiomics features [20]. The selected fea-
tures with non-zero coefficient were then linear com-
bined that were weighted by their respective coefficients
to build a radiomics signature, here we called radiomics
score (Rad-score).

Establishment of machine learning models

In the training dataset, logistic regression algorithm was
used to establish the machine learning model. Three
models were built separately to predict LVSI in the
training and testing datasets: the radiomics model, which
only included the Rad-score parameter to predict LVSI;
the protein model, which included COX-2 and TNC ex-
pression to predict LVSL and the combined model,
which included all selected parameters. In the testing
dataset, models were tested and evaluated
independently.

Statistical analysis

All statistical analyses were performed with SPSS version
25.0 (IBM Corp., Armonk, NY, USA) and R version
3.5.1. The Mann-Whitney U test is used for continuous
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variables, and the Pearson chi-square test is used for
non-continuous variables to evaluate the feature distri-
bution of the training dataset and the testing dataset.
Spearman correlation analysis of LVSI situation with im-
munohistochemical data and PET imaging features was
performed. Mann-Whitney U test was used to distin-
guish differences in PET features and protein expres-
sions between patients with early-stage cervical cancer
with (LVSI group) and without (non-LVSI group) in all
dataset. Multivariate logistic regression analysis was used
to predict LVSI in all patients.

Receiver operating characteristic (ROC) curve was
used to evaluate the performance of each machine learn-
ing model. Pairwise comparison of area under ROC
curves (AUC) was performed with DeLong test. All stat-
istical tests were performed with a two-tailed p <0.05
considered statistically significant.

Results

Baseline characteristics of patients

The patients’ characteristics are summarized in Table 1.
A total of 112 early-stage cervical cancer patients were
enrolled in this study as the whole cohort and 86 cases

Table 1 Patient characteristics
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were further distributed randomly to either the training
cohort or testing cohort. Twenty-six cases were used for
model validation. The training dataset included 61 pa-
tients with a median age of 50 years (range 33—74 years)
and the testing dataset had 25 patients with a median
age of 51 years (range 40-58 years). The external dataset
included 26 patients with a median age of 52 years
(range 40-74years). Thirty patients had LVSI in the
training dataset that was pathologically proven (30/61)
and 12 patients (12/25) in the testing dataset. There
were 15 patients with LVSI in the external dataset.
There was no significant difference of all characters be-
tween the training and testing dataset (Table 1).

Rad-score based on PET radiomics features

A total of 401 features were derived from the VOI of
primary tumor on PET images that included five con-
ventional features (SUVmax, SUVmean, SUVpeak, MTV
and TLG) and 396 radiomics features (42 histogram fea-
tures, 345 texture features, and 9 form factor features),
as shown in Fig. 1. In the training dataset, a total of 16
most informative features with non-zero coefficient
(Fig. 2) were reserved in the LASSO regression analysis

Characteristic Training dataset (N=61) Testing dataset (N=25) P value External dataset (N=26)
Age,median (range)years 50(33-74) 51(40-58) 0.970 52(40-74)
FIGO stage, No. (%)

la 18(29.50) 4(16.00) 5(19.23)

Ib 26(42.60) 10(40.00) 12(46.15)

lla 17(27.90) 11(44.00) 9(34.62)
Tumor grade, No. (%) 0.085

Well differentiate 14(23.00) 6(24.00) 6(23.08)

Moderately differentiate 29(47.50) 17(68.00) 15(57.69)

Poorly differentiate 18(29.50) 2(8.00) 5(19.23)
Depth of cervical stromal tumor invasion, No. (%) 0.605

21/2 43(70.50) 19(76.00) 21(80.77)

<1/2 18(29.50) 6(24.00) 5(19.23)
LVSI, No. (%) 0921

Yes 30(49.20) 12(48.00) 15(57.69)

No 31(50.80) 13(52.00) 11(42.31)
COX-2 expression No. (%) 0.400

Negative or Weak-Positive 28(45.90) 11(44.00) 11(42.31)

Moderate-Positive 22(36.10) 12(48.00) 10(38.46)

Strong-Positive 11(18.00) 2(8.00) 5(19.23)
TNC expression No. (%) 0.975

Negative or Weak-Positive 40(65.60) 17(68.00) 19 (73.08)

Moderate-Positive 16(26.20) 6(24.00) 6(23.08)

Strong-Positive 5(8.20) 2(8.00) 1(3.85)

FIGO International Federation of Gynecology and Obstetrics, LVS/ lymphovascular space invasion, COX-2 cyclooxygenase-2, TNC tenascin-C
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Fig. 1 A total of 401 features were extracted from PET images, which consist of conventional features (n=5), and 396 radiomics features
including histogram features (n = 42), form factor features (n =9) and texture features (n = 345)

when lambda chosen as 0.02(Fig. 3), which the binomial
deviance was minimum in the 10-fold cross validation.
So, the overfitting effect of machine learning model was
the lowest. The rad-score was calculated using following
formula:

Rad-score (PET) = -0.328xCorrelation_angle45_offset7 - 0.361
«InverseDifferenceMoment_angle45_offset4
-+ 0.291xHighIntensityLargeAreaEmphasis
-0.273+LowlIntensityEmphasis
-0.531«HaralickCorrelation_AllDirection_offset1 _SD
-0.47xInverseDifferenceMoment_AllDirection_offset7_SD
+ 0.499+HighGreyLevelRunEmphasis_AllDirection_offset4_SD
-0.335«ShortRunEmphasis_AllDirection_offset7_SD—-0.482
+LongRunHighGreyLevelEmphasis_AllDirection_offsetl1_SD
+ 0.415%Quantile0.025 - 0.626+ClusterProminence_angle45_offset7
+ 0.065*LongRunEmphasis_angle0_offset1
+ 0.63xInertia_angle45_offset4
+ 0.316xInverseDifferenceMoment_angle90_offset7
+ 0.507+ShortRunLowGreyLevelEmphasis_AllDirection_offset7_SD
+ -0.004+GLCMEnergy_AllDirection _offset7 - 0.075

Correlation of LVSI with PET features and molecular
protein expressions

The Spearman correlation analysis revealed a significant
correlation between LVSI and the Rad-score (r=0.631,
p<0.001) (Fig. 4). LVSI was also correlated to COX-2
and TNC expression (r=0.276, p=0.01, and r=0.333,
p =0.002, respectively). The other PET conventional pa-
rameters did not have significant correlation with LVSI
or protein expressions. TNC was correlated to both the

Rad-score (r=0.244, p=0.024) and COX-2 (r=0.227,
p =0.036).

Univariate analyses of the PET features and molecular
protein expression with LVSI

The results of the Mann-Whitney U test are summarized
in Table 2. The Rad-score, COX-2, and TNC significantly
differed between the LVSI and non-LVSI groups (p <
0.005). The LVSI group had a higher Rad-score than the
non-LVSI group (p < 0.001, Mann-Whitney U test) (Fig. 5).

Prediction of LVSI in the multivariate logistic regression
analysis

In the multivariate logistic regression analysis, only the
Rad-score and TNC were associated with LVSI in all pa-
tients with early-stage cervical cancer (Table 3).

Evaluation of the machine learning models
The ROC curve was used to evaluate the efficiency of
the machine learning models. In the training dataset,
three models all performed well in predicting LVSI
(Table 4). The radiomics model had the best predictive
performance among the models (AUC = 0.914; 95% con-
fidence interval, CI, 0.814—0.970; p < 0.001) in the train-
ing dataset. The combined model had high sensitivity in
predicting LVSI in the training dataset (sensitivity = 1.0;
specificity = 0.64; p < 0.001) (Fig. 6).

However, in the testing dataset, the combination of
radiomics, COX-2, and TNC for predicting LVSI had
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Fig. 2 The least absolute shrinkage and selection operator was used to select informative features. When lambda was 0.02 in the 10-fold cross
validation, the binomial deviance had the minimum number

better efficiency than the other models (AUCs: 0.801 vs.
0.756 and 0.801 vs. 0.631, respectively; sensitivity = 0.67;
specificity = 1.00). The performance of the protein model
was not statistically significant (AUC =0.631, p = 0.238)
(Fig. 7).

The results of evaluating for all models in the external
dataset were shown in the Table 4. In the external data-
set, the radiomics model had the best performance for
predicting LVSI (AUC =0.806, p <0.001) (Fig. 8). How-
ever, the specificity of combined model was best of all
models in the external dataset.

Pairwise comparison of the ROC curves of the models

In the training dataset, the AUC of the ROC of the com-
bined model was better than that of the protein model.
Furthermore, the radiomics model provided better pre-
diction performance than the protein model (Table 5).
However, in the testing and external dataset, the result
of the DeLong test showed that the AUC of ROC curves

of the three models were not significantly different(p >
0.05) (Tables 6 and 7).

Reproducibility of tumor segmentation

The ICC was used to evaluate the reproducibility of
tumor segmentation on PET images. The result of ICC
analysis was shown in the histogram (Fig. 9). The histo-
gram showed that the ICC value of 176 radiomics fea-
tures was higher than 0.75(p < 0.05).

Discussion

According to the 2018 FIGO criteria [15], surgery is the
primary treatment for patients with early-stage squa-
mous cervical carcinoma. LVSI has an important influ-
ence on surgery and patient prognosis according to the
FIGO criteria [15]. Although most patients have excel-
lent prognosis, approximately 30% patients might have
recurrence and decreased survival rate [21]. Many stud-
ies have proven that LVSI is closely associated with
prognosis and is an independent risk factor [2—4, 6, 7].
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The expression of some proteins, including COX-2,
TNC, and others, are related to LVSI, tumor microenvir-
onment, and inflammation [11, 12, 22]. Hence, accurate
and early assessment of LVSI is important in prognosis
assessment and treatment decision making in order to

ensure that patients can obtain the maximum treatment
benefit.

Our study aimed to establish a machine learning
model that combines radiomics derived from PET im-
ages with molecular proteins that are associated with the
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Table 2 Differences between the LVSI and non-LVSI groups in all dataset

Variable COX-2 TNC SUV hax TLG SUVpeak Rad-score (PET)
Mann-Whitney U 594.000 517.000 877.500 896.000 894.500 251.000
Wilcoxon W 1584.000 1507.000 1867.500 1886.00 1884.500 1241.000

z —-3.096 —3.886 -0402 —0.242 —-0.255 —-5814

p 0.002 <0.001 0.688 0.809 0.799 <0.001

Mann-Whitney U test was used to distinguish differences between the LVSI and non-LVSI groups
COX-2 cyclooxygenase-2, TNC tenascin-C, SUVymax maximum of the standard uptake value, TLG total lesion glycolysis, SUV,eax peak standard uptake value, Rad-score

(PET) radiomics score derived from positron emission tomography imaging

pathology of cervical cancer in order to predict LVSI in
patients with early-stage cervical cancer. The results in-
dicate that the Rad-score was closely correlated with
LVSI, and there were statistically significant differences
in COX-2, TNC, and the Rad-score between the LVSI
and non-LVSI groups. Moreover, we determined that
the model based on the Rad-score could predict LVSI.
When the Rad-score and molecular protein expression
were combined, the AUC of the model improved a bit in
the testing dataset, but the DeLong test showed no stat-
ically significant difference between the two models in
the testing dataset.

Malignant tumors exhibit intratumoral biological het-
erogeneity and lead to changes in the texture parameters
of the corresponding primary tumor on PET images. A
previous study determined that heterogenic FDG uptake
within a tumor correlated with intratumoral histopatho-
logical appearance [23]. Several researches proved that
the texture information of tumors reflected the tumors’
heterogeneity [24, 25]. The selected radiomics features

8.0
6.0

40

T

Rad-score

45

17
-4.0 °

Non-LVSI LVSI

Group

Fig. 5 The Rad-score of patients with LVSI was significantly higher
than those without LVSI. Rad-score (PET), radiomics score derived
from positron emission tomography imaging

of our study were also texture parameters of PET image.
Mu et al. [26] found that inverse difference moment and
correlation showed statistically significant differences be-
tween the early (stages I and II) and advanced stages
(stages III and IV) of cervical cancer. Similarly, inverse
difference moment and correlation were selected to cal-
culate the Rad-score for predicting LVSI in our study.
Recently, Li et al. [18] study showed that the PET tex-
tures of primary tumor could predict lymphatic metasta-
sis in early-stage cervical carcinoma (AUC =0.757 in the
validation dataset; 95% CI, 0.545-0.904; p < 0.05). Other
research have also shown that radiomics of primary
tumor based on PET images could reflect tumor malig-
nancy and were associated with nodal metastases and
molecular subtypes of solid tumor [27, 28]. The Rad-
score [29], which is calculated by the linear combination
of selected features (including histogram and texture pa-
rameters) weighted by their respective coefficients se-
lected as informative features, is usually used for
radiomics analysis. In the present study, the Mann-
Whitney U test showed that the Rad-score and TNC
had significant differences between the LVSI and non-
LVSI in all datasets, and the LVSI group had a higher
Rad-score than the non-LVSI group in Fig. 5.

A previous research found that the molecular expres-
sion of some proteins was correlated with LVSI. Normal
cervical tissues have weak expression of TNC and COX-
2. Previously, Pilch et al. [13] determined that, in inva-
sive cervical carcinoma, TNC expression was markedly
increased. Other studies have proven that TNC has a
significant role in tumor growth, migration, metastasis,
angiogenesis, and stromal inflammation [14, 30, 31]. The
study of Liu et al. [11] found that COX-2 expression was
associated with lymphangiogenesis and lymph node

Table 3 Multivariate logistic regression analysis

Variable Coefficient SE Wald p

TNC 1.36497 045012 9.1958 0.0024
Rad-score (PET) 1.20806 030471 15.7186 0.0001
Constant —0.88808 0.38653 5.2789 0.0216

SE standard error, TNC tenascin-C, Rad-score (PET) radiomics score derived from
positron emission tomography imaging
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Fig. 6 Receiver operating characteristics curves of the radiomics,
proteins, and combined models in the training dataset. Blue curve,
radiomics model; red curve, protein model; yellow curve,
combined model

metastasis in cervical cancer. Similarly, Hoellen et al
[12] proved that COX-2 expression was significantly as-
sociated with LVSI (p =0.017). Similarly, our study also
found that the differences in COX-2 and TNC between
the LVSI and non-LVSI groups were statically

| /
I [
- ]
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=
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20—
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Fig. 8 Receiver operating characteristics curves of the radiomics,
protein, and combined models in the external dataset. Blue curve,
radiomics model; red curve, protein model; yellow curve, combined
model. The area of ROC curve of radiomics model was better than

the others’ area

significant. In the multivariate logistic regression, TNC
expression was associated with LVSI. Furthermore,
COX-2 had a slight correlation with TNC (Fig. 4). We
hypothesized that the result may be caused by the in-
flammatory microenvironment of the tumor. Liu et al
[11] demonstrated that COX-2 may promote cancer
progression and metastasis by enhancing the expression
of vascular endothelial growth factor C and other mech-
anisms. The research showed that TNC could also facili-
tate the formation of cancer stroma, including
desmoplasia and angiogenesis, and enhanced inflamma-
tion in the cancer stroma may augment macrophage re-
cruitment and secretion of tumor-promoting and

radiomics model; red curve, protein model; yellow curve,
combined model

s inflammatory cytokines by macrophages and fibroblasts
=T [14]. Thus, TNC and COX-2 were selected to predict
g | LVSI in cervical cancer.
) . . S
40l Although some protein expression and radiomics were
I associated with LVSI in cervical carcinoma, the
20— Table 5 DelLong test of ROC curve of models in the training
| —_ radiomics model dataset
L — protain’ model Pairwise comparison of ROC  Difference between Z p
combined model
Y w AT BT P PRI R curves areas
0 20 40 60 80 100 Radiomics and protein models ~ 0.158 2196 0028
100-Specificit
pectiely Radiomics and combined 0,008 0619 0536
Fig. 7 Receiver operating characteristics curves of the radiomics, models
protein, and combined models in the testing dataset. Blue curve, Protein and combined models  0.149 2317 0021°

ROC receiver operating characteristics
*Statistically significant, p < 0.05
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Table 6 Delong test of ROC curve of models in the testing

dataset

Pairwise comparison of ROC Difference between Y4 P
curves areas

Radiomics and protein models  0.125 0.794 0427
Radiomics and combined 0.045 1.265 0.206
models

Protein and combined models ~ 0.170 1.192 0.233

ROC receiver operating characteristics

correlation of molecular proteins and radiomics has
been rarely explored and confirmed. In our study, the
Rad-score was correlated with TNC, according to the
Spearman correlation analysis (Fig. 4). Thus, we assumed
that the PET imaging textures of primary tumors chan-
ged through TNC and other proteins. The textures of
primary tumor reflect the heterogeneity of tumor, and
they could be used to predict LVSI in cervical carcin-
oma. Another research also hoped to utilize the expres-
sion of TNC on PET imaging by devising a new PET
tracer [32]. However, our result initially showed that
radiomics derived from PET imaging provided a new
possibility for non-invasive visualization of TNC expres-
sion. Song et al. [33] also found that the image signal
changes on magnetic resonance imaging (MRI) were
consistent with TNC expression, and cervical cancer tis-
sues with node metastasis had the highest TNC
expression.

Three machine learning models were established with
logistic regression algorithm in the training dataset and
evaluated in the testing dataset. All three models per-
formed well in the training dataset (Table 4), but the
radiomics model had the highest AUC in the training
and external dataset (Figs. 6 and 8). However, in the
testing dataset, the AUC value of the combined model
was higher than that of the other models (Table 4). The
reason for the results was that our dataset was slightly
smaller. Thus, we used all datasets to perform the multi-
variate logistic regression analysis (Table 3). The results
also showed that the Rad-score and TNC were associ-
ated with LVSI in all datasets. Two different methods
(statistics and machine learning) both confirmed that
the combination of radiomics and TNC could predict
LVSI in early-stage cervical cancer. In the external data-
set, the combined model for predicting LVSI was also

Table 7 Delong test of ROC curve of models in the external
dataset

Pairwise comparison of ROC  Difference between  Z p
curves areas

Radiomics and protein models ~ 0.303 1.943 0.052
Radiomics and combined 0.024 0918 0358
models

Protein and combined models 0.279 1.640 0.101
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credible and the specificity of combined model was
100%. But the AUC of radiomics model was the best
among three models in the external dataset. The DeLong
test also indicated that the AUC of the ROC of the com-
bined model was better than that of the protein model
in the training dataset (Table 5). Previously, a few re-
searchers also wanted to predict or distinguish LVSI
through radiology for cervical cancer. Yang et al. [34]
determined found that the minimum apparent diffusion
coefficient and the minimum apparent diffusion coefti-
cient ratio were significantly lower in LVI-positive inva-
sive cervical cancer than in LVI-negative invasive
cervical cancer (0.772 + 0.062 vs. 0.917 + 0.052, p < 0.001,
and 0.712+0.078 x 10" > vs. 0.867 +0.099 x 10~ > mm?/s,
p<0.001, respectively). Gross tumor volume [35] on
MRI was also identified to be a possible independent risk
factor for predicting LVSI (AUC =0.700, p < 0.05). Re-
cently, the use of radiomics based on magnetic reson-
ance for predicting LVSI has been studied. According to
Hua et al. [36], the model based on multiparametric
MRI showed the best prediction results, with an AUC of
0.842 (95% CI, 0.772—0.913; sensitivity = 0.773; specifi-
city =0.776) in the training cohort and 0.775 (95% CI,
0.637-0.912; sensitivity = 0.739; specificity = 0.667) in the
validation cohort. Similarly, Li et al. [37] also found that
the radiomics nomogram derived from MRI showed fa-
vorable discrimination between LVSI and non-LVSI
groups, with an AUC of 0.754 (95% CI, 0.6326—0.8745)
in the training cohort and 0.727 (95% CI, 0.5449-
0.9097) in the validation cohort. We initially used the
combination of PET radiomics with protein molecule to
predict LVSI, which showed that the radiomics and
combined models based on 'SF-FDG PET imaging
showed better results than those of previous studies.

For patients with early-stage cervical cancer, when
LVSI is evident, pelvic lymphadenectomy should be con-
sidered, along with modified radical hysterectomy ac-
cording to the FIGO criteria [15]. However, pelvic
lymphadenectomy may cause a series of postoperative
complications including lower limb lymphedema, blad-
der dysfunction and others [38—40]. Combined model
and radiomics model of our search could predict LVSI
with PET image and histological data before surgical
treatment. When the machine learning model predicts
that LVSI is negative, patients are likely to avoid being
subjected to pelvic lymphadenectomy. Individualized
medical treatment with radiomics can improve the post-
operative life quality of patients.

However, this study has some limitations. First, the
size of the dataset was inadequate; thus, we need a larger
number of dataset to test our models as well as multi-
center imaging data to evaluate reproducibility. Second,
we only analyzed the association of the expression of
TNC and COX-2 with LVSL In the future, we hope to



Li et al. BMC Cancer (2021) 21:866

Page 12 of 13

20 30 40 50
| |

Numbers of Features

10
|

22

f T T
0.0 0.2 0.4

T T 1
0.6 0.8 1.0
ICC

Fig. 9 The histogram showed the ICC value of radiomics features. The ICC value of 176 radiomics features was higher than 0.75 (p < 0.05)

perform more protein analyses and explore the correl-
ation of DNA with LVSI and the function of radioge-
nomics in order to predict LVSL Finally, the PET image
resolution was low, thus limiting the precision of the
segment of tumor VOI as well as the extraction of the
radiomics features.

Conclusion

The results of this study indicated that LVSI in patients
with early-stage cervical cancer can be predicted by
radiomics derived from PET imaging. The machine
learning model that combines PET-based radiomics with
COX-2 and TNC provides a new tool for detecting
LVSI. The combined model improved prediction accur-
acy. In addition, the Rad-score derived from PET image
textures is associated with TNC expression. In the fu-
ture, the models of this study needs to be tested by a lar-
ger number of patients in multiple centers so that it can
be used in clinical treatment.
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