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Abstract

Purpose of the review: Coronary artery disease (CAD) is a common disease globally 

attributable to the interplay of complex genetic and lifestyle factors. Here, we review how genomic 

sequencing advances have broadened the fundamental understanding of the monogenic and 

polygenic contributions to CAD and how these insights can be utilized, in part by creating 

polygenic risk estimates, for improved disease risk stratification at the individual patient level.

Recent Findings: Initial studies linking premature CAD with rare familial cases of elevated 

blood lipids highlighted high-risk monogenic contributions, predominantly presenting as familial 

hypercholesterolemia (FH). More commonly CAD genetic risk is a function of multiple, higher 

frequency variants each imparting lower magnitude of risk, which can be combined to form 

polygenic risk scores (PRS) conveying significant risk to individuals at the extremes. However, 

gaps remain in clinical validation of PRSs, most notably in non-European populations.

Summary: With improved and more broadly utilized genomic sequencing technologies, the 

genetic underpinnings of coronary artery disease are being unraveled. As a result, polygenic risk 

estimation is poised to become a widely used and powerful tool in the clinical setting. While the 

use of PRSs to augment current clinical risk stratification for optimization of cardiovascular 

disease risk by lifestyle change or therapeutic targeting is promising, we await adequately 

powered, prospective studies, demonstrating the clinical utility of polygenic risk estimation in 

practice.
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INTRODUCTION

The tools available to address and optimize preventative strategies and medical therapies for 

emergent and lifechanging cardiovascular events have greatly improved over time. Yet, 

while the number of deaths and burden of disease due to coronary artery disease (CAD) has 

decreased dramatically in the past few decades it remains the number one cause of death in 

the United States and worldwide[1]. The global prevalence of coronary heart disease (CHD) 

is estimated at 197.2 million individuals (20.1 million for US in 2018) and this disease 

accounted for 9.1 million annual deaths. In the US alone, 8.3% of men and 6.2% women are 

living with CHD with 720,000 individuals with new events and 335,000 individuals with 

recurrent events each year[1]. Gaps in preventative strategies exist not only in structuring 

care delivery across oftentimes disconnected healthcare and societal systems, but also in our 

identification and understanding of the most prescient signals that may act as early warning 

signs for acute events or indicate a higher lifetime (long-term) risk of disease for an 

individual for which appropriate actions should be taken.

Advances in data science have been vital to unveiling the factors related to early disease risk 

and prevention [2]. For CAD there has been great interest in understanding how genetics can 

augment existing risk stratification tools. Insights into the biologic pathways and intricate 

networks involved in the development and progression of CAD gained from the discovery of 

individual genes has been expertly reviewed in the past [3–5]. Here, we aim to review how 

genomic sequencing advances and modeling have improved our fundamental understanding 

of CAD and has set the stage for an exciting future in improved risk stratification aligned 

with the promise of personalized preventive medicine.

Coronary Artery Disease and Clinical Risk

Coronary artery disease (CAD) results from the complex interplay of a person’s individual 

environmental, lifestyle and genetic factors. CAD is the accumulation of atherosclerotic 

plaque within the arteries that supply the heart muscle with oxygen and nutrient rich blood 

that it requires for optimal sustained function. Symptoms of CAD manifest when the 

obstruction to blood flow created by a plaque exceeds the myocardial energy demands. This 

can occur incrementally over a period of time (months to years) eventually leading to chest 

pain (angina) or shortness of breath on exertion when that supply-demand mismatch 

threshold is achieved or can progress rapidly and unpredictably as in the case of unstable 

plaque rupture resulting in an acute heart attack.

Disruptions to multiple pathways of healthy cellular and physiologic homeostasis created by 

a person’s risk factors are responsible for initial plaque formation and propagation. Co-

morbid disease risks such as elevated blood pressure, dyslipidemia, diabetes mellitus, 

chronic kidney disease and chronic inflammatory conditions such as rheumatoid arthritis and 

systemic lupus erythematosus are well established. Additionally, lifestyle practices including 

sedentary behavior, cigarette smoking, stress and unhealthy diet have also been implicated in 

the development of CAD. For patients, these modifiable risk factors have been included in 

an effort by the American Heart Association known as “Life’s Simple 7” to serve as a 

general guidepost for patients to achieve optimal cardiovascular health in the areas of 

smoking cessation, blood pressure control, lipid management, blood glucose control, healthy 
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diet and body weight, and physical activity [1]. The tools that medical professionals utilize, 

mainly to determine the need or intensity of statin therapy, are typically more granular. 

These include, but are not limited to, the AHA/ACC Atherosclerotic Cardiovascular Disease 

(ASCVD) Pooled Cohort Equations, Framingham Risk Score – Cardiovascular Disease 

(FRS-CVD), and QRISK2 risk assessment tools which delineate 10-year risk for disease and 

adverse events based on inputs of age, sex, ethnicity, blood pressure, cholesterol levels, as 

well as smoking and diabetes status [6, 7]. While the QRISK2 assessment tool models for 

disease in 1st degree relatives < 60 years of age, the most used tools do not account for some 

of the most important factors – the genetic contribution to coronary disease. As such, in 

using the current risk stratification tools the individual genetic environments in which these 

clinical risk factors exist and which also likely influence are not considered, and the promise 

of individualized risk factor optimization is not fully actualized.

Heritability of CAD

The positive relationship between a family history for CAD has long been recognized 

through various epidemiologic studies and thus hinting at a genetic component and 

heritability for this disease separate [8]. Heritability can be thought of as the amount of 

variation in the disease phenotype resulting purely form genetic effects[9]. Twin studies have 

been helpful in the understanding of heritability as related to CAD. Results from the 

Swedish Twins Registry, following 21,004 monozygotic or dizygotic Swedish twins, clearly 

illustrated the link between genetics and premature CAD [10]. Here, monozygotic male 

twins had an odds ratio for death of 8.1, and 3.8 for dizygotic twins, if one twin died of CAD 

prior to reaching 55 years of age. The increased risk for death decreased as the age of the 

index case advanced in age. The Framingham Offspring Study, as part of the landmark 

Framingham Heart Study, further demonstrated that family history, beyond twins, as related 

to parental history of premature CAD is an independent and prospective risk factor for the 

future development of CAD [11]. In this study of 2,302 offspring of participants there was ~ 

2 times the risk of adverse cardiovascular events (using multivariable adjustment including 

age) for the sons and daughters of parents who had experienced premature CAD. Adding 

family history to overall risk assessment was independent of existing lifestyle and clinical 

factors.

Soon the underpinnings of family history and our understanding of the molecular basis of 

CAD and influences of specific gene mutations and variants expanded. This occurred as our 

ability to probe the human genome progressed from classic Sanger sequencing, which is 

limited in scale and read length, to DNA microarrays, which enabled large-scale genome-

wide association studies (GWAS), and finally to high-throughput next-generation 

sequencing [12]. Through these technological advances the link between our genes and 

biology ushered in a new era of genomic medicine for primary risk prediction, disease 

diagnosis and prognostication, and therapeutic targeting and discovery.

The influence of genetics on a person’s risk of developing a disease exists along a 

spectrum[9]. There are specific single-gene mutations that are highly penetrant that alter the 

function of the encoded product to such degree that disease is of the highest likelihood, such 

as in the case of LDLR mutations, encoding low-density lipoprotein receptor, in the 
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development of familial hypercholesterolemia (FH). These are termed monogenic diseases 

as the disease is the result of just a single gene mutation. Monogenic diseases are typically 

rare. However, common complex diseases like coronary artery disease are most often the 

result of the cumulative effects of multiple gene variants each with a small individual effect 

but that in concert may exert higher genetic risk of disease. These are aptly named polygenic 

diseases. CAD has both monogenic and polygenic origins (Figure 1). In the case of 

polygenic CAD, it is thought that genetics explains in the range of 50% of an average 

individual’s overall risk of disease, with the other half attributed to lifestyle and 

environment, though significant gaps remain in the accounting for the entirety of the genetic 

contribution.

Familial Hypercholesterolemia and Monogenic Contributors to CAD

One of the most common genetic diseases in mankind, and the main monogenic driver of 

CAD, is familial hypercholesterolemia (FH) [13]. FH is typically an autosomal dominant 

disease that leads to massively elevated levels of low-density lipoprotein (LDL) cholesterol 

and results in increased risk of premature CAD and myocardial infarction (men < 55 years, 

women < 60 years). Strikingly, if left untreated 50% of men and 15% of women with FH 

will succumb to this disease in their early years[14]. Heterozygous FH – which results from 

carrying a defect in only one allele - is far more common (~1:250 persons) though 

presenting with a less severe phenotype, while homozygous FH is rare (1:150,000–300,000 

persons) and can present dramatically with heart disease at very early ages [15, 16]. Patients 

were first diagnosed with FH based on laboratory values, family history and physical exam 

findings of cholesterol deposits in several tissues - tendon xanthomas, eyelid or skin 

xanthelasmata and arcus cornealis. It wasn’t until the LDL receptor (LDLR) from a patient 

with FH was sequenced in 1,985 showing a large deletion that the first insights into the 

molecular defects responsible for this disease were made known [17]. The disruption in 

receptor-mediated clearance as well as additional mechanisms leading to elevations in LDL 

cholesterol in FH have been elegantly reviewed elsewhere [18].

Known pathogenic mutations within LDLR now number over a thousand and account for the 

vast majority of FH cases (~95%). Shortly after the report of the LDLR truncation mutant, 

mutations in APOB effecting apolipoprotein-B100 and leading to defective binding of LDL 

to LDLR and elevated cholesterol in six unrelated individuals were described [19]. There are 

currently over 30 individual mutations within APOB identified in FH though account for 

roughly 5% of the disease [20]. Gain-of-function mutations in proprotein convertase 

subtilisin/kexin type 9 (PCSK9) responsible for FH were later identified from positional 

cloning in 23 French families [21]. Mutations in PCSK9 however are rare and account for 

less than 1% of FH. The discovery of PCSK9’s role in cholesterol metabolism through well-

designed family studies illustrating both gain-of-function and loss-of-function variants and 

subsequently leading to an entirely new class of hypolipidemic agents has been heralded as a 

pivotal moment in translational medicine – moving from bedside to benchtop [22]. Several 

other genes have been implicated in monogenic cholesterol disorders culminating in 

premature CAD including LDLRAP1 (LDL receptor adapter protein), APOE 
(apolipoprotein E), STAP1 (signal-transducing adapter protein 1), ABCG5 (sterolin 1), and 

ABCG8 (sterolin 2)[23–26]. The identification of causal mutations in individuals with 
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suspected FH is critical for downstream cascade testing of family members as well as for 

determination of the timing and intensity of therapeutics[13, 27]. As sequencing efforts 

continue in large, multi-ethnic populations additional causal mutations in other genes are 

expected and multiple genes (polygenic hypercholesterolemia) are estimated to account for 

~15% of this disease [28].

Given the profound increased risk for adverse cardiovascular outcomes for individuals with 

FH and the beneficial impact of start lipid-lowering therapy in these patients, identifying 

affected individuals and cascade testing of relatives is increasingly important[29]. 

Unfortunately, if relaying solely on clinical factors, many cases of FH go undetected and 

undiagnosed. A study of 50,726 patients with linked electronic health records and exome 

sequencing data found that only 24% of carriers for FH mutations would have been flagged 

for as FH based on current clinical criteria for probable of definite diagnosis [30]. 

Implementing standardized genetic testing in affected individuals and their family members 

as was done in an Estonian population has been shown to increase the diagnosis of FH and 

successfully guide them to initiating appropriate treatment[31]. As such, a recent Expert 

Consensus Panel recommended genetic testing for casual mutations in LDLR, APOB and 

PCSK9 in individuals with known or probable FH with subsequent cascade testing of family 

members[32].

The Polygenic Nature of Coronary Artery Disease

Unlike monogenic Mendelian diseases, the majority of CAD within the population is 

influenced by polygenic inheritance attributed to numerous common and rare variants with 

small effects throughout the genome [5]. As DNA sequencing technologies and analytic 

platforms improved, and in-turn became more cost-effective and scalable, research efforts 

using genomics broadened greatly and expanded in size. This enabled the proliferation of 

GWAS [33]. GWAS is an experimental design that is aimed at identifying relationships 

between traits or diseases with DNA variants and whose power to do so improves with 

increasing sample size. The first GWAS in CAD was reported simultaneously by three 

independent groups in 2007 and identified a region on chromosome 9p21 associated with 

CAD [34–36]. Taken together these three reports included over 11,000 individuals as cases 

with CAD and 37,000 individuals as controls without heart disease for discovery and 

validation. Despite these impressive numbers, the population studied was predominantly of 

European ancestry. Interestingly, the variants at 9p21 are found in a region that does not 

encode for a specific protein product or regulatory region and set off a hunt for what biologic 

role the variant could play to increase the risk of CAD by ~50% for persons with 2 copies of 

the risk block. While the definitive role of 9p21 in CAD is controversial, this risk region is 

known to act in vascular smooth muscle cells via increased expression of the long non-

coding RNA ANRIL leading to altered cell adhesion, contraction and proliferation 

associated with CAD and other 9p21 associated disease phenotypes [37].

Based on the clinically observed phenotypic relationships between dyslipidemias and CAD, 

the next wave of studies assessed for genetic associations not only to CAD but also to lipid 

traits using a variety of approaches. Several GWAS increasingly identified and validated the 

significance of a growing number of variants including SORT1, LPA, MRAS, PHACTR1 

Muse et al. Page 5

Curr Cardiol Rep. Author manuscript; available in PMC 2022 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and novel variants within genes already known to be involved in the disease process such as 

LDLR and PCSK9 [38–43]. Interestingly, results from a mendelian randomization study 

illustrated a disconnect between genetic mechanisms that increase circulating HDL and any 

protective effect for myocardial infarction a presage for the lack of benefit observed in 

forthcoming clinical trials focused on therapies raising HDL [44]. However, several studies 

used whole-genome or exome sequencing to identify rare and low-frequency variants 

effecting non-LDL pathways that highlight the role of triglycerides in the development of 

CAD[45–49]. Though despite these well-designed studies in select populations the portion 

of disease potentially explained by the collection of risk variants remained low and each 

newly discovered variant only imparting small risk increase over that seen in control 

populations.

Understanding the strength in GWAS and ability to identify variants of interest with 

genome-wide significance comes in part with larger sample sizes and increasing diversity, 

new consortiums were formed to combine their data sets into meta-analysis. From these 

efforts came nearly 20 additional novel associated variants with CAD plus independent 

validation of previously associated variants [50, 51]. In 2013 taking this even further with 

the inclusion of 63,746 CAD cases and 130,681 controls, the largest CAD GWAS meta-

analysis performed up to that time reported an additional 15 loci associated with CAD 

(bringing total number of observed loci associated with CAD to 46) [52]. Given that less 

than half of these variants (17 of 46) were known to be involved in pathways related to blood 

pressure and blood lipids, these data further supported the impact of genomics on CAD risk 

even outside of traditional clinical risk factors and helped broaden the understanding of the 

complex biology of CAD. The success of these early meta-GWAS in CAD risk variant 

discovery and validation and the entry of new datasets, namely the UK Biobank, soon grew 

the number of CAD associated variants to more than 160 independent loci [53–57]. Most 

recently, combining an additional 25,892 CAD cases and 142,336 controls from a Japanese 

population in a trans-ancestry meta-analysis of existing CAD cohorts from 

CARDIoGRAMplusC4D and UK Biobank, an additional 40 new loci associated with CAD 

were identified[58]. Though, the addition of these 40 new loci only increased the known 

heritability of CAD by 1.12%.

Development of Polygenic Risk Scores for CAD

In an effort to utilize the combined disease risk associations of the newly appreciated genetic 

variants discovered from GWAS and other studies discussed above, the use of polygenic risk 

scores for CAD (CAD PRS) became increasingly popular (Table 1). A PRS is created by the 

weighted sum of detected risk loci and aims to quantify an individuals’ underlying genetic 

predisposition to disease [9, 59]. PRSs have been developed and shown clinical utility for 

various diseases such as atrial fibrillation, diabetes mellitus, breast cancer and prostate 

cancer[60, 61]. The CAD PRS emerged as a promising genetic CAD metric with personal 

and clinical utility especially given the shortcomings of traditional risk assessment tools that 

do not account or any genetic contribution to disease [62, 63]. Initiated by early efforts of 

CAD GWASs, geneticists derived the prototype of CAD PRSs with dozens of common 

variants, explaining ~10% of heritability overall [51, 52]. Initial CAD PRSs utilized limited 

variants and the work focused on specific populations, mainly of European ancestry, but 

Muse et al. Page 6

Curr Cardiol Rep. Author manuscript; available in PMC 2022 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



despite only modest gains in risk prediction, the association of CAD PRS with adverse 

cardiovascular events showed promise[64, 65]. Despite the moderate statistical power due to 

limited cohort size and the use of a genotyping array targeting pre-selected loci, the re-

analysis of statin prevention trials illustrated the value of CAD-PRSs with 27 or 57 SNPs as 

an orthogonal predictor capable to stratify high-risk group with greater benefit from 

initiation of statin therapy and adherence to a favorable lifestyle practices [66–69].

With the ever-increasing efficiency of DNA sequencers, genotyping technology, and 

statistical genetics techniques, as well as investment in national biobanks of genotypic and 

phenotypic information, the development of more complex genetic risk models is now 

possible. The development of many of these large (100,000+ individuals) datasets and 

prediction models rely upon imputation, which allows for the inference of whole genome 

genotypes for common genetic variation from an initially sparse genotyping assay. While 

these statistical techniques are mature and accurate, they can lead to bias in application 

across disparate genetic ancestry. With this in mind, Inouye et al. developed a genomic risk 

score (metaGRSCAD) by meta-analysis to model variant effect sizes (with 1.7M variants), 

improving to explain up to 26% of CAD heritability [70]. Alternatively, Khera et al. utilized 

a Bayesian framework to comprise a genome-wide polygenic score (GPSCAD) with 6.6M 

variants, estimating variant effect sizes with linkage disequilibrium (LD) adjustment [61]. 

As a complement to conventional risk factors, both PRSs were validated to predict the fold 

change of disease susceptibility, stratify individuals with different trajectories of risk, and 

inform tailored therapeutic intervention in independent datasets or clinical trials [71–77]. 

Although not unexpected given the multiple shared biologic pathways across diseases, the 

use of CAD PRSs even extends outside of strict coronary disease events alone as there are 

independent associations with peripheral arterial disease, aortic aneurysm, stroke and carotid 

artery disease as well [78, 79].

The Clinical Utility of Polygenic Risk Scores

While the ability to stratify future disease risk on a population level based on CAD PRS has 

been well established with several groups illustrating improved risk stratification and net 

reclassification in large datasets, there does remain a healthy debate about if it is time and 

how best to integrate a CAD PRS into clinical practice[80–85]. Accordingly, current 

guidelines for the prevention of cardiovascular disease from professional societies in the US 

and Europe lack the inclusion of CAD PRS [70]. This could be due to the absence of 

convincing outcome data from large-scale, multi-ethnic, prospective studies incorporating 

CAD PRS into risk optimization and therapeutic guidance strategies. When used 

prospectively in small sized, limited scope studies, CAD PRS may lead to increased use of 

statin therapy but inconclusive improvements in diet and exercise[86, 87]. Though, as has 

been recognized in other studies delivering genomic information to patients, the knowledge 

of genetic risk did not increase personal health anxieties. Rather than instilling fear of 

disease in a patient, CAD PRS has the opportunity to provide a patient with an important 

orthogonal risk enhancer, similar to the role of coronary artery calcium (CAC), to motivate 

and empower healthy lifestyle and optimal medical therapies. We have seen that individuals 

with high CAD PRS achieve the largest risk reduction on statin therapy for both primary and 

secondary prevention compared to persons with low CAD PRS risk, significantly lowering 
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the number needed to treat, and lifestyle remains an incredibly vital component of lowering 

event risk over time[66, 67]. The relative risk reduction with statin therapy in low versus 

high CAD PRS individuals was 34% vs 50% for primary prevention and 3% vs 47% for 

secondary prevention[67]. Individuals are not destined for disease just because they have a 

high CAD PRS.

Apart from somatic mutations that accumulate with age and environment and are known to 

drive certain cancer risks and sometimes risk for CAD, our genetic risk for CAD is largely 

set from birth. Unlike traditional clinical risk stratification tools based on age and chronic 

conditions such as hypertension and metabolic disease that may not manifest until mid or 

late life, a person will know their CAD PRS from the first day of life[75]. Even in the 

absence of traditional risk factors a lifetime risk of CAD can be established early with the 

use of CAD PRS. Incorporating this concept, recent work suggested that CAD PRS could be 

used in concert with widely used CAC testing to help establish the optimal time of first CAC 

screening based on tiers of CAD PRS[88, 89]. Additionally, a CAD PRS appears to act as a 

potentiometer for monogenic CVD either dialing up or dialing down the combined impact 

for disease[90].

Mirroring the improvements on CAD relative risk reduction that high CAD PRS has with 

statin therapy, recent analysis of landmark secondary prevention trials, ODYSSEY and 

FOURIER, with PCSK9 inhibitor therapy illustrated that these therapies had the greatest 

benefit for individuals with elevated genetic risk [72, 76]. In these studies, the relative risk 

reduction for clinical events in low versus high CAD PRS groups was 13% vs 31% 

(ODYSSEY) and 13% vs 37% (FOURIER). This is on top of high intensity statin therapy 

for which 70% of patients in FOURIER and 90% of patients in ODYSSEY were already 

taking.

Though lacking prospective validation, in this era of higher cost for novel therapies CAD 

PRS may prove key to matching the right patients with the most cost-effective therapies to 

achieve the greatest individualized benefit. While the promise of incorporating CAD PRS 

into clinical pathways is strong, the impact of CAD PRS is not fully understood as it does 

appear to have variation across sex, certain risk factors such as cigarette smoking, and most 

importantly, across ethnicities[91–94].

The Performance of Polygenic Risk Scores Across Ethnicities

Recent studies urged a significant attenuation of cross-population prediction accuracy to 

hamper the utility of CAD PRSs [73, 93]. Most of the studies predominantly conducted with 

European-decent population and heavily underrepresented the global demographic diversity 

or human evolutionary history [95]. The current Eurocentric sampling is inadequate to 

discover the disparate genetic architectures, differentiated LD patterns and non-genetic 

factors with gene-by-environment (GxE) interactions among the populations [73, 94, 96]. 

Recent studies have reported foreseeable improvement by trans-ethnic meta-analysis[58]. 

Growing efforts were also promoted to diversify the exploratory samples in genomic 

research with harmonized phenotypic definition and case ascertainment [97, 98]. To leverage 

current large-scale datasets and understanding of genetic studies, efforts attempted to bridge 

this gap by functional fine-mapping, the goal of which was to identify causal variants shared 
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across populations [99, 100]. A recent study demonstrated that regulatory annotation 

partitioning can maintain the portability of PRS models from Europeans applying towards 

East Asians [101]. However, all current polygenic prediction method only allowed for input 

from one to multiple homogeneous subpopulations. Future work is needed for admixed 

population with higher genome complexity. Promising direction could extend to incorporate 

ancestry-specific effect size estimation and local ancestry adjustment [102, 103].

In addition, increased adoption and connectivity of personal electronic health records 

(EHRs) can expedite genomic discovery and personalized medicine implementation[97]. 

Wearable sensors and devices also enable the impending collection of comprehensive 

exogenous factors to quantify individual envirotypes [104]. Recent perspective has outlined 

the potentials for developing and integrating risk predictions with PRSs and biobank-linked 

EHR data [105]. Few cohort studies demonstrated the potential improvement by delineating 

the multiplicative interaction of modifiable risk factors with CAD PRSs [91, 106–108]. 

High-level risk stratification considering environmental factors and GxE association would 

potentially further disentangle the bias between different populations.

CONCLUSIONS

It is without a doubt that the rapid advances in genomic medicine have now enabled a more 

complete assessment of cardiovascular risk that had previously remained unaccounted for. 

By using readily available, increasingly affordable and clinically meaningful genetic 

assessment tools, clinicians now can better inform patients about their own baseline genetic 

risks in order to create personalized and strategic risk optimization strategies. As our genetic 

knowledge and analytical techniques expand, these risk optimization strategies will be 

further tailored to each individual. Our group has developed the MyGeneRank platform 

(https://mygenerank.scripps.edu/) specifically to assist an individual in determining their 

CAD PRS using their smartphone device which can be determined in minutes and shared 

with their clinical care team. PRSs will continue to improve as genomic research expands to 

include a better representation of ethnicities and populations under-represented in current 

biomedical research. In addition, the call for more standardized reporting, data sharing, 

especially metadata, within the scientific community is essential to improve accuracy in the 

real-world and the ability to translate findings into the clinical setting[109]. Studies 

investigating the role of CAD in diverse populations must be conducted and shared openly to 

ensure that our tools to intervene early to prevent clinical disease are accessible to all.
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CAD coronary artery disease

EHR electronic health record

FH familial hypercholesterolemia
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GWAS genome wide association study

LD linkage disequilibrium

LDL low density lipoprotein

LDLR low density lipoprotein receptor

PRS polygenic risk score
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Figure 1. Basic overview of CAD Genetics.
Genetic risk for CAD, and many common diseases, can be simplified into a monogenic (left) 
and polygenic (right) component. Monogenic risk variants tends to be rare, with small 

numbers of genetic mutations with large impacts on genetic risk. Polygenic risk variants 

tend to be more common, with more modest impacts on risk individually, and with 

cumulative effects that can be significant.
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