TABLE A3.
Dice loss with CE evaluation index for multi-class medical image segmentation.
| Model |
Dice Loss with CE |
|||||
| DSB2018 | Lung | Eye blood vessels | ISBI2015 | Liver cancer | Intestinal cancer | |
| UNet (Ronneberger et al., 2015) | 0.1264 | 0.0548 | 0.2222 | 0.3310 | 0.0146 | 0.0377 |
| LinkNet (Chaurasia and Culurciello, 2018) | 0.1423 | 0.0714 | 0.3258 | 0.3822 | 0.0215 | 0.0779 |
| U2Net (Qin et al., 2020) | 0.1191 | 0.0471 | 0.2344 | 0.3327 | 0.0148 | 0.0411 |
| UNet++ (Zhou et al., 2018, 2020) | 0.1213 | 0.0547 | 0.2248 | 0.3202 | 0.0151 | 0.0276 |
| UNet+++ (Huang et al., 2020) | 0.1199 | 0.0514 | 0.2351 | 0.3331 | 0.0144 | 0.0307 |
| PraNet (Fan et al., 2020) | 0.0921 | 0.0321 | 0.1453 | 0.2145 | 0.0101 | 0.0219 |
| PspNet (Zhao et al., 2017) | 0.3046 | 0.0743 | 0.6231 | 0.8119 | 0.0351 | 0.0801 |
| Deeplabv3+ (Chen et al., 2018) | 0.3068 | 0.0565 | 0.6285 | 0.8169 | 0.0290 | 0.0792 |
| FCN8 (Long et al., 2015) | 0.1318 | 0.0350 | 0.4485 | 0.4874 | 0.0145 | 0.0407 |
| MBFFNet | 0.1303 | 0.0638 | 0.2545 | 0.3254 | 0.0130 | 0.0303 |