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Abstract

The analysis of anatomy that undergoes rapid changes, such as neuroimaging of the early 

developing brain, greatly benefits from spatio-temporal statistical analysis methods to represent 

population variations but also subject-wise characteristics over time. Methods for spatio-temporal 

modeling and for analysis of longitudinal shape and image data have been presented before, but, to 

our knowledge, not for diffusion weighted MR images (DW-MRI) fitted with higher-order 

diffusion models. To bridge the gap between rapidly evolving DW-MRI methods in longitudinal 

studies and the existing frameworks, which are often limited to the analysis of derived measures 

like fractional anisotropy (FA), we propose a new framework to estimate a population trajectory of 

longitudinal diffusion orientation distribution functions (dODFs) along with subject-specific 

changes by using hierarchical geodesic modeling. The dODF is an angular profile of the diffusion 

probability density function derived from high angular resolution diffusion imaging (HARDI) and 

we consider the dODF with the square-root representation to lie on the unit sphere in a Hilbert 

space, which is a well-known Riemannian manifold, to respect the nonlinear characteristics of 

dODFs. The proposed method is validated on synthetic longitudinal dODF data and tested on a 

longitudinal set of 60 HARDI images from 25 healthy infants to characterize dODF changes 

associated with early brain development.

1 Introduction

The understanding of subject-wise anatomical change driven by a biological process is 

important for diagnosis of neurological disorders or planning of therapeutic intervention. 

The need is even more significant when the timing of diagnosis and therapeutic planning is 

critical due to the rapid rate of anatomical change, e.g. in the early developing brain of an 

infant at risk of autism. The longitudinal analysis of anatomical change has recently gained 

more attention because of its ability to provide analysis of subject-wise anatomical changes 
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while also estimating of a population trend, in addition to accounting for the inherent 

correlation of longitudinal data [12, 22, 15, 17, 16].

Most recent clinical studies involve longitudinal data acquisition where multiple repeated 

scans of individual subjects are acquired. Because repeated scans of an individual subject are 

inherently correlated, conventional cross-sectional analysis assuming independence of given 

data is not suitable to be applied to longitudinal data. So far, spatio-temporal statistical 

analysis methods were suggested and broadly used for longitudinal data derived from 

medical images to study a representative anatomical change of a population of medical 

images [24, 8, 14, 29]. However, spatio-temporal analysis of higher-order diffusion models 

of high angular resolution diffusion imaging (HARDI) images has not been extensively 

studied until recently.

In [19], authors presented a framework for longitudinal multi-shell HARDI image analysis 

which includes time and orientation resolved multi-tissue average template building. A 

consistent atlas building of longitudinal HARDI images was suggested in [18]. These studies 

mainly focused on reflecting temporal differences of images of different age groups rather 

than constructing a fully continuous longitudinal atlas. There was an attempt to create a 

continuous longitudinal atlas using spherical harmonics (SPHARM) coefficients of diffusion 

orientation distribution function (dODF) [16] which showed the continuous change of 

dODFs in the corpus callosum. However, the method is limited by the fact that an estimated 

atlas might include invalid dODFs due to the application of linear mixed effects modeling to 

individual SPHARM coefficients without considering the characteristics of a dODF as a 

probability density function (PDF).

In this paper, we present a method to estimate a representative change of longitudinal 

dODFs using hierarchical geodesic modeling [25, 17, 15]. A dODF, a diffusion PDF on a 

sphere, is expressed on a Riemannian manifold as suggested in [13, 6]. A subject-specific 

spatio-temporal trajectory of dODFs is estimated by geodesic modeling with a series of 

dODFs from repeatedly observed HARDI images of an individual subject. The population-

level longitudinal change is then estimated from the set of subject-specific trajectories via 

hierarchical modeling to account for repeated data. We validate the feasibility of the 

proposed method with a synthetic example of longitudinal dODFs. The proposed method 

was applied to a longitudinal set of 60 HARDI images from 25 healthy infants from a real-

world clinical study in order to estimate a normative longitudinal trajectory of healthy infant 

brain development as expressed with diffusion imaging.

2 Method

2.1 Square-Root dODF on the Sphere Manifold

The dODF, f(s), s ∈ S2, is an angular profile of the diffusion probability density function 

(PDF), which is a non-negative and normalized function of water molecule motion on the 

unit sphere. The square-root representation of dODF results in manifold valued data lying on 

the unit sphere in a Hilbert space with L2 metric [26]. In this paper, the manifold-valued 

dODF is defined as y = f(s) and determined in the space Y = {y :S2 ℝ+ ∣ y(s) ≥ 0, 
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∫s ∈ S2y2(s)ds = 1}. In practice, a dODF is discretely sampled from the unit 2-sphere [11] 

with approximately equal area. We assume that the samples are d evenly distributed points 

from the domain unit 2-sphere of a dODF. A discretized dODF is then represented as a d-

dimensional point y, which satisfies 1
a ∑i = 1

d y2(i) ≈ 1, where a is the area that each sampled 

point of dODF represents on the 2-sphere. Since the area a is constant, we can simply 

normalize all dODFs y to be on the surface of the unit (d − 1)-sphere that satisfies 

∑i = 1
d y2(i) = 1. Then a square-root dODF can be expressed on the d − 1-sphere manifold, 

y ∈ Sd − 1. We used a symmetric sphere with 724 vertices.

A sphere manifold is a well-known Riemannian manifold with constant curvature of 1.0. A 

geodesic is a zero acceleration curve on a Riemannian manifold M. Each point p on M is 

associated with a tangent vector space TpM. Let v be a tangent vector on TpM, v ∈ TpM. An 

exponential map Exp(p, v) = q is a mapping function that maps p along a geodesic that starts 

from p in the direction and magnitude of v for a unit time. The exponential map of the Sd − 1

sphere manifold is given by rotation of p by the norm of v, Exp(p, v) = p cos θ + sin θ
θ v, where 

θ = ∥v∥. A Riemannian log map between two points Log(p, q) = v is the inverse of the 

exponential map that returns a tangent vector v ∈ TpM of a geodesic that connects p and q. 

The log map of Sd−1 is the initial velocity of the rotation between the two points, 

Log(p, q) =
θ(q − πp(q))
‖q − πp(q)‖ , where θ = arccos(⟨p, q⟩) and πp(q) = p⟨p, q⟩ [10]. A Riemannian 

distance between two points d(p, q) measures the length of the geodesic between p and q, 

which is the norm of v, d(p, q) = ∥v∥ = ∥Log(p, q)∥. Parallel transport ψp→q(v) transports a 

tangent vector v ∈ TpM from one point p ∈ M to another point q ∈ M along a geodesic 

between p and q while preserving the angle and the scale of v.

2.2 Hierarchical geodesic model

A linear mixed effect model is a statistical model reflecting both fixed effects and random 

effects that are variables randomly distributed across individual subjects in a longitudinal 

study or groups from a hierarchical structure in Euclidean space [9]. In our case, given 

longitudinal observations of a non-linear response variable on the sphere manifold, we 

estimate subject-specific and population-level changes by hierarchical geodesic modeling 

(HG) [15, 25, 17, 1]. The HG model estimates subject-specific longitudinal trajectories from 

repeatedly observed dODFs of individual subjects, and in turn, estimates a population-level 

spatio-temporal change from the collection of subject-wise trajectories.

Subject-wise trajectory—A subject-wise trajectory and the corresponding least squares 

criterion are written as

yi = Exp(pi, vit), (pi, vi) = arg min
pi, vi

∑
j = 1

Nobs, i
d2(yij, Exp(pi, vitij)), (1)

where yij ∈ M is the ith subject’s jth observation, Nobs,i the number of observations of the 

subject i, pi ∈ M the intercept, vi ∈ TpiM the slope tangent vector, and tij ∈ ℝ the 
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observation time. Eq. 1 is solved by the alternating naive tangent space approximation 

method [15].

Hierarchical geodesic model—A population trajectory is given as

y = Exp(P , V t), (2)

P = arg min
P

∑
i = 1

Nsubj
d2(P , pi), V = arg min

V
∑
i = 1

Nsubj
dℝ

2 (V , ψpi P(vi)), (3)

where the ith subject’s optimized intercept and slope are denoted pi and vi, and Nsubj is the 

number of subjects. The least squares formulation on the left of Eq. 3 assumes that the 

subject-wise intercept pi is distributed around P  following the Riemannian normal 

distribution of the intercept’s random effects: pi = Exp(P , ϵp), where ϵp ∼ NM(0, σp2) [28]. The 

least squares formulation of the right of Eq. 3 represents the random effects of slope. As we 

need to bring the subject-wise tangent vectors to the same tangent space before estimating 

the slope V , the tangent vector vi ∈ TpiM is parallel transported to TPM, denoted as 

ψpi P(vi). The distance function dℝ is the standard L2 norm on TPM.

3 Experimental validations and results

The difference between a geodesic regression (GR) model and a hierarchical geodesic (HG) 

model for a series of longitudinal data on a sphere manifold M is illustrated in Fig. 1. Due to 

the inherent correlation of longitudinal data, the random effects of subjects should be 

reflected in estimating a population trajectory. A GR model assumes data independence thus 

the model cannot capture longitudinal changes correctly while an HG model contains the 

random effects of slope and intercept. In the following, we validate our method with 

synthetic longitudinal dODF, and demonstrate clinical application using longitudinal 

HARDI images of the developing infant brain.

Synthetic longitudinal dODFs

We construct a series of synthetic longitudinal dODF data to evaluate the performance of the 

HG model and compare with the result from GR. We establish a ground truth geodesic by 

the logarithm map from a dODF with a single peak P0 to a dODF with perpendicular 

crossing peaks P1, V = Log(P0, P1) (First row, Fig. 2) [6]. The two dODFs P0 and P1 were 

generated by the multi-tensor method with 6th order real spherical harmonics [5]. A total of 

2470 dODFs of 1000 subjects with two or three observations associated with time points 

ranged between 0 and 15 were generated by Eq. 2 with the random effects on intercepts ϵP ~ 

N(0, 0.0052) and slopes ϵV ~ N(0, 0.0012), and the data observation error ϵ ~ N(0, 0.0052). 

In addition to the random effects on the intercepts, we injected additional variation to perturb 

subject-wise intercept points along a tangent vector perpendicular to the tangent vector V. 

This is intended to demonstrate feasibility of the proposed method to handle subject-specific 

variations which mimick the scenario of Fig. 1.
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Fig. 2 shows the estimated geodesic of the GR model (Second row, Fig. 2) and the HG 

model (Third row, Fig. 2). The HG model successfully estimated the ground truth population 

trajectory by accounting for the longitudinal effect while the estimated GR model did not 

provide a suitable result. The R2 of HR and GR with respect to the ground truth geodesic 

were 0.041 and 0.22 respectively. The relatively low R2 value of the estimated HG model is 

not surprising because R2 does not take into account the longitudinal effect, it just measures 

the ratio of the explained variance to the total variance of an entire population. The average 

R2 value of the subject-wise trajectories of the HG model was 0.91 ± 0.097 (a comparable 

value cannot be measured by GR). We calculated the root mean square error (RMSE) from 

the ground truth to the estimated intercept and slope from the models. For intercept and 

slope, the RMSE from the HG model were 4.51 × 10−4 and 4.34 × 10−6 respectively, which 

are orders of magnitude lower than those of the GR model with RMSE of 0.223 and 6.75 × 

10−3 for intercept and slope. These results quantitatively confirm the better fit of the HG 

model and clearly show that geodesic regression may not be a suitable model for 

longitudinal dODFs.

Longitudinal DW images of developing infant brain

The brain undergoes rapid structural changes due to axonal maturation, which is also 

expressed by developing cortical folding, presenting asymptotic growth at an early age [7, 

21]. Several longitudinal studies have investigated early maturation of white matter (WM) 

measured by fractional anisotropy (FA) and mean diffusivity (MD) [22, 3], but less is known 

about how the dODF changes with age. We apply our new method to a longitudinal set of 60 

HARDI brain images from 25 healthy developing infants with an age range from 3 to 25 

months, scanned on 3-T Siemens TIM Trio, with 64 directional DWI volumes sampled on 

the half sphere, b-value at 2000s/mm2, and 2 × 2 × 2mm3 voxel resolution, followed by 

preprocessing and multivariate atlas building similarly to [16]. Manifold-valued dODFs are 

obtained voxel-wise from all HARDI images aligned in the common atlas space. We re-

parametrize subject age by taking the natural log to model the asymptotic development of 

the infant brain [7].

One benefit of the analysis of dODF is that it provides information on brain maturation by 

derived measurements, such as generalized fractional anisotropy (GFA) or peaks of the 

ODFs [4, 27] rather than modeling derived measures independently. We analyze the 

estimated trajectories of dODFs and derived measures in selected anatomical regions of 

white matter including genu (GCC) and splenium (SCC) of the corpus callosum, anterior 

limb of the internal capsule (ALIC), posterior limb of the internal capsule (PLIC), and brain 

regions with crossing fibers where corpus callosum (CC) and corticospinal tracts (CST) 

pass. Myelination of the selected regions is known to occur during early development [7, 

21].

Fig. 3 illustrates the voxel-wise population geodesic trend of the estimated dODF changes 

over age in the selected WM regions. The dODF shapes become sharper in the GCC, SCC, 

and ALIC as age increases. The change is even more pronounced in the crossing fiber region 

(Fig. 3, Bottom row). The map of the derived GFA indices is shown in the background of 

dODFs displaying that GFA indices are lower in the crossing fiber regions (bottom row) than 
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those in regions where dODFs had one peak (top row). The overall R2 values of GR and HG 

are 0.27 and 0.26 respectively and the overall subject-wise R2 of HG was 0.92.

The results of the changes of dODF peaks, also known as maxima, from the estimated HG 

model are illustrated in Fig. 4. The peak values of GCC and ALIC are slightly increased 

while the SCC and PLIC did not show any change as shown in Fig. 4(a). The flat slope may 

indicate that the maturation of the SCC and PLIC begins earlier compared to the GCC and 

ALIC. The slight increase in the slope of the single peaks may be induced from large 

individual variability which is an observation also reported in another recent longitudinal 

study [20]. This variability may be a combination of factors related to brain development 

and scanner variability not captured by our model. Fig. 4(b) shows the peak value of ROIs 

with crossing fibers. The second peak value increases in both left and right hemispheres 

while the first peak stays similar over time. This result suggests that the dODF trajectory is 

reflecting crossing fiber development in much more detail than the derived measures, as is 

also illustrated in Fig. 4(c).

4 Conclusion

We propose a new hierarchical geodesic modeling (HG) of diffusion orientation distribution 

function (dODF) for longitudinal analysis of diffusion weighted MR images (DW-MRI). 

The proposed method estimates a population trajectory and also subject-specific trajectories 

of the age-related change of dODFs, which are represented as square root manifold-valued 

data to respect the nonlinear characteristics of dODFs. We showed via synthetic data that the 

geodesic regression model is not suitable for the analysis of longitudinal dODFs, 

demonstrating the importance of properly modeling intra-subject correlation. The 

application to a real-world data offered promising results that supported clinical findings of 

early brain growth from a population trajectory of dODFs. The method is generic and 

applicable to any longitudinal set of dODF data for the analysis of a temporal change of 

dODFs related to early development, degeneration, or disease progression. The HG model 

on dODFs enables analysis of derived information, such as generalized fractional anisotropy 

(GFA) or tractography-based analysis, which has been broadly used for longitudinal analysis 

of DW-MRI. As this method provides a basis for creating a normative model, there are 

several directions for future works such as hypothesis testing for longitudinal group 

differences between a disease group and controls or prediction of physiological age. Also, 

future perspective for the methodology will be to develop a better longitudinal model for 

dODF, for example, a REML-like-mixed-effect model [1, 2, 23].
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Fig. 1. 
Illustration of geodesic regression model (Left) and hierarchical geodesic model (Right) 

with random effects from the correlation of longitudinal data. Each subject has a different 

intercept and slope (Black lines, Right).
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Fig. 2. 
Synthetic example of longitudinal dODF. Color mapped spheres represent dODF values and 

the glyphs next to the spheres are radially scaled shapes. (Row 1) Ground truth. The red 

dashed boxes show P0 with a single direction and P1 with crossing fibers. The ground truth 

geodesic follows the tangent vector V = logP0P1. (Row 2) Estimated geodesic regression 

model. (Row 3) Estimated hierarchical geodesic model.
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Fig. 3. 
Population geodesic trajectory of longitudinal dODFs superimposed on generalized 

fractional anisotropy (GFA) in early developing infants sampled at different ages. Red, 

green, blue and yellow boxes show changes in the genu of corpus callosum (GCC), the 

anterior limb of the internal capsule (ALIC), the splenium of corpus callosum (SCC) and the 

region with crossing fibers where corticospinal tracts and corpus callosum (CC) pass, 

respectively. Larger glyphs are used for enhanced visualization.
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Fig. 4. 
Changes of peak diffusion of dODFs estimated from geodesic trajectories. (a) Results from 

ROIs with the dODF having a single peak with genu of corpus callosum (GCC), splenium of 

corpus callosum (SCC), anterior limb of the internal capsule (ALIC), and posterior limb of 

the internal capsule (PLIC). (b) Results of the crossing fiber regions having multiple peaks. 

(c) Example of the dODF trajectories of the population and three selected subjects was taken 

at one voxel marked in yellow from the crossing fiber ROI. Primary (red) and secondary 

(green) peaks from the population-level trajectory are illustrated with the dODFs.
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