TABLE 1.
Regressor | Hyperparameters | Values |
Ridge regression | Polynomial degree | 1, 2, 3 |
Regularization penalty | 10–4, 10–3, 10–2, 10–1, 10, 102 | |
Random forest | Number of estimators | 100, 200, 300 |
Maximum number of features | 5, 6, 7 | |
Maximum depth | 6, 7 | |
Multi-layer perceptron | Number of hidden layers | 1, 2 |
Number of neurons per hidden layer | 3, 4 | |
Activation function | relu, tanh | |
Regularization penalty | 10–3, 10–2, 10–1 | |
Support vector regression | Kernel type | Linear, poly, RBF, sigmoid |
Regularization parameter | 2–5, 2–3, 2–1, 2, 23 | |
Epsilon | 10–3, 10–2, 10–1 |
RBF stands for Radial basis function.