Skip to main content
. 2021 Jul 14;15:684423. doi: 10.3389/fncom.2021.684423

TABLE 1.

Hyperparameters explored using grid search cross-validation for the different regressors examined in the study.

Regressor Hyperparameters Values
Ridge regression Polynomial degree 1, 2, 3
Regularization penalty 10–4, 10–3, 10–2, 10–1, 10, 102
Random forest Number of estimators 100, 200, 300
Maximum number of features 5, 6, 7
Maximum depth 6, 7
Multi-layer perceptron Number of hidden layers 1, 2
Number of neurons per hidden layer 3, 4
Activation function relu, tanh
Regularization penalty 10–3, 10–2, 10–1
Support vector regression Kernel type Linear, poly, RBF, sigmoid
Regularization parameter 2–5, 2–3, 2–1, 2, 23
Epsilon 10–3, 10–2, 10–1

RBF stands for Radial basis function.