TABLE 1.
Hyperparameters explored using grid search cross-validation for the different regressors examined in the study.
| Regressor | Hyperparameters | Values |
| Ridge regression | Polynomial degree | 1, 2, 3 |
| Regularization penalty | 10–4, 10–3, 10–2, 10–1, 10, 102 | |
| Random forest | Number of estimators | 100, 200, 300 |
| Maximum number of features | 5, 6, 7 | |
| Maximum depth | 6, 7 | |
| Multi-layer perceptron | Number of hidden layers | 1, 2 |
| Number of neurons per hidden layer | 3, 4 | |
| Activation function | relu, tanh | |
| Regularization penalty | 10–3, 10–2, 10–1 | |
| Support vector regression | Kernel type | Linear, poly, RBF, sigmoid |
| Regularization parameter | 2–5, 2–3, 2–1, 2, 23 | |
| Epsilon | 10–3, 10–2, 10–1 |
RBF stands for Radial basis function.