Table 3.
A summary (mean of 100 iterations) of the classification accuracy and AUC using the Enet and proposed Enet-subset feature selection methods.
| Biomarker(s) | Using all Enet selected features | Using Enet-subset selected features | ||
|---|---|---|---|---|
| ACC (%), AUC (mean) | Features (mean/total #) | ACC (%), AUC (mean) | Features (mean/total #) | |
| BC | 81.7, 0.919 | 349/360 | 82.6, 0.920 | 326/360 |
| CC | 81.0, 0.92 | 349/360 | 82.3, 0.925 | 328/360 |
| DC | 80.9, 0.898 | 348/360 | 81.2, 0.895 | 324/360 |
| LE | 50.8, 0.598 | 348/360 | 50.4, 0.590 | 155/360 |
| BC+CC | 81.0, 0.923 | 679/720 | 82.5, 0.92 | 634/720 |
| BC+DC | 81.2, 0.907 | 680/720 | 83.2, 0.924 | 636/720 |
| CC+DC | 80.8, 0.913 | 680/720 | 81.8, 0.921 | 640/720 |
| BC+CC+DC | 80.9, 0.916 | 1,006/1,080 | 83.1, 0.937 | 945/1,080 |
ACC, Accuracy; AUC, Area under curve; BC, Betweenness centrality; CC, Clustering coefficient; DC, Degree centrality; LE, Local efficiency.