Skip to main content
. 2021 Jul 14;12:669076. doi: 10.3389/fneur.2021.669076

Table 3.

A summary (mean of 100 iterations) of the classification accuracy and AUC using the Enet and proposed Enet-subset feature selection methods.

Biomarker(s) Using all Enet selected features Using Enet-subset selected features
ACC (%), AUC (mean) Features (mean/total #) ACC (%), AUC (mean) Features (mean/total #)
BC 81.7, 0.919 349/360 82.6, 0.920 326/360
CC 81.0, 0.92 349/360 82.3, 0.925 328/360
DC 80.9, 0.898 348/360 81.2, 0.895 324/360
LE 50.8, 0.598 348/360 50.4, 0.590 155/360
BC+CC 81.0, 0.923 679/720 82.5, 0.92 634/720
BC+DC 81.2, 0.907 680/720 83.2, 0.924 636/720
CC+DC 80.8, 0.913 680/720 81.8, 0.921 640/720
BC+CC+DC 80.9, 0.916 1,006/1,080 83.1, 0.937 945/1,080

ACC, Accuracy; AUC, Area under curve; BC, Betweenness centrality; CC, Clustering coefficient; DC, Degree centrality; LE, Local efficiency.