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Model-Based Planning Deficits in Compulsivity Are Linked
to Faulty Neural Representations of Task Structure
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Compulsive individuals have deficits in model-based planning, but the mechanisms that drive this have not been established.
We examined two candidates—that compulsivity is linked to (1) an impaired model of the task environment and/or (2) an
inability to engage cognitive control when making choices. To test this, 192 participants performed a two-step reinforcement
learning task with concurrent EEG recordings, and we related the neural and behavioral data to their scores on a self-
reported transdiagnostic dimension of compulsivity. To examine subjects’ internal model of the task, we used established be-
havioral and neural responses to unexpected events [reaction time (RT) slowing, P300 wave, and parietal-occipital alpha band
power] measured when an unexpected transition occurred. To assess cognitive control, we probed theta power at the time of
initial choice. As expected, model-based planning was linked to greater behavioral (RT) and neural (alpha power, but not
P300) sensitivity to rare transitions. Critically, the sensitivities of both RT and alpha to task structure were weaker in those
high in compulsivity. This RT-compulsivity effect was tested and replicated in an independent pre-existing dataset (N =1413).
We also found that mid-frontal theta power at the time of choice was reduced in highly compulsive individuals though its
relation to model-based planning was less pronounced. These data suggest that model-based planning deficits in compulsive
individuals may arise, at least in part, from having an impaired representation of the environment, specifically how actions
lead to future states.
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Compulsivity is linked to poorer performance on tasks that require model-based planning, but it is unclear what precise
mechanisms underlie this deficit. Do compulsive individuals fail to engage cognitive control at the time of choice? Or do they
have difficulty in building and maintaining an accurate representation of their environment, the foundation needed to behave
in a goal-directed manner? With reaction time and EEG measures in 192 individuals who performed a two-step decision-mak-
ing task, we found that compulsive individuals are less sensitive to surprising action-state transitions, where they slow down
less and show less alpha band suppression following a rare transition. These findings implicate failures in maintaining an
accurate model of the world in model-based planning deficits in compulsivity. /
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Introduction
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o : actions, often leading to functionally impairing outcomes (Robbins
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these decision systems causes habitual behaviors to dominate (Lee
et al,, 2014; Gruner et al, 2016); but rather than being solely an
arbitration failure, recent evidence suggest that compulsivity may
be primarily associated with goal-directed control impairments.
For example, OCD patients have performance deficits in the two-
step reinforcement task (Voon et al, 2015) where model-based
planning, a reinforcement-learning model of goal-directed action,
is operationalized as the extent to which individuals make decisions
using knowledge of how their actions relate to subsequent events
(Daw et al., 2005, 2011). Recent work has shown that this dysfunc-
tion has a developmental course (Vaghi et al., 2020) and is best cap-
tured by a compulsivity dimension in both general population and
patient samples (Gillan et al., 2016).

However, it remains unclear what underlies model-based
planning problems in compulsivity—a multifaceted cognitive
capacity, model-based planning depends on several functions
including: (1) the construction/maintenance of an internal model
(i.e., a representation of the environment, like the knowledge of
relevant action—-outcome and state-state relationships), which is
a prerequisite for (2) implementation of this model in behavior
through prospective planning. Model-based failures could theo-
retically stem from mechanistic issues underlying either compo-
nent (and others that are not the focus of the present study).
Though direct tests to resolve this have been lacking, patients
show goal-directed deficits even when they have explicit knowl-
edge of simple action-outcome contingencies (Gillan et al,
2014), suggesting that OCD patients may have issues solely with
implementation. But, paradigms that feature more numerous
and/or taxing contingency structures revealed problems in learn-
ing action—-outcome associations in OCD and addiction (Gillan
et al., 2011; Ersche et al., 2016), which correlated with goal-
directed control failures in OCD (Gillan et al., 2011). Overall, the
evidence remains equivocal because these devaluation-style tasks
conflate goal-directed control deficits with increases in stimulus—
response habit learning (Watson and de Wit, 2018) and were not
designed to assess participants’ ability to represent the task
environment.

Recent data has suggested that goal-directed failures in com-
pulsivity might arise from the latter. For example, compulsivity
is linked to poorer learning of the consequences of actions
(Sharp et al,, 2020), and at the meta-level, highly compulsive
individuals have abnormalities in how they view their own
actions, exhibiting an overconfidence, which is relatively imper-
vious to corrective evidence (Rouault et al., 2018; Seow and
Gillan, 2020). Though studied in a different context, these find-
ings suggest the possibility that individuals high in compulsivity
have fundamental issues in acquiring and maintaining an accu-
rate internal model of the world. To date, no study has examined
neural representations of task structure in compulsive individu-
als as they perform a model-based planning task. The present
study aimed to fill this gap—testing whether compulsivity is
characterized by a disruption in constructing/maintaining an
accurate representation of the task environment, or the use/
implementation of this model in their choices. To do this, we an-
alyzed reaction time (RT) and electroencephalography (EEG)
data to define signatures of state transition knowledge (RT, P300,
and posterior alpha) and of a well established cognitive control
marker (mid-frontal theta) as 192 subjects performed a two-step
reinforcement learning task (Daw et al., 2005, 2011). With
single-trial regression analyses, we sought to characterize
several candidate neural correlates of the representation and
implementation of the mental model and to test whether
they associated with individual differences in model-based
planning and compulsivity.
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Materials and Methods

Power estimation. We determined a minimum sample size from a
prior study that investigated the association of goal-directed control (on
a different task) with Obsessive-Compulsive Inventory-Revised (OCI-R)
scores from nonclinical participants who were also tested in person (r =
—0.26, p <0.05; Snorrason et al., 2016). The effect size indicated that
N=150 participants were required to achieve 90% power at 0.05 signifi-
cance. Our final sample was larger than this to achieve the required
power for another study that the same subjects participated in (Seow et
al., 2020).

Participant exclusion criteria. During recruitment, all participants
were ensured to be >18-65years of age, and had no personal/familial
history of epilepsy, no personal history of neurologic illness/head
trauma, or unexplained fainting. Participants’ data were excluded from
analysis if they failed any of the following on a rolling basis: (1) partici-
pants whose EEG data were incomplete (N=5; i.e., recording was pre-
maturely terminated before the completion of the task) or corrupted
(N=2); (2) participants whose EEG data contained excessive noise (i.e.,
>70% EEG epochs from the individual failing epoch exclusion criteria;
see EEG recording and preprocessing; N=4); (3) participants who
responded with the same key in stage 1 >90% (n > 135 trials) of the
time (N=10); (4) participants whose probability of staying after com-
mon-rewarded trials was significantly worse than chance, which was
measured as <5% probability of fitting a binomial distribution with 50%
(chance) probability and the total number of common-rewarded trials
experienced by each subject (N=11); (5) participants who missed >20%
of trials (n>30 trials; N=3); and (6) participants who incorrectly
responded to the following “catch” question within the questionnaires:
“If you are paying attention to these questions, please select ‘A little’ as
your answer” (N=7). Combining all exclusion criteria, 42 participants
(17.95%) were excluded with N=192 participants left for analysis [115
females (59.90%), between 18 and 65 years of age (meanage =31.55
years, SD = 11.75 years)]. Excluded participants did not significantly
differ in any of the three psychiatric dimension scores (see Self-
report psychiatric questionnaires, transdiagnostic dimensions and 1Q;
all p values >0.06) from participants whose data were analyzed.

Procedure. Before presenting to the laboratory for in-person EEG
testing, participants completed a brief at-home assessment via the inter-
net. They provided informed electronic consent and submitted basic
demographic data (age and gender), listed any medication they were
taking for a mental health issue, and completed a set of nine self-
report psychiatric questionnaires (see Self-report psychiatric ques-
tionnaires, transdiagnostic dimensions and IQ). During the in-per-
son EEG session, participants completed the following two tasks:
the modified Eriksen flanker task (Eriksen and Eriksen, 1974) and
the two-step reinforcement learning task (Daw et al., 2005, 2011).
Data from the former task have been published previously (Seow et
al., 2020), but note that we also reported the basic association with
compulsivity and model-based planning in that article, which served
to contextualize a null result. Once participants had completed both
tasks, they completed a short IQ evaluation before debriefing. A
subset of the participants (N=110, 47%) completed a short psychi-
atric interview [Mini International Neuropsychiatric Interview,
English Version 7.0.0 (M.I.N.L); Sheehan et al., 1998] before the ex-
perimental tasks to establish their diagnostic status.

Disorder prevalence (M.IN.L). After exclusion, 80 participants
(41.67%) completed the M.LN.L, which was introduced partway through
the study to add additional clinical context above our self-report meas-
ures. Of these participants, 35 (43.75%) met the criteria for one or more
disorder. Broken down by recruitment arm, all 7 subjects (100%)
recruited from the clinical setting met the criteria, while 28 subjects
(38.36%) from university channels met the criteria. This rate is close to
those in published reports on the prevalence of mental health disorders
in college student samples (Auerbach et al., 2018; Evans et al., 2018). Of
the total sample, 33 subjects (17.19%) were currently receiving medica-
tion for a mental health issue. Broken down by recruitment arm, all indi-
viduals recruited from the clinic were receiving medication, while 26
(14.05%) of those recruited through normal channels were receiving
medication.
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Two-step reinforcement leaming task. The paradigm consists of two stages where participants take a rocket that has a common (70%) or rare (30%) ‘transition probability’ of taking

them to one of two second-stage planets (states). Aliens on these planets each have a unique probability of reward [space treasure (reward) or space dust (nonreward)] that drifts slowly throughout
the entire experiment. Participants have to take into consideration the task transition structure and their history of rewards to make choices that maximize reward. The sequence of events as pre-
sented for EEG is the same as that of Eppinger et al. (2017), except they included a manipulation of transition probabilities in their study (comparing 60%/40% to 80%/20%) and used a longer
choice window (2000 ms). On the top right inset, model-based behavior is reflected as the probability of repeating the first-stage choice (stay) as a function of the occurrence of a transition from
the previous trial (common, 70%; rare, 30%) and whether a reward was received (reward, nonreward). In a purely model-free leamer, stay probabilities after reward should be higher than when
no reward was presented regardless of transition type. In a purely model-based learner, stay probabilities after common-reward and rare-nonreward should be higher than common-nonreward and
rare-reward. In our empirical data here, the stay probabilities obtained across conditions is a mix of both model-based and model-free behavior. Error bars reflect SEMs.

Two-step reinforcement learning task. The sequence of events was
presented in the same manner as a prior study (Eppinger et al., 2017),
with the exception that we used the standard 70%/30% transition proba-
bilities (whereas Eppinger et al., 2017 instead contrasted blocks of 60%/
40% vs 80%/20%) and had a slightly shorted time to make a choice
(1500 ms in this study vs 2000 ms in their article; Fig. 1). On each trial,
participants were first presented with a fixation cross for 500 ms, and
then shown a choice between two spaceships. They had 1500 ms to
respond; after which, an outline over the chosen option would
indicate their choice (feedback) for 500 ms. A fixation cross was
shown for 500 ms before transition, where the transitioned planet
was shown (a blank color block) for 1000 ms. Two aliens of that
particular planet would then appear, with 1500 ms for choice, and
with feedback of the chosen option subsequently shown for
500 ms. Each of the aliens led to a probabilistic reward with a pic-
ture of “space treasure,” or to no reward with a picture of “space
dust,” that was presented for 1000 ms. Responses were indicated
using the left (“Q”) and right (“P”) keys. The color of blocks
behind rockets and those representing planets were randomized
across all participants. Participants performed two blocks of 75 tri-
als (i.e., 150 trials in total).

The task captures both model-based and model-free behavior.
A participant who performs the task purely in a model-free way
will make their first-stage choices solely on whether they were
rewarded on the last trial (choosing the same option if rewarded
previously), regardless of the transition type that occurred. In con-
trast, a model-based strategy will take into account both the history
of reward and the transition structure of the task when making the
first-stage choice. For instance, if a first-stage choice led to a
rewarded second-stage option via a rare transition, a model-based
learner would be more likely to choose the alternative first-stage
choice on the next trial as a common transition would then lead to

the previously rewarded second-stage option. However, a model-free
learner would not make this adjustment in choice based on transition type,
and instead would repeat the same first-stage choice again.

Before the experimental task, participants completed a tutorial that
explained the key concepts of the paradigm: the probabilistic association
between the aliens and rewards (10 trials) and the probabilistic transition
structure of rockets to planets (10 trials). After this practice phase, they
had to answer a three-item basic comprehension test regarding the key
rules of the task. If participants failed to answer all questions correctly,
the experimenter would reiterate the key concepts of the paradigm to the
participant, allowing clarification.

Self-report psychiatric questionnaires, transdiagnostic dimensions,
and IQ. To quantify compulsivity in our sample, we applied a previously
defined transdiagnostic definition (Gillan et al., 2016) that is based on a
weighted combination of items drawn from nine self-report question-
naires (which were fully randomized). The questionnaires used were
the Alcohol Use Disorder Identification Test (AUDIT), to assess alco-
hol addiction (Saunders et al., 1993); the Apathy Evaluation Scale
(AES), to test for apathy (Marin et al., 1991); the Self-Rating
Depression Scale (SDS), to test for depression (Zung, 1965); the
Eating Attitudes Test (EAT-26), to test for eating disorders (Garner et
al., 1982); the Barratt Impulsivity Scale (BIS-11), to test for impulsiv-
ity (Patton et al., 1995); the OCI-R, to test for OCD (Foa et al., 2002);
the Short Scales for Measuring Schizotypy (SSMS), to test for schizo-
typy (Mason et al., 2005); the Liebowitz Social Anxiety Scale (LSAS),
to test for social anxiety (Liebowitz, 1987); and the trait portion of
the State-Trait Anxiety Inventory (STAI), to test for trait anxiety
(Spielberger et al., 1983). The short IQ evaluation was the
International Cognitive Ability Resource (I-CAR; Condon and
Revelle, 2014). Questionnaires were fully randomized in their presen-
tation. Correlations between questionnaire total scores ranged greatly
(r=—0.08 t0 0.79).
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We used weights derived from a previous study (Gillan et al., 2016)
to transform our scores as our sample size had too low a subject-to-vari-
able ratio (N = 192) for de novo factor analysis, compared with the origi-
nal study (N =1413). Consistent with the original study from which the
weights were derived (Gillan et al., 2016), item 13 on the SDS was mis-
takenly phrased “I am restless and can’t sleep” rather than “I am restless
and can’t keep still”. Prior studies have demonstrated the stability of the
factor structure in new data, with and without this error (Rouault et al.,
2018; Seow and Gillan, 2020). Consistent with prior work, the resulting
dimension scores were moderately intercorrelated (r=0.33-0.42).

Behavioral data preprocessing. Individual missed trials and trials
with very fast (<150 ms) reaction times at the first-stage (indicating
inattention or poor responding) were excluded from analyses. A total of
1082 trials (3.76%) were removed across participants [per participant
mean = 5.64 (3.76%) trials].

Quantifying model-based planning. The extent to which participants
exhibited model-based (goal-directed) behavior was estimated from the
stay/switch behavior of the first-stage choice (see Two-step reinforcement
learning task) using mixed-effects models written in R, version 3.6.0 via
RStudio version 1.2.1335 (http://cran.us.r-project.org; RRID:SCR_
001905) with the glmer() function from the Ime4 package (RRID:SCR_
015654), with Bound Optimization by Quadratic Approximation
(bobyqa) with 1le5 functional evaluations. The basic model tested
whether participants’ choice behavior to Stay (ie., repeat a choice they
made on the last trial; stay, 1; switch, 0) was influenced by the Reward of
the previous trial (rewarded, 1; unrewarded, —1), the Transition [com-
mon (70%), 1; rare (30%), —1] and their Interaction (Fig. 1). Within-
subject factors (the intercept, main effects of reward, transition, and their
interaction) were taken as random effects (i.e., allowed to vary across
participants). In R syntax, the model was: Stay ~ Reward * Transition +
(Reward * Transition + 1 | Subject).

As a model-based strategy depends on the history of reward and the
transition structure, the extent to which MB planning contributed to
choice was indicated by the presence of a significant interaction effect
between Reward and Transition. Split half-reliability, where the data
were split into two subsets (even vs odd trials) and correlated and
adjusted with the Spearman-Brown prediction formula, was estimated for
model-based planning. To test whether the compulsive dimension was
associated with model-based deficits, we included the total scores of all
three dimensions (AD, anxious depression; CIT, compulsive behavior and
intrusive thought; SW, social withdrawal) as a z-scored fixed effect predic-
tors into the basic model described above. The extent to which compulsiv-
ity is related to deficits in model-based planning was indicated by the
presence of a significant negative Reward * Transition * CIT interaction.

Sensitivity to task structure: reaction time (RT). Recent work has
shown that one effective way to index an individual’s sensitivity to the
structure of the task is via RTs (Shahar et al., 2019). In a similar fashion,
we conducted a mixed-effect linear regression of transition type
(Transition: common, —1; rare, 1) on second-stage RT (S2-RT). In the
syntax of R with the Imer() function and ImerTest package for statistical
tests (RRID:SCR_015656; as with for all subsequent mixed-effect mod-
els), the model was as follows: S2-RT ~ Transition + (Transition + 1 |
Subject). We asked whether compulsivity was associated with a reduc-
tion in RT sensitivity to the transition structure (RT-Trans) with an
interaction of the total scores of the three dimensions (AD, CIT, SW) as
z-scored fixed-effect predictors into the original model above, indicated
by the presence of a significant negative Transition * CIT interaction.
We report the standardized S -coefficients and SEs (applicable for all
subsequent regression analyses).

EEG recording and preprocessing. EEG was recorded continuously
using an ActiveTwo system (BioSemi) from 128 scalp electrodes
and digitized at 512Hz. The data were processed offline using
EEGLab (Delorme and Makeig, 2004; RRID:SCR_007292) version
14.1.2 in MATLAB R2018a (MathWorks; RRID:SCR_001622).
Data were imported using Al as a reference electrode, then down-
sampled to 250 Hz and bandpass filtered between 0.05 and 45 Hz.
Bad channels were rejected with a criterion of 80% minimum chan-
nel correlation. All removed channels were interpolated, and the
data were rereferenced to the average. To remove ocular and other
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non-EEG artifacts, independent component analysis was run on
continuous data with runica, principal component analysis option
on, and its components were rejected automatically with the
Multiple Artifact Rejection Algorithm (Winkler et al, 2011), an
EEGLab toolbox plug-in, at a conservative criterion of >90% artifact
probability. For all EEG analyses, other nonspecific artifacts were
removed after epoching using a criterion of any relevant electrode
examined showing a voltage value exceeding =100 pV. If participants
had a rate of >70% of total epochs failing this criterion, their data
were excluded from all analyses (N=4; as reported in Participant
exclusion criteria). The remaining participants had a mean of 147.46
epochs left (SD =2.98).

Single-trial analyses with EEG signals. All analyses described below
(including time-frequency single-trial analyses) were conducted with
mixed-effects models. For every single-trial analysis, we excluded single-
trial EEG estimates that were =5 SDs away from the mean of the group.
A maximum of <0.79% (n =215) of the total trials across all participants
were excluded for any measure. The regression MB estimate (defined in
Quantifying model-based planning) was used as the individual between-
subjects model-based estimate in all EEG analyses.

Sensitivity to task structure: P300 and transition type. The P300 has
well established sensitivity to stimulus probability (Polich and Margala,
1997), and prior research in healthy humans hypothesized the P300 as a
sensitivity marker of state transition knowledge on the two-step task,
although the directions of the reported effects have varied (Eppinger et
al., 2017; Sambrook et al., 2018; Shahnazian et al., 2019). Likewise, here
we sought to investigate whether the P300 would be sensitive to individ-
ual subjects’ sensitivity to transition structure and whether the effects
were linked to model-based planning/compulsivity.

We first measured the P300 component at four parietal electrodes
over the topography of the stimulus-locked peak [D16 (CP1), A3 (CPz),
B2 (CP2), A4); see Fig. 3A]. Data were epoched from —500 to 1700 ms
relative to the onset of the second-stage stimulus (aliens presented) and
baselined corrected from —200 to Oms. Stimulus-locked single-trial
P300 amplitudes were estimated as the mean of 100 ms around the
individual’s averaged latency of their positive peak within a search win-
dow of 250-1000 ms after stimulus onset. To eliminate amplitude biases
associated with RT differences. We subsequently aligned the epochs
[measured at A4, A5, A19 (Pz), A32, the response-locked peak; see Fig.
3B] to the time of choice. The response-locked P300 amplitude was
quantified as the mean amplitude —100 to 0 ms before response.
We also measured the build-up rate of the response-locked signal
as the slope of a straight line fitted to each single-trial waveform
using the interval -400 to -200 ms. To investigate whether the
P300 was sensitive to rare versus common transitions and whether
this depended on model-based control/compulsivity, we regressed
both stimulus- and response-locked P300 measures against transi-
tion type (Transition: rare, 1; common, 0) interacting with z-scored
MB estimates or compulsivity (CIT, controlled for the other psychiatric
dimensions AD and SW), taking Transition and the intercept as
random effects. In R syntax, the models were EEG ~ Transition *
MB + (Transition + 1 | Subj) and EEG ~ Transition * (CIT + AD
+ SW) + (Transition + 1| Subj), respectively.

Time—-frequency analysis. EEG data were epoched for both the first
and second stages of the task for time-frequency analyses [alpha power
(9-13 Hz) and theta power (4-8 Hz)] detailed in the subsequent sec-
tions, as follows: -1700 to 2200 ms stimulus locked at the first-stage
(rockets) as well as ~2000 to 3500 ms stimulus locked at the second stage
(aliens). Time-frequency calculations were computed using custom-
written MATLAB (MathWorks) routines. The EEG time series in each
epoch was convolved with a set of complex Morlet wavelets, defined as a
Gaussian-windowed complex sine wave: ¢¢2"ime™) (ime220°2) yhere
is the complex operator; time is time; and fis frequency, which increased
from 2 to 40 Hz in 40 logarithmically spaced steps. o defines the cycle
(or width) of each frequency band and was set to cycle/27rf, where cycle
increased from 4 to 12 in 40 logarithmically spaced steps in accordance
with each increase in frequency step. The variable number of cycles lev-
erages the temporal precision at lower frequencies and increases fre-
quency precision at higher frequencies. From the resulting complex
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signals of every epoch, we extracted estimates of power. Power is defined
as the modulus of the resulting complex signal: Z(time) (power time se-
ries: p(time) = real[z(time)]* + imag[z(time)]?).

The stimulus-locked first-stage epoch was baselined corrected to the
average frequency power for each frequency band examined (i.e., alpha
or theta) from —400 to —100 ms (corresponding to first-stage fixation),
while for the stimulus-locked second-stage epoch it used —1400 to
—1100 ms [corresponding to second-stage fixation, before presentation
of the colored squares (i.e., planets)] as the baseline. The latter baseline
window was chosen as the color of the planets was predictive of the ali-
ens; as such, choice-relevant neural activity may potentially emerge in
the interval between the onset of the planets and aliens. For single-trial
estimates of frequency power, as baselining with division induces spuri-
ous power fluctuations because of trial-to-trial fluctuations, power at
each individual trial was baseline-corrected with the linear subtraction
method (Cohen, 2014) with its corresponding baseline activity: [power
(time) — power(baseline)], at each frequency, at each channel. For visual-
ization purposes in the figures presented, power was normalized by con-
version to a decibel scale: (10*log10[power(time)/power(baseline)]).

Sensitivity to task structure: alpha power and transition type. We
were also interested in the idea that more sustained postplanning proc-
esses may be important for explaining model-based deficits in compul-
sive individuals. As such, we focused on the posterior alpha band (9-13
Hz), which, in addition to reflecting surprising outcomes (Fouragnan et
al.,, 2017), is considered a general marker of mental activity and attention
(Laufs et al, 2003; Klimesch, 2012) and is suppressed in conditions
where increased mental effort is needed (Stipacek et al., 2003; Pesonen et
al,, 2007). Much like the P300, we hypothesized that in model-based
planners alpha power would be greater following rare transitions.
Potentially reflecting more than just an acute surprise, we predicted that
alpha power would show a more sustained pattern of increased suppres-
sion on rare versus common trials, which, speculatively, are the sort that
might be required to correctly update the (alternative) top stage choices
following reward receipt on those rare trials. As a putatively core constit-
uent of model-based planning, we hypothesized that the degree of this
alpha sensitivity to transition type would be associated with individual
differences in model-based choice. Moreover, if individuals high in com-
pulsivity have an impoverished model of the task, we predicted they
would show reduced alpha sensitivity to the transition types.

Alpha power was measured at five parietal-occipital electrodes [A18,
A19 (Pz), A20, A21, A31; surrounding A20 electrode; see Fig. 8A] in an
epoch centered on the onset of the second-stage stimuli (aliens) and
baseline corrected with activity before the onset of the transition (plan-
ets; see Time-frequency analysis). Single-trial stimulus-locked alpha power
estimates were measured as the mean power = 250 ms around the average
latency of the negative peak, specific for each individual, and were found
within a search window of 0-1000 ms after stimulus (alien) onset. We addi-
tionally obtained alpha power estimates quantified across four 1000 ms roll-
ing time bins by the mean amplitude within each time window. We labeled
the time bins as they began from transition (planet presentation) to the
stimuli (aliens presentation) from 0 to 1000 ms, followed by three windows
spanning choice to reward from 1000to 2000 ms, 2000 to 3000 ms, and
3000 to 4000 ms. The same approach of mixed-effect models with P300 and
transition type was used to examine the influence of model-based estimates/
compulsivity on alpha power representation of rare versus common transi-
tions, except for where Transition was coded differently (rare, —1; common,
1) for ease of interpreting the direction of interaction effects.

Cognitive control: theta power during choice. Mid-frontal theta
power (4-8 Hz) is a well established EEG signature of exerting “cognitive
control” over lower-level impulses (Sauseng et al., 2010; Cavanagh and
Frank, 2014), including pavlovian biases (Cavanagh et al.,, 2013). We
therefore considered theta power as a candidate signature associated
with implementing model-based decisions and overriding more habitual
model-free choices. If deficits in model-based planning in highly com-
pulsive individuals arise because of a failure of implementation, theta
power during choice would be negatively linked to compulsivity.

For theta power (4-8 Hz), power estimates were measured at four
frontal midline electrodes [C21 (Fz), C22, C23 (FCz), Al (Cz); see Fig.
8B] at the first-stage (see Time-frequency analysis). The mean power *
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250 ms around the individual’s average latency of the positive peak
found within a search window 0-500 ms after stimulus onset was taken
for every epoch. Similar to preceding analyses, we tested whether single-
trial theta power at the time of first-stage choice was associated with
individual differences in MB choice, RT-Trans, or CIT (controlled for
AD and SW). We did this by taking each of them as a z-scored predictor
variables in their own linear regression model of trial-by-trial theta
power using the following notation in R, which allows for a random
intercept for each subject, as follows: S1-Theta ~ predictor variable +
(1| Subject). We also conducted a post hoc analysis to test whether theta
modulates participants’ trial-by-trial RT (S2-RT) sensitivity to transition
(Transition: common, 1; rare, —1) by testing a model of S2-RT ~
Transition * S1-Theta + (Transition * S1-Theta + 1 | Subject).

Specificity with psychiatric questionnaire scores versus transdiagnos-
tic dimensions. Additionally, we examined the advantages of using a
transdiagnostic definition of compulsivity as opposed to investigating
single psychiatric questionnaires. We repeated the above time-frequency
analyses (alpha and theta) with the individual total questionnaire scores
(QuestionnaireScore, z-scored) replacing the three psychiatric dimen-
sions (CIT, AD, and SW) in their respective regression models
detailed above. Separate mixed-effects regression models were per-
formed for each individual questionnaire as the correlation across
questionnaire scores were extremely high in some cases (ranging
from r = —0.09 to r = 0.79) as opposed to the transdiagnostic analy-
sis where all three dimensions [that correlated moderately
(r=0.33-0.42)] were included in the same model.

Supplemental analyses. Finally, to ensure the specificity of any
observed effects to the task events outlined above, we also tested for an
association between model-based planning and compulsivity with our
candidate EEG signatures in reverse. That is, we tested whether model-
based planning and compulsivity were linked to (1) alpha power at the
first stage or (2) theta power sensitivity to transition type at the second
stage. See Figure 8, A and B, for the respective analyses.

For all analyses, we report the standardized [3 -coefficients and SEs.

Data availability. The code and data to reproduce the main figures
are available at https://osf.io/mx9kf/.

Results

Compulsivity and model-based planning

Logistic regression analysis of choice behavior on the two-step
task revealed clear evidence for model-based planning in this
sample via a significant interaction between Reward and
Transition (8 = 0.20, SE=0.03, p <0.001; Fig. 1). Individual
subject coefficients for this interaction term were extracted and
used as an individual difference measure for EEG analysis (split
half-reliability, »=0.71). Consistent with prior work, there was
also evidence for model-free learning, where subjects were more
likely to repeat choices if they were followed by reward (main
effect of Reward: 8 = 0.55, SE=0.05, p <0.001), and an overall
tendency to repeat choices from one trial to the next
(Intercept: B = 1.46, SE=0.07, p <0.001). Importantly, we
replicated prior work in finding that individual differences
in compulsivity and intrusive thought (hereafter called
“compulsivity”) were associated with reduced model-based
planning (8 = —0.07, SE=0.04, p=0.05; Fig. 24), while
anxious depression (8 = 0.05, SE=0.04, p=0.14) and social
withdrawal were not (8 = —0.01, SE=0.04, p=0.73).

RT sensitivity to task structure

Someone who is aware of the task structure should expect to be
presented with the second-stage state that is most commonly
associated with their first-stage choice. As such, when a rare tran-
sition occurs, they will react to this violation in expectancy,
requiring more time to respond and “replan” (Decker et al,
2016). We therefore hypothesized that participants would have a
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slower RT after a rare versus common transi-
tion and that this difference would be greater
in participants who exhibit the most model-
based behavior. We found support for both
hypotheses; participants had a slower mean
RT for rare versus common trials after transi-
tion (8 = 0.17, SE=0.01, p < 0.001; Fig. 2B)
and this effect was larger in those with higher
levels of model-based control (8 = 0.28,
SE=0.07, p <0.001). Crucially, we found that
this effect was reduced in highly compulsive
individuals (8 = —0.03, SE=0.01, p=0.01;
Fig. 2C). Prior studies using this task did not
test for an association between compulsivity
and this RT cost, but the data are readily
available. To test the robustness of this find-
ing, we therefore reanalyzed a prior dataset
(N'=1413) collected entirely online (Gillan et
al., 2016) using a similar variant of the two-
step task and the same measure of compulsiv-
ity. We replicated this effect (8 = —0.02,
SE =0.004, p < 0.001; Fig. 2C). This is, to our
knowledge, the first evidence that compulsiv-
ity is associated with muted behavioral reac-
tions to violations in transition expectancy,
which is suggestive of disruption in the qual-
ity of the mental model of the task itself.

>

Model-based Learning
(% Change)

RT-Trans
(% Change)

P300 sensitivity to task structure

The P300 or P3b has well established sensitiv-
ity to stimulus probability, exhibiting larger
peak amplitudes for less probable stimuli
(Polich and Margala, 1997). Prior research in
healthy humans thus hypothesized that the
P300 may be a marker of sensitivity to state
transitions on the two-step task, though these
studies have yielded inconsistent results, with
some finding greater P300 amplitudes for
rare versus common transitions (Sambrook et
al., 2018; Shahnazian et al., 2019) and one finding the opposite
(Eppinger et al,, 2017). Here, we examined the second-stage
stimulus-locked P300 and found a significant main effect of tran-
sition type (B8 = 0.03, SE=0.01, p=0.02), consistent with the
studies by Sambrook et al. (2018) and Shahnazian et al. (2019)
whereby greater P300 amplitude was observed after rare versus
common transitions (Fig. 3A). However, this differential rare
versus common signal was not larger in individuals high in
model-based planning (8 = 0.01, SE=0.01, p=0.35), nor did it
show any association to compulsivity (8 = 0.02, SE=0.02,
p=024).

Recently, it has been suggested that P300 is more accurately
characterized as a response-locked signal (O’Connell et al.,, 2012;
Twomey et al., 2015). This raises the possibility that the stimu-
lus-locked signal measurements favored in previous studies of
the two-step task may have yielded cross-condition effects that
were partly or entirely determined by RT differences. In light of
these considerations, we complemented the stimulus-locked
analyses with a response-locked version. When we repeated the
analysis using response-locked P300 amplitude, we found that
the transition effect was no longer significant and its direction
was in fact reversed (8 = —0.02, SE=0.01, p=0.23; Fig. 3B).
Again, there was no association with model-based planning (8 =
—0.01, SE=0.01, p=0.49) or compulsivity (8 = 0.01, SE=0.02,

Figure 2.
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Model-based behavior and reaction times in compulsivity. A, Model-based control estimated by a logistic regression
of choice behavior with one-trial back reward and transition. Regressions were conducted in a model with all three dimensions:
anxious-depression (AD), compulsive behavior and intrusive thought (CIT), and social withdrawal (SW). Model-based control is
reduced in highly compulsive individuals. B, Participants have on average a longer mean RT at second-stage choice after a rare
transition than after a common one (paired £ test: 197 = 16.16; 95% confidence interval, 79.85-102.05; p << 0.001). Circles in
the raincloud plot (Allen et al., 2019) depict the mean RT of rare or common trials for each individual, with black marker indicat-
ing grand average mean and SD . G, RT-Trans is diminished in highly compulsive individuals. We replicated the same effect in a
prior dataset of N'= 1413 (Gillan et al,, 2016). For A and , error bars denote SE. The y-axes indicate the percentage change in
model-based planning/RT-Trans as a function of 1 SD of psychiatric dimension scores. *p < 0.05, ***p << 0.001.

p=0.67). We also examined the build-up rate of the response-
locked P300 as a measure of how quickly evidence for the deci-
sion was accumulated (Kelly and O’Connell, 2013). The build-up
rate was steeper for common versus rare trials (8 = —0.04,
SE=0.01, p=0.002), but this measure was again not linked to
model-based planning (8 = —0.01, SE=0.01, p=0.46) or com-
pulsivity (8 = 0.01, SE=0.02, p =0.25). Thus, we concluded that
the P300 may not provide the most reliable or sensitive measure
of neural sensitivity to task structure.

Alpha power sensitivity to task structure

Event-related potentials principally reflect activity changes
that are short lived and strictly time-locked to particular
events (Makeig and Onton, 2012). We investigated whether
time-frequency measures such as alpha power (9-13 Hz),
which has been previously linked to OCD (Perera et al,
2019), would allow us to capture a more sustained neural
representation of the transition structure of the task.
Specifically, we examined whether parietal-occipital alpha
power locked to the second-stage stimulus was able to dis-
tinguish between rare and common transitions across a se-
ries of time bins in our task. This allowed us to ascertain
not just whether participants showed sensitivity to task
structure following a transition, but for how long they
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Control analyses demonstrate that this transi-
tion sensitivity effect is present even if alpha esti-
mates were locked to response times (Fig. 5) and
is not found with second-stage theta power
(which we examine later in the context of cogni-
tive control at first-stage; see Fig. 8B). In terms
of specificity to compulsivity, there were no asso-
ciations to the other two transdiagnostic dimen-
sions, anxious depression (8 = 0.007, SE=0.01,
p=047) or social withdrawal (8 = —0.001,

SE=0.01, p=0.91). When we examined the asso-
ciation between alpha band sensitivity to transi-
tion structure and all nine of the original
psychiatric questionnaire total scores, we found
diminished sensitivity in those with elevated
OCD (B = —0.02, SE=0.01, p=0.006) and eat-
ing disorder symptoms (8 = —0.02, SE=0.01,
p=0.05; Fig. 6).

Theta power at the time of choice

Finally, moving beyond participants’ sensitivity
to the transition structure of the task, we tested
whether during the crucial time of first-stage
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Figure 3.  Second-stage P300 and transition type. A, Grand average waveforms of rare and common trials stimu-

lus locked to second-stage stimuli (aliens). Waveform is baselined —200 to 0 ms. The mean amplitude for stimulus-
locked P300 was obtained over four centro-parietal electrodes [D16 (CP1), A3 (CPz), B2 (CP2), A4], as indicated by
the white dots in the topography plot. This transition effect was no longer significant when the second-stage P300
signal was response locked (Fig. 3B). B, Topography plot represents the P300 component —100 to 0 ms before sec-
ond-stage response. White dots indicate parietal electrode sites [A4, A5, A19 (Pz), A32] where the positive compo-
nent was measured. Grand average second-stage P300 is plotted response-locked comparing the waveforms
following rare versus common transitions. Single-trial analyses indicate that the P300 amplitude, measured as the
mean amplitude —100 to Oms (shaded gray), does not distinguish transition type (8 = —0.02, SE=0.01,

p=0.23).

sustained that representation (e.g., as they made subsequent
choices and received a reward). We reasoned that short-
lived responses might reflect surprise stemming from arriv-
ing at a rare versus common state, but more sustained pat-
terns could reflect postplanning processes required to
update model-based top stage choice values.

In line with our hypothesis, alpha power overall differentiated
between the two transition types (8 = 0.02, SE=0.01, p < 0.001),
such that parietal-occipital alpha was more suppressed after rare
versus common transitions (Fig. 4A). We found that in a manner
sustained over three rolling time bins beginning from the state
transition (planet; 0-1000ms: 8 = 0.02, SE=0.01, p=0.03) to
the end of choice feedback (1000-2000 ms: 8 = 0.02, SE=0.01,
p=0.03; 2000-3000 ms: 3 = 0.01, SE=0.02, p < 0.05), individu-
als high in model-based control showed the largest alpha power
differentiation (Fig. 4B). Importantly, this same signature was
negatively related to compulsivity, with a significant association
observed at the time after state transition (0-1000ms: 8 =
—0.03, SE=0.01, p=0.007; Fig. 4C). Overall second-stage alpha
power was also associated with compulsivity (8 = —0.09,
SE=0.03, p<0.001); however, this effect was not related to
model-based control (8 = 0.03, SE=0.02, p=0.25) nor RT dif-
ferences in transition types (8 = —0.03, SE=0.02, p=0.20),
highlighting that it is the sensitivity of alpha to task structure,
not alpha overall, that best tracks model-based performance at
this task.

0 choice, when model-based planning manifests in
behavior, we could detect differences in a neural
signature previously linked to cognitive control,
mid-frontal theta (4-8 Hz). As theta has previ-
ously been shown to reflect computations crucial
to goal-directed action (Sauseng et al., 2010;
Cavanagh et al, 2013; Cavanagh and Frank,
2014), we hypothesized that model-based plan-
ning would be positively linked to theta power
while compulsivity would be negatively associ-
ated with the neural oscillation.

We tested this using a mixed-effects regres-
sion analysis with trial-by-trial estimates of theta
power as the dependent variable and individual
differences in model-based choice (coefficients of the effect of
reward * transition from the logistic regression of stay/switch
behavior) as the predictor variable. Theta power during choice
was not significantly associated with model-based planning (8 =
0.02, SE=0.01, p=0.11), though, the trend was in the expected
direction. When we used RT sensitivity to transition structure,
instead of model-based choice, as an alternative manifest variable
of the brain’s capacity for model-based planning, we found a sig-
nificant positive relationship with theta (8 = 0.04, SE=0.01,
p=0.002), indicating that those participants who had higher
theta power during their first-stage choice also had larger differ-
ences in their RT between rare and common transitions at the
second stage. Finally, using the same analysis approach, this time
with individual differences in compulsivity as the predictor vari-
able, we found an overall effect of lower theta at the time of
choice in individuals high in compulsivity (8 = —0.03, SE=0.01,
p=0.04; Fig. 7A). Similar to alpha power modulations, reduced
theta power at the first stage was linked to more than one ques-
tionnaire score—schizotypy (8 = —0.03, SE=0.01, p=0.01),
depression (8 = —0.03, SE=0.01, p=0.02) and OCD (B =
—0.03, SE=0.01, p=0.03)—and were associated with the com-
pulsive dimension (8 = —0.03, SE=0.01, p = 0.03; Fig. 7B).

One explanation for the somewhat closer association between
theta and RT sensitivity (compared with model-based choice) is
that theta at the time of choice might reflect participants’ mental
simulation of future states. We tested this post hoc using a
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within-subject analysis by examining
whether on trials where theta was highest, 2

>

Seow et al. e Task Structure Representations in Compulsivity

subjects showed even greater RT sensitiv- _ Ei::mon
ity to transition type. We did not find evi- % c 1
dence in support of this within-subject; the - o
interaction between theta and transition g G 0
type was not significant (8 = 0.004, & §
SE=0.01, p =0.57). Finally, by way of con- s~
trol analysis, we tested whether alpha <_c(>. °©
power at first stage (Fig. 8A) was associ- -2
ated with compulsivity (8 = —0.14,
SE=0.05, p=0.002), model-based plan- B
ning (8 = 0.03, SE=0.04, p=0.45), or RT 10 ‘
differences in transition types (B8 = _ [‘cI)?:chABB
—0.004, SE=0.04, p=0.92), but none were N T Y ) N High - Low MB
significant. S g 0.5

o s ¢
Discussion 28 ool .
Model-based planning deficits linked € o
to compulsivity have been theorized Ss
to arise from issues with the balance/ % 05
arbitration between competing model-
based and model-free influences dur- C | | | | |
ing choice (Gillan and Robbins, 2014; 19 [ | | | i
Lee et al., 2014; Gruner et al., 2016; ' [ [ [ ‘ e E')%C‘é?
Lloyd and Dgyan, 2019), bgt these pre- T [ [ ‘ - High - Low CIT
sumed planning failures might, at least 5T 05
partially, arise from an impoverished & E—: ’ ’ '
internal model of task structure. Here, 5 g [ |
we found that highly compulsive indi- Ea oo
viduals lacked neural and behavioral gﬁ I IR AN I
sensitivity to state transition probabil- = <—% AR [ \ |
ities, evidenced in their RT and parie- ~0:3 | | \ |
tal-occipital alpha power suppression ! ! ! ! |
in response to unexpected transitions. Trangﬁon sgc:rgjogage 2000 Czso??e 30|00 4900
Speaking to the potential for more “planets”  Stimuli Feedback | Time (ms)
general cognitive control problems to “elienst Reward

also contribute to model-based deficits,
we additionally took mid-frontal theta
as its candidate neural signature and
observed that highly compulsive indi-
viduals had reduced theta when they
made their first-stage choices. These
findings have important implications
for refining theories of compulsivity,
which may be associated with more
fundamental problems in constructing
and maintaining a model of the causal
structure of the environment necessary
for goal-directed “model-based” con-
trol than just cognitive control failures.

In line with prior research, participants
exhibited longer RTs following rare transitions, which was also
previously shown to relate to model-based planning (Deserno et
al,, 2015; Decker et al., 2016; Shahar et al,, 2019). Crucially, the
opposite was true of compulsivity, with the most compulsive
individuals showing the smallest difference in RT between these
trial types. This finding was robust—the effect replicates in a for-
mer dataset (N=1413) tested online (Gillan et al., 2016). This
may reflect a number of processes, including uncertainty arising
from the presentation of unexpected options (Deserno et al.,
2015) lower discriminability of the options presented following

Figure 4.

Stimulus-locked alpha power at transition. Alpha power was measured across four time bins of 1000 ms each
separated by vertical dashed lines, starting from the transition (0 ms) until after reward (4000 ms), at parietal-occipital elec-
trode sites (Fig. 84). A, Grand average second-stage alpha power waveforms between rare and common transitions.
Continuous analyses revealed that the alpha difference (rare — common) is significant in time bins 2-3 (all 3 values >
0.03, SE << 0.01, p < 0.001). B, Alpha power difference between transitions (common — rare) is depicted above by compar-
ing top/bottom 50th percentile (N = 96/group) of participants grouped by MB estimates. Continuous analyses revealed that
«a difference (rare — common) is enhanced for more model-based participants in time bins 1-3 (all B values > 0.01,
SE << 0.02, p < 0.05). €, Alpha power difference between transitions (common minus rare) comparing top/bottom 50th per-
centile (N = 96/group) of participants grouped by or compulsivity (CIT). Continuous analyses revealed that acthe alpha differ-
ence (rare — common) is diminished for more compulsive participants in time bin 1 (8 = —0.03, SE=0.01, p=0.007).
Stars in time bins indicate significance from continuous analyses. *p << 0.05, **p < 0.01, **p << 0.001. These second-stage
transition effects were specific to alpha power and were not present with theta power (Fig. 88).

rare transitions (Shahar et al,, 2019) or, as per our original hy-
pothesis, a reduced awareness of the task structure (Decker et al.,
2016) including action-state transitions necessary to build an
accurate causal model of the world.

Moving beyond behavior, analysis of alpha power revealed a
similar picture. Much like RT, alpha suppression at the second
stage was sensitive to transition probabilities, with rare than
common transitions associated with greater alpha suppression,
possibly reflecting the greater mental effort required after rare
transitions to call to mind action values associated with the unex-
pected options presented. In line with this, previous studies using
n-back paradigms have shown greater parieto-occipital alpha
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Figure 5. Grand average waveforms of rare versus common transitions for second-stage

response-locked alpha power. RT differences between rare and common transitions were
only significantly associated with stimulus-locked alpha power differentiation of states in the
time bin before reward presentation (2000-3000ms: 8 = 0.01, SE=0.01, p=0.04; all
other time bins: p values > 0.30; Fig. 4). To complement our main result based on stimulus-
locked alpha, we repeated the transition analysis with single-trial response-locked alpha esti-
mates (measured as the mean of =100 ms centered around each participant’s averaged la-
tency of the negative peak), which also yielded a significant association overall effect (8 =
0.03, SE=0.01, p << 0.001; Fig. 5). Similar to stimulus-locked alpha, rare transitions showed
greater depression of alpha during choice selection for rare versus common transitions, sug-
gesting that the alpha transition effect is not explained by RT.

suppression when working memory load increases (Stipacek et
al., 2003; Pesonen et al., 2007). Importantly, this mental activity
was sustained beyond second-stage choice right up until reward
receipt, which might reflect that one must not only replan, but
also that task structure information is used together with trial
outcome to update first-stage choices. Consistent with this inter-
pretation, individual difference analysis demonstrated that this
difference in alpha suppression had important behavioral corre-
lates. Model-based planners showed the largest differences in
alpha power between transition types, while higher levels of com-
pulsivity were associated with less of a distinction in alpha power
between transition types. Building on the RT findings, we present
neural evidence that compulsivity may be characterized by fail-
ures in representing the kind of causal action-state relations nec-
essary to behave in a model-based manner. The notion that
sustained alpha differentiation across common/rare trials reflects
a postplanning process is speculative, and future research should
aim to distinguish this from the effects of surprise.

Our data do not exclude the possibility that compulsive indi-
viduals also face issues with implementing model-based planning
even when they have the requisite state knowledge. Indeed, we
also found that mid-frontal theta, which is thought to support
adaptive cognitive control in a variety of contexts (Cavanagh et
al., 2012), was reduced in compulsive individuals during first-
stage choice. In addition to being negatively related to compul-
sivity, theta power was also elevated in those whose RT was most
sensitive to task structure and trended toward being elevated in
model-based planners, supporting the view that theta activity at
the time of choice at least in part reflects mental operations rele-
vant to executing a model-based plan. However, disentangling
the specific theta-driven processes is beyond the scope of our
current experimental design. Theta power at choice time could
reflect a host of executive processes such as selecting between
competing options (including suppressing distracting stimuli;
Nigbur et al., 2011), inhibiting unhelpful associations (Cavanagh
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Figure 6.  Second-stage alpha power sensitivity to transition at time bin 1 (0—1000 ms)
with psychiatric symptoms and dimensions (anxious-depression (AD), compulsive behavior
and intrusive thought (CIT) and social withdrawal (SW)). Alpha power differentiating rare
versus common transitions was associated with both OCD and eating disorder symptoms.
The transdiagnostic analysis showed the effect was captured by a compulsive dimension
(CIT). The y-axis shows the percentage change in alpha power sensitivity to transition type
(%) as a function of 1 SD increase of psychiatric questionnaire/dimension scores. Error bars
denote SEs. *p < 0.05, **p < 0.01.

et al.,, 2013), and the mental simulation/search of future states
(Doll et al., 2015).

Previous EEG studies of the two-step task (Eppinger et al.,
2017; Sambrook et al., 2018; Shahnazian et al., 2019) showed that
the P300 was associated with state transitions. However, the
inconsistent effect direction raises doubt as to how these differ-
ences should be interpreted. Recent literature conceptualizes the
P300 as an evidence accumulation process that builds toward a
peak at choice time (Twomey et al., 2015), and, as such, variances
in RT will influence the latency of the stimulus-locked P300 am-
plitude peak (Kelly and O’Connell, 2015). Our results comparing
stimulus-locked and response-locked analysis approaches sug-
gest that it is the build-up rate of the P300 that is sensitive to
transitions and that previously reported stimulus-locked ampli-
tude modulations are attributable to RT differences. We also
found that none of the analyzed P300 metrics were predictive of
individual differences in model-based planning.

In this study, we used a transdiagnostic compulsive dimen-
sion that was previously shown to provide the best mapping to
model-based deficits in an online general population sample
(Gillan et al., 2016). We replicated this finding here and extend it
to EEG correlates of behavior, where our alpha and theta modu-
lations were relatively nonspecific with respect to total scores on
the set of questionnaires we administered, compared with our a
priori dimensional factor compulsivity. This research pipeline
illustrates how mental health dimensions may be defined in large
online samples and then used in smaller studies that can avail of
the harder tools of neuroscience, like EEG (Gillan and Seow,
2020). While the applicability of these findings to diagnosed
patients cannot be established here, recent work suggests that the
core mechanisms we capture in general population samples are
broadly equivalent, at least in compulsivity. For example, model-
based deficits in diagnosed patients are also linked to individual
differences in self-reported compulsivity irrespective of their spe-
cific diagnosis (e.g., whether they had an OCD diagnosis; Gillan
et al,, 2020). As such, there is growing evidence that the specific
associations between cognition and compulsivity observed in the
general population are likely clinically relevant.

Overall, our findings suggest that model-based difficulties in
compulsivity may be linked to an impoverished mental model of
environmental contingency—an interpretation bolstered by
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recent findings implicating diminished
transition learning in compulsivity in a
task devoid of value representations
(Sharp et al,, 2020). Future work should
carry on in this vein, perhaps asking: are
failures in memory encoding or retrieval
responsible for model-based planning
deficits in compulsivity? Are these effects
specific to learning about actions and
their consequences, or more distributed
failures to learn about causality?
Moreover, there are several facets of
model-based planning beyond the learn-
ing/maintaining of the transition struc-
ture that may also be implicated, like the
inhibition of opposing model-free signals
at choice time, forward simulation of
future states, attention to reward receipt
and using that information for updating
the action value options. Understanding
these factors will provide a clearer picture
of the neural mechanisms that lead
to compulsive disorders and, hopefully,
provide scope for intervening more effec-
tively. The clear advantage of the use of
EEG here is its temporal resolution,
which was crucial in allowing us to cap-
ture the sustained differentiation of alpha
power to transitions. With this, of course,
comes with a lack of spatial precision.
Future work combining fMRI and EEG
might prove fruitful, particularly for dis-
secting potentially multiple processes at
the time of first-stage choice. Finally,
there is growing recognition that the
dichotomization of two decision systems
is oversimplified; model-based/model-
free processes are partially synergistic,
overlapping in certain situations and/or
hierarchically organized (Cushman and
Morris, 2015; Balleine and Dezfoul,
2019; da Silva and Hare, 2020). Future
research must go beyond dichotomized
frameworks to advance our mechanistic
understanding of how deficits in building
a model of the world translate to behav-
ior irregularities such as compulsive
habits.

Our findings may have implica-
tions for understanding how compul-
sive behaviors and obsessive beliefs develop
in concert, in a more integrated fashion
than previously considered. Clinical cog-
nitive models of OCD have long pre-
sumed that compulsions are performed
to reduce anxiety induced by obsessive
beliefs (Salkovskis and McGuire, 2003;
Fisher and Wells, 2005), in contrast to a
more recent hypothesis suggesting that
obsessions are post hoc rationalizations
to explain the performance of compul-
sive behavior (Gillan and Sahakian,
2015). These data may suggest that the
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Figure 7.  First-stage theta power with psychiatric symptoms and dimensions (anxious-depression (AD), compulsive behavior
and intrusive thought (CIT) and social withdrawal (SW)). Theta power was measured at mid-frontal electrode sites (Fig. 88). A,
Grand average waveforms of first-stage theta power comparing the top/bottom 50th percentile (V= 96/group) individuals
based on their compulsivity (CIT) estimates. Single-trial analyses (with all participants) indicate that highly compulsive individu-
als exhibit a decrease in theta power (3 = —0.03, SE=0.01, p = 0.03). In contrast, first-stage alpha power was not associated
with compulsivity (Fig. 84). B, Reduced theta power at first stage was linked to several questionnaire scores, but the effect
was ultimately specific to compulsivity. The y-axis shows the change in theta power (in square microvolts) as a function of a 1
SD increase of psychiatric questionnaire/dimension scores. Error bars denote SEs. *p << 0.05.
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Figure 8.  Supplemental analyses. 4, First-stage stimulus-locked alpha power. Topography and line plot (locked to first-stage

rockets) show alpha depression during the making of a choice at the first stage. White dots on the topography plot indicate pa-
rietal-occipital electrode sites [A18, A19 (Pz), A20, A21, A31] where alpha was measured for both first and second stages. B,
Second-stage stimulus-locked theta power. Topography plot shows theta power increase after stimulus-onset at the mid-frontal
scalp. White dots indicate electrode sites [(21 (Fz), (22, (23 (F(z), A1 ((z)] where theta power was measured for both first
and second stages. Theta power at the first-stage was not associated with compulsivity (3 = —0.004, SE=0.02, p = 0.84) or
model-based planning (8 = 0.01, SE=0.02, p=0.51). Theta power was also not linked to transition type (8 = —0.01,
SE=10.01, p=10.20) and had no transition interaction effects with compulsivity (8 = 0.01, SE=0.01, p=0.14) or model-
based planning (8 = —0.004, SE=0.01, p = 0.65).
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hard distinction between obsessions and compulsions might be
less clear than these models propose. Failures in accurately repre-
senting the relationship between actions and their consequences
may be a common source of both compulsive habitual behaviors
in OCD and also faulty metacognitive beliefs that form the basis
of obsessions. One might imagine that with a less stable world
model representation, the more likely it is that a patient may de-
velop faulty beliefs and rely on habitual representations.
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