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Abstract

The Missouri River Basin (MORB) has experienced a resurgence of grassland conversion to crop 

production, which raised concerns on water quality. We applied the Soil and Water Assessment 

Tool (SWAT) to address how this conversion would impact water quality. We designed three crop 

production scenarios representing conversion of grassland to: (a) continuous corn; (b) corn/

soybean rotation; and (c) corn/wheat rotation to assess the impact. The SWAT model results 

showed: (a) the lower MORB produced high total nitrogen (TN) and total phosphorus (TP) load 

before conversion (baseline) due mainly to high precipitation and high agricultural activity; (b) the 

greatest percentage increases of TN and TP occurred in the North and South Dakotas, coinciding 

with the highest amount of grassland conversion to cropland; and (c) grassland conversion to 

continuous corn resulted in the greatest increase in TN and TP loads, followed by conversion to 

corn/soybean and then conversion to corn/wheat. Although the greatest percentage increases of TN 

and TP occurred in the North and South Dakotas, these areas still contributed relatively low TN 

and TP to total basin loads after conversion. However, watersheds, predominantly in the lower 

MORB continued to be “hotspots” that contributed the greatest amounts of TN and TP to the total 

basin loads—driven by a combination of grassland conversion, high precipitation, and loading 

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and 
reproduction in any medium, provided the original work is properly cited.

Correspondence to: Y. Yuan, yuan.yongping@epa.gov. 

Supporting Information:
Supporting Information may be found in the online version of this article.

EPA Public Access
Author manuscript
J Adv Model Earth Syst. Author manuscript; available in PMC 2022 May 28.

About author manuscripts | Submit a manuscript
Published in final edited form as:

J Adv Model Earth Syst. 2021 May 28; 13(6): . doi:10.1029/2020ms002284.E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



from pre-existing cropland. At the watershed outlet, the TN and TP loads were increased by 6.4% 

(13,800 t/yr) and 8.7% (3,400 t/yr), respectively, during the 2008–2016 period for the conversion 

to continuous corn scenario.

Plain Language Summary

This is a large-scale environmental assessment of how land use/land cover changes impact water 

quality. The US Midwest has undergone a cropland increase of corn and soybean production from 

2008 to 2016. Most of this cropland increase has displaced grasslands, which has raised concerns 

on water quality and ecosystems. In this study, a large-scale watershed model, the Soil and Water 

Assessment Tool (SWAT), was applied to the Missouri River Basin (MORB), where some of the 

highest rates of grassland conversion to cropland have occurred. The SWAT model was used to 

quantify water quality changes resulting from grassland conversion to cropland. Results from this 

study showed that conversion from grassland to cropland increased nutrient loading to 

waterbodies. In addition, this study identified MORB areas within states such as Iowa, Missouri, 

Nebraska, and Kansas as producing the greatest amounts of nutrient loading due to a combination 

of grassland conversion, high precipitation, and high percentage of pre-existing cropland.

1. Introduction

The US Midwest has undergone a profound shift in land use and land cover (LULC) in 

recent decades. After a 25-year decrease from 1982 to 2007, total cropland increased by a 

net of 3.9 million acres between 2007 and 2012 (US Department of Agriculture [USDA], 

2015). Most of this increase came from grasslands, including pasture and hay (Arora & 

Wolter, 2018; Spawn et al., 2019; USDA, 2015). Lark et al. (2015) estimated a net increase 

of 3 million acres of total cropland between 2008 and 2012 nationally. Most of these newly 

converted lands (77%) were former grasslands, and the first crop planted (or “breakout 

crop”) consisted primarily of corn (27%), wheat (25%), or soybeans (20%) (Lark et al., 

2015). This increase in cropland is still relatively small compared to the total US agricultural 

land base yet, at its maximum, roughly equals the size of New Jersey. Moreover, much of 

this increase has occurred on marginal lands, which generally are more erodible and less 

productive as defined by the USDA’s Natural Resources Conservation Service (NRCS), with 

potentially larger environmental impacts relative to prime agricultural fields (Lark et al., 

2015, 2020).

Some of these LULC changes may be associated with biofuel feedstock production of corn 

and soybeans. For example, ethanol production increased from 2.1 to 14.3 billion gallons 

during 2002–2014, and almost all gasoline sold in the US contains ethanol, with more than 

90% of it produced from domestically grown corn grain (Hoekman et al., 2018). Similarly, 

biodiesel production from soybeans increased nearly 160-fold from 2001 to 2013 (Energy 

Information Administration, 2013). Furthermore, among these LULC changes, higher rates 

of land conversion were found around biorefineries (Wright et al., 2017), which suggested a 

potential contributing role of biofuels in the LULC trends observed. In addition to biofuels, 

other socio-economic factors such as population pressure, historically high corn prices in the 

2007–2008 time period (USDA, 2015) and policy change also likely affected the LULC 

dynamics.
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Studies focused on the environmental implications of increasing biofuel production have 

shown that LULC changes, particularly grassland conversion to crops, would increase 

nutrient loadings to surface waters (Farrell et al., 2006; Taguas et al., 2017; Wu & Zhang, 

2015; Zhang et al., 2021), which have been a great concern worldwide. Water bodies and 

coastal areas around the world are threatened by excessive amounts of nutrients from 

upstream watersheds, which can cause rapid proliferation of algae as seen in areas of Lake 

Erie and the Northern Gulf of Mexico (Alexander et al., 2008; Jones et al., 2018; NSTC, 

2000; Rabalais et al., 2001; USEPA, 2014; Yuan et al., 2018). These algal blooms negatively 

impact drinking water sources, aquatic species, and recreational services of water bodies by 

producing toxins, also called harmful algal blooms. Thus, quantifying how the increased 

crop production would impact nutrient loadings and finding ways of reducing nutrient losses 

from agricultural fields are of paramount importance.

A number of studies have attempted to evaluate the changes of water quantity and quality in 

response to different future scenarios of LULC driven by biofuel development (Deb et al., 

2015; Gu et al., 2015; Panagopoulos et al., 2014, 2017; Wu & Zhang, 2015; Yu & McCarl, 

2018). These research studies assessed the potential environmental impacts of possible 

biofuel scenarios and provided useful information for selecting environmentally friendly 

bioenergy crops. For example, Panagopoulos et al. (2014) evaluated the potential effects of 

four different future scenarios on water quality for the Upper Mississippi River Basin 

(UMRB). The four scenarios evaluated were: (a) expansion of continuous corn across the 

entire basin; (b) adoption of no-till practices on corn/soybean production; (c) conversion of 

corn/soybean rotation to corn, soybean, and three years of alfalfa; and (d) implementation of 

winter cover cropping. Their results indicated that continuous corn would result in increased 

N loss to water bodies while other measures were environmentally effective for reducing 

sediment, N, and P losses. Deb et al. (2015) showed that converting cropland to switchgrass 

could reduce erosion and N loading. Yu and McCarl (2018) analyzed the effects of land use 

change on water quantity and quality based on a land use model, the Forest and Agricultural 

Sector Optimization Model with Greenhouse Gases (FASOM-GHG), and showed that 

increases in crop land use significantly degrade water quality. Wu and Zhang (2015) also 

found that increased crop land would degrade water quality, but increasing the amount of 

switchgrass acreage would mitigate the nutrient loads. Those studies based on future 

alternative scenarios were helpful in understanding potential environmental impacts of 

LULC changes. However, the environmental impacts, particularly water quality impacts, that 

have already resulted from past/ongoing LULC changes have not yet been studied. 

Therefore, the goal of this study was to evaluate water quality impacts due to cropland 

expansion driven by biofuel and commodity market that have already taken place. These 

estimates will be critical in determining future directions in targeting biofuel production 

schemes.

Monitoring programs are often used to evaluate land management effects on nonpoint source 

pollution (Shih et al., 1994). Long-term monitoring better reflects multi-year climatic 

variability and helps assure that a range of events and conditions are covered (Borah & Bera, 

2003; Stone et al., 2000). Because long-term monitoring is expensive and often limited by 

personnel and financial resources, short-term monitoring with complimentary simulation 

modeling may be used as an alternative for environmental assessment.
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Models such as the USDA-Agricultural Research Service Soil and Water Assessment Tool 

(SWAT) (Gassman et al., 2007; Neitsch et al., 2011) have been developed to aid in the 

evaluation of watershed response to agricultural management practices. The model has been 

widely applied to evaluate best management practices, alternative land use/land 

management, and climate change on runoff and pollutant losses to streams within a 

watershed (Baffaut et al., 2015; Chaplot et al., 2004; Du et al., 2018; Gassman et al., 2007; 

Johnson et al., 2015; Niraula et al., 2013; Rajib & Merwade, 2017; Santhi et al., 2006; Vaché 

et al., 2002). The model has also been used to explore the relationships between potential 

increases in biofuel production, land conversion, and impacts on water quality (Gassman et 

al., 2007; Panagopoulos et al., 2017; Wu & Zhang, 2015). Thus, the SWAT model was 

selected for this study. The detailed objectives of this study were to: (a) quantify nutrient 

loading changes for the entire Missouri River Basin (MORB); (b) estimate changes in water 

quality metrics per unit area of land use; and (c) identify hot spots experiencing the greatest 

increase in nutrient loadings. Results from this study will help better plan future biofuel 

targets. In addition, government incentives may be needed to reach the targets without 

further degrading water quality.

2. Methods and Procedures

2.1. Study Area

The MORB was selected to estimate the water quality changes resulting from the recent shift 

in land use from grassland to crops because of the following reasons: (a) the MORB is one 

of the largest sources of nutrients to the Gulf of Mexico due to increased fertilizer runoff 

(Demissie et al., 2012; Wu et al., 2012); and (b) some of the highest rates of grassland 

conversion have occurred within this watershed, particularly along the western edge of the 

Corn Belt in the eastern Dakotas (Lark et al., 2015). The watershed covers approximately 

1.3 million km2 and includes 10 US states and part of Canada (which contains about 2% of 

the MORB’s total area). The Missouri River originates from the Rocky Mountains of west 

Montana (MT) and confluences with the Mississippi River near St. Louis with a main stem 

length of nearly 3,800 km. The largest tributaries of the MORB include the Yellowstone, 

Platte, and KS Rivers; all have a drainage area greater than 150,000 km2 and average annual 

runoff greater than 190 m3/s (Wu & Zhang, 2015). Rangeland located in the western and 

central MORB is the dominant land cover, accounting for about half of the total watershed 

area (Yu & McCarl, 2018). Cropland concentrates in the eastern and southern parts of the 

basin and accounts for a quarter of the total area. Major crop types include corn, soybean, 

winter wheat, and spring wheat (Figure 1a). The rest of the watershed area consists of 

shrubland (10%), forest (9%), urban areas (3%), wetland (1%), water (1%) and barren land 

(<1%).

The MORB is extremely diverse in many respects as a large basin. The Rocky Mountains, 

which form the western boundary, have an exceptionally rugged topography. Its geography 

varies from the mountains of Colorado (CO), MT, and Wyoming (WY), with the elevation of 

some peaks more than 4,399 m above sea level, to the low lands of Missouri (MO) with an 

elevation of less than 120 m (Qiao et al., 2014). Climate varies from arid and semi-arid to 

sub-humid. Most of the basin receives an annual average of 200–250 mm of precipitation. 
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However, the westernmost parts of the basin in the Rockies and the southeastern portions in 

MO may receive as much as 1,000 mm per year. There is also a wide range of temperatures 

in the region. The temperature in MT can drop to −51°C in winter, while it can reach to 

49°C in MO in summer (Zhang & Wu, 2013). Soil types within the basin include well 

drained, moderately well drained, and poorly drained soils, from northwest to southeast 

(Flynn et al., 2017). The geographic extent of the basin includes parts of MT, WY, CO, 

North Dakota (ND), South Dakota (SD), Nebraska (NE), Kansas (KS), Iowa (IA), and MO 

(Figure 1b).

2.2. SWAT Model Description

The SWAT (Arnold et al., 1998; Neitsch et al., 2011) was applied in the MORB to assess 

impacts of the recent land use shift from grassland to crops on hydrology and water quality. 

The SWAT model is a continuous, long-term, physically based distributed model developed 

to assess the impacts of climate and land use and management changes on hydrology, 

sediment, and nutrients processes in watersheds (Arnold et al., 1998; Neitsch et al., 2011). In 

the model, a watershed or basin is divided into subwatersheds or subbasins. Subbasins are 

further divided into a series of uniform hydrological response units (HRUs) based on LULC, 

soil type, and slope. Hydrological components, sediment and nutrient yields are simulated 

for each HRU and then aggregated for the subbasins (Gassman et al., 2007; Neitsch et al., 

2011; Williams et al., 2008).

The detailed SWAT simulations of hydrological components, sediment and nutrient yields 

can be found in the SWAT theoretical manual (Neitsch et al., 2011). Briefly, hydrological 

components simulated in the model include evapotranspiration, surface runoff (SURQ), 

percolation, lateral flow, groundwater flow (return flow), transmission losses, and ponds 

(Arnold et al., 1998). The SURQ is estimated using a modification of the SCS (Soil 

Conservation Service, now the Natural Resources Conservation Resource) curve number 

method (Arnold et al., 1998) with daily rainfall amounts. The curve number values are based 

on soil type, LULC, and land management conditions (Rallison & Miller, 1981) and are 

adjusted according to soil moisture conditions (Arnold et al., 1998). Sediment yield is 

calculated with the Modified Universal Soil Loss Equation method (Williams & Berndt, 

1977). For nutrients, SWAT simulates two broad categories of nutrients: organic and 

dissolved forms of N and P. The former includes active, stable, and fresh organic N and P, 

and the latter contains ammonium (NH4
+), nitrate (NO3

−), nitrite (NO2
−), mineral and 

soluble P (Neitsch et al., 2011). Nutrients are mainly added to the soil by plant residue and 

fertilizer, and are removed by plant uptake, and runoff and sediment loss. The crop residues 

are left on the ground after being harvested, and then converted to organic nutrients and 

added to the soil through decomposition and mineralization processes. The organic and 

dissolved nutrients can be directly added in the soil by fertilizer application (Neitsch et al., 

2011). After rainfall, runoff may be generated, and it carries dissolved N and P as it flows 

off the fields. In addition, organic nutrients (N and P) and mineral P attached to the soil may 

be transported with sediment off the fields.

The SWAT model also has channel components. More details on channel components can be 

found in the SWAT theoretical manual (Neitsch et al., 2011). Briefly, the water movement at 
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the channels is routed with the storage routing variable. Once the sediment yield is 

estimated, sediment transport in the channel network is simulated with the simplified version 

of Bagnold’s equation, and both deposition and degradation are simulated (Bagnold, 1977). 

The nutrient movement in the channel is modeled with a water quality model, QUAL2E, and 

growth and decay of algae, settling of organic N and P, and water temperature are considered 

in the simulation (Brown & Barnwell, 1987).

2.3. Data Collection

The input data of the SWAT model included elevation, soil, land use, land management, and 

weather. In addition, monitored streamflow and water quality data were also needed for 

model calibration and validation. Most of the data used for this study were publicly available 

and are described in Table 1 and further below.

Elevation and Soil: The elevation data were represented by a 90-m US Geological Survey 

(USGS) Digital Elevation Model (DEM). The 90-m DEM resolution was used to reduce 

computation time due to the size of the basin studied. The State Soil Geographic 

(STATSGO) Database was used to define the properties and distribution of soils. There were 

1,804 different soil types within the MORB based on STATSGO. The soil physical 

properties used in SWAT included texture, bulk density, available water capacity, saturated 

hydraulic conductivity, and soil albedo.

Land use and land management.—The USDA National Agricultural Statistics Service 

(NASS) 2008 and 2009 Cropland Data Layers (CDL) were acquired and used to estimate 

LULC (USDA-NASS, 2016). The CDL was selected because of the fine level of detail it 

provided for specific crop and land cover classes and their rotations. The classes of interest 

for this study were row crops, which included corn, soybeans, and wheat, as well as 

grassland/pasture. Detailed information of agricultural land management was obtained from 

USDA (https://nassgeodata.gmu.edu/CropScape/).

Weather data: Historic daily precipitation and maximum and minimum temperatures of 

1,721 National Weather Service (NWS) stations across the study region were obtained from 

the National Oceanic and Atmospheric Administration and National Climatic Data Center 

(NCDC, 2016). The weather data were then screened for missing values, and interpolated 

from the nearest weather station with available data. Other weather data, like wind speed, 

relative humidity, and solar radiation data, were generated internally by the SWAT model.

Point source: Loads of mineral N and P released to the rivers of MORB from thousands 

of point sources across the region were obtained from the Hydrologic and Water Quality 

System database (Schwarz et al., 2006; Yen et al., 2016) and added to the appropriate 

subwatersheds. These point sources were simulated with the constant daily load method at 

each 8-digit subbasin.

Fertilizer input: The Input Editor of the Annualized Agricultural Nonpoint Source 

Pollutant Model was used to generate the crop management files for the SWAT model based 

on the template files in the Revised Universal Soil Loss Equation 2 (RUSLE2) developed by 
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the USDA NRCS (Chiang et al., 2014). Most of the operations, including planting, tillage, 

and harvesting, were recorded in these crop management zone template files, except for the 

fertilizer application. Fertilizer application rates for corn, soybean, and wheat were 

calculated based on data from the Census of Agriculture of USDA-NASS (Table 2).

Tillage.—Estimates of the distributions of four tillage types, including no-till, mulch, 

reduced, and intense, were obtained at the 8-digit watershed level and added in the SWAT 

model (Baker, 2011). We selected the most common data on tillage (Baker, 2011) to best 

align with previous studies. The mixing efficiency of 5%, 35%, 65% and 95% and tillage 

depth of 25, 50, 100, and 150 cm were set for each tillage type (low value for no-till and 

high value for intense tillage).

Reservoir.—There are many reservoirs in the MORB. Information on reservoirs including 

surface area of the reservoir and normal and maximum storage of the reservoir were 

obtained from the national inventory of dams (US Army Corps of Engineers USACE, 2012). 

Downstream discharge was monitored for a few reservoirs on the main stream of MORB, 

and it was used as an input to the model for daily release. For the rest reservoirs, no detailed 

operation information such as release rate and timing were available, thus a monthly target 

release method was applied. From the thousands of reservoirs included in the inventory data, 

the first 100 largest reservoirs were included for the MORB models, because SWAT limited 

the number of reservoirs that could be included. However, this number was sufficient to 

reproduce the potential reservoir impacts on water flow and pollutant movement in the 

rivers, as the reservoirs chosen were the largest and occupied the vast majority (around 94%) 

of total artificial water volume in the study area (Daggupati et al., 2016).

Streamflow and water quality.—The USGS streamflow gauging stations (Figure 1b) 

were screened for observed data availability, length, and coverage of the data record. The 

final number of calibration sites for the MORB was 10 (Table 3). Monthly streamflow and 

available water quality data from 1975–2016 were downloaded from the 10 USGS gauging 

stations.

2.4. Model Parameterization

One of the key aspects of the SWAT model parameterization is the delineation of the study 

basin into many subbasins, which are further divided into a series of HRUs to depict the 

wide range of slopes, soils, land use, and land management that exists in the basin. Usually, 

multiple HRUs would be defined within a subbasin based on the thresholds for slope, soil, 

and land use. However, the “Dominant HRU” method is often suggested to reduce the 

requirement for computational power in large-scale SWAT modeling (Daggupati et al., 2016; 

Panagopoulos et al., 2015). Both Daggupati et al. (2016) and Panagopoulos et al. (2015) 

adopted this method in their UMRB and MORB studies, respectively, and found that using 

12-digit hydrologic units (HUC-12) boundaries as subbasins with dominant HRU for each 

HUC-12 captured important climate and topographical variabilities within the basin and 

produced satisfactory hydrologic and water quality estimates, although land use variation 

was not accurately represented.
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Since the objective of this study was to evaluate water quality impacts of land use change 

across the MORB, attempts were made to better capture land use changes from 2008 to 

2016. Therefore, we used multiple HRUs per basin to capture land use variation, and set a 

0% minimum threshold for land use in order to capture all changes. To balance the need for 

capturing the detailed land use changes and computational requirement, 8-digit hydrologic 

units (HUC8s) defined by the USGS (http://water.usgs.gov/GIS/huc.html) were selected as 

SWAT subbasins. In total, the MORB included 304 subbasins (HUC8s). The stream network 

of the NHDPlus data-set developed by the USGS and USEPA (http://epa.gov/waters) was 

used to determine preferred flow paths between the subbasins. Each of the subbasins was 

further divided into several spatially uniform HRUs based on land use, soil type, and slope. 

Thresholds of 0%, 10%, and 5% were used for land use, soil, and slope, respectively, 

resulting in a total of 56,424 HRUs in the MORB.

As the goal of this research was to assess the effects of land use change on water quality, 

significant care was taken to define land use/land management categories. The 

Representative Crop Rotations Using Edit Distance algorithm was used to select 

representative crop rotations by combining and analyzing the CDLs (Sahajpal et al., 2014). 

First, CDLs from 2008 to 2009 were combined and 1,201 different rotations were obtained 

for the MORB. Second, the area for each rotation and its percentage were calculated and 

ranked in descending order. Third, the accumulative percentage of rotations from top to 

bottom was calculated until 90% of all cropland area was accounted for, resulting in 46 

representative rotations. Rotations including corn, soybean, winter wheat, and spring wheat 

accounted for 90% of those 46 rotations, and thus we further reduced the 46 rotations to 23 

types by combining the small percentage of remaining rotations with those they were most 

similar to. For example, durum wheat was assumed as spring wheat, so spring and durum 

wheat were combined into the single management category spring wheat. Likewise, as peas 

are managed similarly to soybeans, the two were combined into the soybean management 

category. The final land use rotation information is shown within the supporting information 

of Table S1.

2.5. Model Calibration

SWAT-CUP offers several algorithms for parameter calibration (Abbaspour et al., 2015). The 

Sequential Uncertainty Fitting (SUFI-2) algorithm, used in other large-scale studies 

(Pagliero et al., 2014; Panagopoulos et al., 2015), was selected in this study for model 

calibration.

Two steps were taken in calibrating streamflow. In the first, a SWAT model with the same 

inputs but a coarser DEM (300 m) was set up. We manually adjusted the five snow 

parameters: snowfall temperature, snow melt base temperature, maximum and minimum 

melt rate for snow, and the snow pack temperature lag factor (Table S2 in the supporting 

information) first by checking the magnitude and shapes of snowmelt process in SWAT runs. 

Then, the remaining 11 parameters (Table S2), including four surface flow parameters (curve 

number 2 (CN2), soil evaporation compensation factor (ESCO), plant uptake compensation 

factor (EPCO), and available water capacity of the first soil layer (SOL_AWC(1))), five 

groundwater parameters (GW_DELAY, ALPHA_BF, GWQMN, GW_REVAP, and 
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RCHRG_DP), and two channel parameters (CH_K2 and ALPHA_BNK), were auto-

calibrated using the SWAT-CUP interface with SUFI-2 within 500 simulations. The CN2 and 

SOL_AWC(1) parameters were allowed to change by a percentage from their default values 

(± 20%), while others were modified with absolute values within realistic ranges 

(Panagopoulos et al., 2015). Those parameters were suggested by developers (Neitsch et al., 

2011) and were commonly calibrated in published large-scale SWAT applications (Arnold et 

al., 1998; Van Liew & Garbrecht, 2003; White & Chaubey, 2005). During this process, we 

calibrated the subbasins, which were hydrologically independent (Table 3) simultaneously, 

and then adjusted the remaining four subbasins, which would receive streamflow and 

nutrients from upstream subbasins. In the second step, calibrated parameters were directly 

transferred to the finer resolution model with a 90-m DEM. The parameters were then 

manually fine-tuned to get more satisfying results.

Limited time-series of water quality data were available compared to streamflow data. For 

example, among those USGS gauging stations with streamflow monitoring, only three sites 

had water quality data. We calibrated the parameters related to sediment and nutrient 

manually and adjusted them at the basin scale. In the SWAT model, upland erosion and 

channel erosion are two main processes producing sediment yield. The upland erosion 

process was often adjusted by changing the USLE parameters, including the USLE soil 

erodibility factor (USLE_K), the USLE cover and management factor (USLE_C), and the 

USLE support practice factor (USLE_P), as in previous studies (Betrie et al., 2011; 

Mukundan et al., 2010). In this study, we adjusted the USLE_P value to 0.65, and used 

default values of USLE_K and USLE_C, which were determined by soil and crop types. The 

linear and exponential coefficients, the channel erodibility factor nd the channel cover factor, 

which control sediment deposition and degradation processes in the channel (Schilling et al., 

2011), were changed to 1.5, 0.0012, 0.3, and 0.5, respectively. Organic N and nitrate-N are 

two important components of total nitrogen (TN). Accordingly, two parameters—including 

the organic N enrichment ratio, which is defined as the ratio of concentration of organic N 

transported with sediment to the concentration in the soil surface layer (Yuan and Chiang, 

2015), and N percolation coefficient, which governs the amount of nitrate moved with runoff 

(Neitsch et al., 2011)—were adjusted to 2.2 and 0.7, respectively, in the calibration of TN 

loads. Similarly, the parameters for the organic P enrichment ratio and the P percolation 

coefficient, which control the amount of organic and soluble P (White et al., 2014), were 

changed to 1.6 and 15, respectively, to match the total phosphorus (TP) loads.

To accelerate the auto-calibration process with the use of SWAT-CUP and SUFI-2, the most 

recent 20-years (1996–2016) period was used for calibration, because the model was set up 

with 2008/2009 CDL land use data. Comparative data from 1975 to 1996 were used for 

validation. Streamflow and water quality predictions made by SWAT were compared with 

observed streamflow and water quality data at USGS gauges to evaluate the model’s 

hydrologic predictions. The monthly time-series of nutrients were calculated using the Load 

Estimator (Runkel et al., 2004). During model calibration and validation, observed and 

modeled values on a monthly basis were compared visually and quantitatively. For the 

quantitative approach, the coefficient of determination (R2), Nashe-Sutcliffe efficiency 

(NSE), and Percent bias (PBIAS) were used as evaluators of model performance:
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R2 =
∑i OV i − OV MV i − MV 2

∑i OV i − OV 2∑i MV i − MV 2 (1)

NSE = 1.0 −
∑i OV i − MV i

2

∑i OV i − OV 2 (2)

PBIAS =
∑i OV i − MV i

∑i OV i
× 100 (3)

Where OVi and MVi are the observed and simulated values at time step i, respectively; and 

OV  and MV  are the average observed and simulated values over the simulation period.

R2, NSE, and PBIAS are often used to evaluate model performance, but there are no rules to 

determine if a 0.5 value for any statistic is good or bad. Moriasi et al. (2015) indicate that the 

monthly fits between simulated and observed stream flows can be regarded as “successful” 

when the NSE and PBIAS for these individual fits are greater than 0.5 (>0.5) and less than 

25 percent (<25%), respectively. Streamflow performance was then evaluated by 

determining the R2 and PBIAS for each streamflow guage station in this study. For sediment 

and nutrients, model simulations can be judged as satisfactory on a monthly scale, if PBIAS 

is measured up to ± 55% for sediment and ± 70% for N and P (Moriasi et al., 2015). 

However, more strict limits, ± 30% bias for sediment and ± 40% bias for nutrients, following 

with Santhi et al. (2014), were selected to obtain a more realistic simulation. The NSE and 

R2 of sediments and nutrients were also calculated, although they were not regarded as the 

critical indices for calibration success (Panagopoulos et al., 2015).

2.6. Land Use Scenarios of Cropland Expansion

Using the USDA CDLs from 2008 to 2012, Lark et al. (2015) tracked crop expansion 

pathways in the US. In their study, all CDL land use categories were first combined into two 

broad categories: crop and noncrop. The former class included corn, soybeans, wheat, 

cotton, etc., and the latter category encompassed forest, shrubland, wetland, and other 

noncrop lands. The five-year combinations of crop or noncrop were then applied to identify 

five different categories of land use over that interval: (a) Stable noncropland; (b) Stable 

cropland; (c) Conversion to cropland; (d) Conversion to noncropland; and (e) Intermittent 

cropland/uncertain. See Lark et al. (2015) for details of the method to identify these five 

categories and Lark et al. (2017, 2021) for information on their accuracy. Within the third 

category, conversion to cropland, they further identified the types and locations of crops 

planted on converted land spanning from 2008 to 2012. They found that corn was the most 

common crop planted on new land, including corn rotation with other crops such as soybean 

and wheat. In the US Corn Belt, SD and ND experienced the greatest amount of new 

cultivation in the MORB. There was wide variation of land use/land cover change rates in 

the entire MORB basin, ranging from none to 4.1% (HUC 10130104 in ND) (Figure 2a). 
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More recently, Lark et al. extended their land use/land cover conversion data through the 

2016 growing season and found that a similar pattern with additional changes occurred 

during the 2008–2016 period (Lark et al., 2020). The greatest change in percentage, 7.2%, 

occurred in the subbasin 10160004 in ND and SD from 2008 to 2016. On average, 0.77% of 

the total land area (1,318,712 km2) was converted from noncrop land to crop land during 

2008–2012 (Figure 2a), and 1.18% of the total land area was converted from 2008 to 2016 

(Figure 2b).

To evaluate the influence of land use/land cover change on water quality, four different 

simulation scenarios, including baseline, were designed. To construct the scenarios, we 

combined the 2008 and 2009 CDLs to capture at least two years of baseline crop rotation. 

Next, we overlaid this baseline data with locations of cropland conversion (Lark et al., 2015, 

2020) to distinguish the areas where noncropland was converted to cropland. For 

simplification, we assumed grassland was the starting land cover for all converted locations, 

because 97% of those areas are Grass/Pasture and Other Hay/Non Alfalfa in our baseline 

map. Although the approximate locations of changes from noncrop land to crop land are 

known (Figures 2a and 2b), the exact rotations were not tracked. Therefore, we simulated 

three different post-conversion land use scenarios that represent the dominant crop rotations 

in the region: continuous corn, corn/soybean rotation, or corn/wheat rotation. Collectively, 

these three rotations account for 70% of the spatial and temporal crop patterns in the MORB 

and thus provide a realistic representation of the potential fate of converted land. All 

designed scenarios are listed in Table 4.

3. Results and Discussion

3.1. Model Calibration and Validation

Model calibration and validation statistics of observed and simulated streamflow for all 

gauge stations are presented in Table 5 (at monthly scale) and 6 (at annual scale). R2 and 

NSE values were greater than 0.5 for all the USGS gauges except Ashland during the 

calibration period. In addition, most of the PBIAS values (Tables 5 and 6) indicated 

satisfactory to very good model performance. Time series comparison also demonstrated 

good agreement between simulated and observed streamflow across the MORB (Figures S1 

and S2 in the supporting information). Particularly, most of the peaks and recession limbs in 

the hydrographs were well reflected in the SWAT simulations. The model performed very 

well at the MORB outlet, Hermann station (USGS station 069345004) for both monthly 

(Figures 3a and 3b) and annual streamflow (Figures 3c and 3d). The SWAT-simulated 

monthly streamflow followed seasonal trends of the observed streamflow, with an R2 of 0.7 

and NSE of 0.67 for calibration and an R2 of 0.75 and NSE of 0.74 for validation (Table 5). 

Statistical calibration and validation results were even better for annual streamflow, with an 

R2 of 0.91 and NSE of 0.89 for calibration and an R2 of 0.98 and NSE of 0.95 for validation 

(Table 6).

Comparisons of simulated and observed monthly streamflow at the Ashland gauge station 

(USGS station 06801000) for the calibration period from 1997 to 2016 showed that SWAT-

simulated streamflow generally followed seasonal trends of the observed streamflow 

(Figures 3e and 3f), although with an R2 of 0.51 and NSE of −0.11 (Table 5). The low NSE 
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value of −0.11 indicated that the observed and predicted data did not fit the 1:1 line well. 

The SWAT model over-predicted peaks, particularly for high peaks, such as that of June 

2010, which resulted in an over-prediction overall during the calibration period. The 

upstream area of the Ashland gauge station is located on the high groundwater recharge 

region of the Ogallala aquifer as documented in many other studies (Daggupati et al., 2016). 

The poor performance may be due to the extensive irrigation and frequent groundwater 

withdrawals in this region. SWAT over-estimation of streamflow for groundwater recharge 

dominant basins has also been reported in other studies (Wu & Johnston, 2008; Yuan et al., 

2018).

The final values of main hydrologic parameters used in the MORB simulation model are 

summarized in Table S2 in the supporting information. One of the most critical parameters 

affecting streamflow generation is the CN. CN was increased for many of the upstream 

stations, such as Culbertson and Bismarck, while it was decreased for many of the 

downstream stations, such as Desoto and Bagnell, which indicated that the streamflow 

would be under-estimated using default CN values for the upstream MORB but over-

estimated using default CNs for the downstream MORB. The ESCO values of Culbertson 

and Sidney were much larger than that of other stations, indicating that less water was 

extracted due to the evaporative demand of soil (Neitsch et al., 2011). EPCO values of 

stations in upstream areas of the MORB were also larger than those in downstream 

subbasins, a function of greater water uptake from the lower soil layers (Neitsch et al., 

2011). Since less precipitation (200–250 mm) occurred in the upstream area of the MORB 

compared with other areas, surface soil in this region was very dry and thus less water was 

available for evaporation. To meet plant uptake demand, more water must be taken from the 

lower soil layers. Changes in SOL_AWC(1) did not present a pattern among different 

subbasins, similar to results of Panagopoulos et al.’s study in the Upper Mississippi River 

Basin and Ohio-Tennessee River Basin (2015). This may be due to the coarse resolution of 

the STATSGO soil database (Panagopoulos et al., 2015). Although effects of the five 

groundwater parameters on runoff were much smaller than those four SURQ parameters, 

adjustment of those groundwater parameters further improved SWAT simulations. The two 

channel parameters, CH_K2 and ALPHA_BNK, varied across the MORB (Table S2 in the 

supporting information), which was related to the extremely diverse topography in this 

relatively large basin.

Less data were available for model calibration and validation on sediment and nutrients. 

Among those 10 selected USGS gauging stations, Sidney, Sioux, and Omaha had sediment 

data for model evaluation and Sidney, Desoto, and Hermann had nutrient data for model 

evaluation. Since sediment movement is an important means of nutrient transportation, the 

SWAT model’s performance on sediment was evaluated first. SWAT model performance on 

sediment varied among the three stations; the model performed the best for Sidney but not as 

well for the other two stations (Tables 7 and 8). Similarly, SWAT model performance on 

nutrients also varied among stations. It performed the best for Hermann, the outlet of the 

MORB (Tables 7 and 8). However, the SWAT model performed the worst on TN and TP for 

Sidney, which had the best performance on sediment.
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The goal for large-scale simulations of sediment and nutrients is to ensure predictions 

replicate observations within an acceptable range, rather than to produce a perfect monthly 

or multi-year reproduction (Panagopoulos et al., 2015). Thus, PBIAS was usually used as 

the primary index to evaluate the model’s performance on sediment and nutrients. The 

PBIAS index of sediment was less than 30%, and that of TN and TP was less than 40%, at 

all the stations during the calibration and validation periods. This indicated the prediction 

results of sediment and nutrients were acceptable. In addition, the SWAT model performed 

very well for nutrients at the MORB outlet (Hermann station) (Figures 4a–4f), better than 

the other two stations (Sidney and Desoto) (Figure S3 and S4), showing that even with some 

positive or negative deviations at a local scale, the magnitude of TN and TP loads for the 

entire basin could still achieve good performance. Furthermore, most of the NSE and R2 

values were greater than 0.5, indicating SWAT adequately captured the trends of the 

measured nutrient data. The final water quality parameter values were all within SWAT 

allowable ranges (Table S3 in the supporting information). These water quality parameter 

values did not vary among different gauge stations.

3.2. Water Quality Pattern of the Baseline Scenario

Spatial distribution of SWAT simulated annual average SURQ, total suspended sediment 

(TSS), and nutrients were examined to identify critical areas already producing high TSS 

and nutrient loads even before land conversion (Figures 5a–5d). The southeastern part of the 

MORB, especially the state of MO, produced SURQ greater than 200 mm in most of HUC-8 

subbasins, higher than in other areas of the basin (Figure 5a). This was mainly due to 

precipitation (PREC) distribution within the MORB, with more precipitation in the southeast 

and less in the northwest (Figure 5e). High sediment producing areas (TSS ≥ 1.0 tons/ha) 

were primarily concentrated in two regions (Figure 5b): the upper and lower MORB. The 

high TSS from the upper MORB was partly due to the exceptionally rugged topography in 

that area, which was presented in the spatial pattern of the topographic factor (USLE_LE) 

(Figure 5f). The USLE_LE is a comprehensive topographic parameter used in the SWAT 

model which reflects the effects of slope and slope length (Neitsch et al., 2011). The larger 

this parameter, the greater TSS the area produces. By contrast, the high TSS production 

from the lower MORB was due to the combination of relatively high precipitation and the 

large crop acreage present in this region (Figures 2 and 5e).

As expected, high sediment producing areas in the lower MORB also produced high TN 

(>10 kg of N/ha) and TP yields (>3 kg of P/ha) (Figures 5c and 5d), as shown in other 

MORB studies (Wu and Zhang, 2015). Two factors were related to such a spatial pattern. 

The first factor was precipitation, as most of the lower MORB region had an annual 

precipitation rate greater than 800 mm, which meant that more nutrients would be 

transported due to high SURQ and sediment loss. The other factor was agricultural activity, 

a major source of N and P loadings (Cibin et al., 2012). This could be observed in the 

correspondence of nutrient hotspots with more agricultural regions, such as in IA.

Since the primary concern of this study is nutrient loading, the top 10 HUC-8 subbasins 

which produced the greatest nutrient loads were also examined (Table 9), mainly based on 

TN load. These subbasins all had annual precipitation amounts higher than 800 mm and 
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cropland percentages larger than 37% (Table 9), which further supported the notion that 

precipitation and agricultural activity were two critical factors that determined the spatial 

pattern of nutrient loss. Notably, however, neither the highest amount of precipitation nor 

cropland percentage corresponded to the subbasin 10240009 in IA with the largest TN load, 

suggesting TN was affected by a combination of these factors and not one over the other. In 

addition, the ranking of SURQ, sediment, and TP of these HUC-8 subbasins were not all 

consistent with the influencing factors mentioned above, such as precipitation, topography, 

and agricultural activity. This further demonstrated that they were affected by a combination 

of these factors. For example, for most of these subbasins, the greater the precipitation, the 

greater the SURQ. However, there were still some exceptions, such as subbasins 10240009 

and 10240003 in IA. Although the annual precipitation rate of the former was larger, its 

SURQ was still smaller because of smaller cropland percentage compared to the latter. 

Similarly, the precipitation of subbasin 10300104 in MO was the largest, while its sediment 

yield was not very large (9.8 t/ha) relative to other subbasins (Table 9), most likely due to a 

relatively small USLE_LS factor (0.5). The USLE_LS value of 10230006 in IA and NE 

ranked second while its sediment production was just 12.4 t/ha, due to the relatively small 

cropland percentage (48.1%). These same rules also applied to TN and TP. Although their 

spatial pattern at the regional basin scale was determined by precipitation and agricultural 

activity, the spatial distribution at the HUC-8 subbasin-scale was controlled by their 

combined effects.

3.3. Impact of Land Use Change on Water Quality

3.3.1. Nutrient Loading Changes at the Outlet—The annual average streamflow, 

TN, and TP of the MORB were 2581.3 m3/s, 213.6 × 103 t/yr and 39.1 × 103 t/yr, 

respectively (Table 10). The cropping scenarios generally did not affect water quantity 

(Table 10; Figure 6). For example, annual flow only increased by 6.7 m3/s (0.26% of the 

baseline scenario) for the continuous corn scenario. The main reason was the area converted 

from noncrop land to crop land was relatively low (0.77% of the total area of MORB). The 

increase in sediments from the cropping scenarios was also very low compared to the results 

from baseline: just 0.86% for the continuous corn scenario. By contrast, change in nutrient 

loading was much greater than that of flow and sediment. For example, TN and TP increased 

3.8% and 5.1% for the continuous corn scenario, respectively. Overall, TN increased 1.5%–

3.8% (3,200–8,200 t/yr) during the 2008–2012 period and 2.5%–6.4% (5,400–13,800 t/yr) 

during the 2008–2016 period across different scenarios (Figure 6). The percentage change of 

TP from different scenarios was slightly higher than that of TN: 2.3%–5.1% (900–2,000 

t/yr) during the period from 2008 to 2012 and 3.9%–8.7% (1,500–3,400 t/yr) during the 

period from 2008 to 2016 (Figure 6).

Comparing scenarios, continuous corn and corn/soybean rotations generally resulted in 

higher TN loads relative to the corn/wheat rotation. This was due to higher streamflow and 

sediment loss of the first two scenarios compared with the last. Corn and soybean have a 

larger USLE_C factor and CN value than that of winter wheat. A lower CN value would 

generate lower surface flow, while a lower USLE_C value indicates a lower erosion 

potential. In addition, winter wheat can act as protection from soil erosion. The difference in 

TN between continuous corn and corn/soybean rotation scenarios was quite small, a result 
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also found in Deb et al.’s study in the Upper Mississippi River Basin (2015). They indicated 

that replacing corn-soybean rotations with continuous corn did not result in any significant 

change in TN load (Deb et al., 2015). Dissolved N (nitrate and nitrite) loading from the 

continuous corn scenario was greater than that from the corn/soybean rotation scenario 

(Figure 6), due to a greater fertilizer application rate required by corn (141.0 kg/ha) than by 

soybean (4.5 661 kg/ha); while the organic N (OrgN) loading from the former was slightly 

smaller (Figure 6), possibly due to a higher OrgN content in residue of soybean than corn. 

Thus the difference in TN between these two scenarios was small. The TSS loads from these 

two scenarios were similar based on the attributes of both crops used in SWAT (USLE_C 

factor, CN values).

Total P loading from the continuous corn scenario was larger than that from the other two 

cropping scenarios. This was because dissolved P, part of which came from fertilizer, was 

the main component of the TP (Table 10), and the P fertilizer application rate for corn was 

larger than those for soybean and wheat (Table 2). Comparing corn/soybean with corn/wheat 

rotation scenarios, the TP from the corn/soybean rotation scenario was larger than that from 

the corn/wheat rotation scenario although the P fertilizer requirement of soybean was lower 

than that of wheat. This was probably due to higher streamflow from the corn/soybean 

rotation than that from the corn/wheat scenario. Overall, continuous corn had the most 

adverse effect on water quality compared to the corn/soybean and corn/wheat rotations, an 

observation which had also been shown in other studies (Gu et al., 2015).

3.3.2. Water Quality Change at the Subbasin Scale

3.3.2.1. Change in Unit Area at Subbasin Scale: On average, increases of TSS, TN and 

TP per hectare of land area across the entire basin were relatively low (Figure 7a). For 

example, increases of sediment per unit area of land use were 0.05, 0.05, and 0.02 t/ha, those 

of TN were 0.13, 0.12, and 0.05 kg/ha, and those of TP were 0.03, 0.03, and 0.01 kg/ha 

among different conversion scenarios and baseline, respectively. However, their spatial 

patterns showed unevenness and some regions showed relatively high changes because of 

the heterogeneity of land use change. In general, the areas with the greatest change 

corresponded to the highest pollutant producing areas in the baseline scenario, located in the 

lower MORB (Figures 5c, 5d, and 7) (e.g., IA, MO, NE, and KS). The top four HUC-8s with 

the greatest changes in TN between the continuous corn and baseline scenarios were 

10240009 in IA, 10280102 in IA and MO, 10240007 in KS and NE, and 1028010 in IA and 

MO (Table 11); and these subbasins also exhibited the largest sediment changes between 

these two scenarios, which further proved the rule mentioned above that high sediment 

producing areas often produced high TN, as the organic form of N attached to soil particles 

was transported with sediment. Furthermore, they were also the top four subbasins with the 

greatest changes in TP. This pattern was also found in other studies, indicating that TP 

followed a very similar pattern to sediment due to its strong association with sediment 

(Neitsch et al., 2011; Panagopoulos et al., 2017). However, the rankings of TP and TN were 

not exactly one-to-one, likely because organic phosphorus transported with sediment 

represented a major portion of TP, while dissolved nitrogen moving with surface water 

accounted for a considerable proportion of TN (Table 9).
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In general, the spatial distribution of changes in water quality depended more on basin 

characteristics, such as high precipitation rates at the southern part of MORB, than the 

individual cropping scenario. The top 10 subbasins with the highest TN change from 2008 to 

2012 of continuous corn (Table 11) were also the top 10 for the other two scenarios, 

indicating different scenarios did not change the general spatial pattern of the TN variation 

from the baseline. However, different crops and rotations from different scenarios did lead to 

small variations in TN at the margins. For example, the TN ranking of HUCs 10240007 and 

10280101 were switched between the continuous corn and the corn/wheat rotation. 

Similarly, the comparison between different scenarios involving sediment and TP also 

showed the same phenomenon as that of TN. Overall, HUCs 10240009, 10280102, 

10280101, and 10240007 located at IA, MO, NE, and KS were the hotspots with the greatest 

increases in sediment and nutrient loadings (Table 11).

Spatial variations of differences per hectare of conversion of TSS, TN, and TP between the 

different cropping scenarios and the baseline were also analyzed, as they showed the most 

susceptible areas impacted by crop conversion (Figure S5a in supporting information). Of 

particular interest was that their spatial patterns were very similar to those of the baseline 

scenario (Figures 5b–5d). This indicated that the vulnerable areas in general corresponded to 

the highest pollutant producing areas in the baseline. For example, five of the top 10 HUC8s 

(10240009 in IA, 10240006 in NE, 10240008 in KS and NE, 10240010 and 10240012 in IA 

and MO) producing the highest nutrient loads (Table 9) were in Table 11. Although the other 

five (10230007 and 10240002 in IA, 10300104 in MO, 10230006 in IA and NE, and 

10240003 in IA) in Table 9 were not listed in Table 11 (top 10 HUC8s with the largest 

sediment and nutrient changes) due to relatively small crop expansion rate (less than 1.2%), 

they were also important because of the high nutrient loadings they had already produced in 

baseline.

3.3.2.2. Change in Percentage at Subbasin Scale: To identify the HUC8s with the 

highest relative water quality changes, percent changes in TSS (t), TN, and TP (kg) between 

the different cropping scenarios and the baseline were also analyzed for the 2008–2012 

period (Figure 8). The highest percentage increases in TSS, TN, and TP loadings were not 

solely confined to those subbasins located in the lower MORB, corresponding to the 

absolute changes reported above (Figure 7). Subbasins located in ND and SD had the 

highest percentage increases, corresponding to the areas with the highest percentage of 

noncrop land to crop land conversion (Figure 2). However, those areas with the highest 

percentage increases located in ND and SD did not produce the highest absolute total loads; 

rather, some produced relatively low absolute total loads. For example, HUC8 10160004 in 

ND and SD produced 0.134 kg/ha of TN for the baseline scenario, and 0.152 kg/ha of TN 

for the continuous corn scenario even though the TN was increased by 13% from the 

baseline. For some subbasins, high percentage changes resulted from the low total loading in 

the baseline (low agricultural percentage). In other words, a large percentage increase of a 

small starting value could still yield a relatively small absolute value.

3.3.3. Water Quality Change During Different Periods—The patterns of water 

quality changes that occurred at the outlet of the MORB were similar across our two study 
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focus periods of 2008–2012 and 2008–2016 (Figure 6). The changes during the period from 

2008 to 2016 were about 1.5 times greater than those that occurred between 2008 and 2012 

(Figure 6), reflecting continued cropland expansion from 2012 to 2016. Noncropland to 

cropland conversion was 0.77% of the total basin area for the period from 2008 to 2012, and 

1.18% for the period from 2008 to 2016. Therefore, the adverse impact on water quality 

continued to increase due to the on-going cropland expansion during this overall time 

period. The spatial variation in water quality changes between different cropping scenarios 

and the baseline in per unit area change and percent change during the 2008–2016 period 

was also very similar to that of 2008–2012, except that more basins across the MORB 

experienced higher percentage increases in loadings (Figures 7b and 8b, Figure S5b). In 

absolute loads, basins in the lower MORB, especially in IA, MO, NE, and KS, continued to 

be the hotspots of water quality degradation. Those “hotspots” should be avoided for further 

crop conversion and targeted first to achieve greater water quality benefits.

3.3.4. Water Quality Effects of Crop Expansion From Previous Studies—A 

number of studies have attempted to evaluate the changes of water quantity and quality in 

response to crop expansion (Deb et al., 2015; Gu et al., 2015; Panagopoulos et al, 2014, 

2017; Wu and Zhang, 2015; Yu and McCarl, 2018). Panagopoulos et al., (2014) evaluated 

the potential effects of continuous corn expansion across the Upper Mississippi River Basin 

(UMORB) on water quality and indicated that increasing continuous corn would result in 

increased N loss to water bodies. Yu and McCarl (2018) analyzed the effect of land use 

change on water quantity and quality using a land use model, FASOM-GHG, and their 

results indicated that increases in crop area significantly degraded water quality of the 

MORB. Results from this study echoed these previous works, further proving that crop 

expansion would degrade water quality.

This study was unique in that it focused on the water quality effects of crop expansion based 

on observation of land use/land cover changes (from 2008 to 2012 and 2008 to 2016), 

whereas those in the literature were based on future hypothetical scenarios to help 

understand potential environmental impacts of crop expansion. As the settings of those 

hypothetical scenarios were likely different from real situations in many aspects, those 

results had limitations and might not accurately represent results. For example, the future 

land use changes used in those studies didn’t reflect spatial variation, and a uniform change 

such as 25% or 50% increase across the entire study area was usually applied (Deb et al., 

2015; Panagopoulos et al., 2017). Thus, most of the studies discussed the pollutant loading 

changes at the outlet of the basin, but failed to discuss the spatial variation of water quality 

changes within the basin and identify “hotspots”. Since this study used observation of land 

use/land cover changes, which were heterogeneric, “hotspots,”—such as some subbasins in 

IA, MO, NE, and KS in the lower MORB—were identified. Furthermore, the actual change 

in area was relatively low, 0.77% from 2008 to 2012 (Lark et al., 2015) and 1.18% from 

2008 to 2016 (Lark et al., 2020).

This study provides valuable information on the water quality loading changes of the 

MORB, water quality change metrics per unit area of land use, and “hotspots” or watersheds 

experiencing the greatest increase in nutrient loadings. Such information could be used to 

help prioritize areas for grassland conservation and inform agricultural policy (Lark, 2020) 
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or help ensure proper decision making for watershed protection or watershed restoration 

projects. For example, this work may be linked with known state water quality criteria to 

address “so what” questions such as which watersheds are (a) under the criteria and may be 

pushed over the criteria, or (b) already over the threshold and getting worse, such that timely 

measures can be developed and implemented to prevent further water quality degradation.

4. Conclusions

Our study results suggest that cropland expansion onto grasslands degraded water quality in 

the US Midwest between 2008 and 2016. The greatest percentage increases of TN and TP 

loading occurred in ND and SD, coinciding with the highest amount of grassland 

conversion, yet these areas contributed small absolute amounts of TN and TP to the total 

basin loads. Instead, specific watersheds, or “hotspots,” in the lower MORB—especially in 

IA, MO, NE, and KS—contributed the greatest amounts of TN and TP to basin-wide loads. 

Grassland converted to continuous corn increased nutrient loadings the most, with the TN 

increased by 13,800 t/yr (6.4%) and TP increased by 3,400 t/yr (8.7%); whereas grassland 

converted to corn/wheat increased the nutrient loadings the least, with the TN increased by 

5,400 t/yr (2.5%) and TP increased by 1,500 t/yr (3.9%). We anticipate that this information 

will be used by a variety of federal, state and local agencies with the goal of reducing water 

pollution. Our results suggest divergent management strategies depending upon objectives. 

Targeting “hotspots” in the lower MORB would likely help downstream water quality (e.g., 

reducing the hypoxic zone in the Gulf of the Mexico) the most; whereas interventions in 

watersheds with the highest percentage increases in TN and TP but still low with absolute 

total loads, such as those in the Dakotas, may help preserve conditions in less impacted 

watersheds.
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Key Points:

• Recent crop expansion on water quality was assessed for the Missouri River 

Basin experiencing the highest rate of conversion of grasslands

• Converting to continuous corn had the most adverse effect on water quality, 

followed by corn/soybean rotation, and then corn/wheat rotation

• Watersheds in Iowa, Missouri, Nebraska and Kansas continue to be the 

“Hotspots” contributing the greatest amounts of nutrient loads
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Figure 1. 
(a) Land use/Land cover, and (b) reaches, watersheds, and available US Geological Survey 

gauge sites of the Missouri River Basin (MORB).
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Figure 2. 
Percentage of area converted from noncrop land to crop land in each 8-digit hydrologic unit 

during (a) 2008–2012 and (b) 2008–2016.
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Figure 3. 
Monthly and yearly streamflow comparison between Soil and Water Assessment Tool 

(SWAT) simulated and monitored at the Hermann station (a and c) during calibration period 

1997–2016 and (b and d) validation period 1975–1996, and (e and f) monthly streamflow 

comparison between SWAT simulated and monitored at the Ashland station during these two 

periods.
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Figure 4. 
Monthly and annual simulated versus observed (a and b, e and f) total nitrogen and (c and d, 

g and h) total phosphorus comparison between Soil and Water Assessment Tool (SWAT) 

simulated and monitored at Hermann station during calibration period (1997–2016) and 

validation period (1975–1996).
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Figure 5. 
Spatial distributions under the baseline scenario for annual average (a) surface runoff, (b) 

total suspended sediment, (c) total nitrogen, (d) total phosphorus, (e) precipitation and (f) 

Universal Soil Loss Equation slope factor.
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Figure 6. 
Mean Annual Changes in flow, total suspended sediment, organic nitrogen (including 

organic and ammonium nitrogen), dissolved nitrogen (including nitrate and nitrite), total 

nitrogen, organic phosphorus, dissolved phosphorus (refers to mineral phosphorus), and total 

phosphorus loads between the baseline scenario and different biofuel scenarios (S2, S3, S4) 

during (a) 2008–2012 and (b) 2008–2016.
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Figure 7. 
Differences in per unit area (refer to per hectare of land area) of total suspended sediment, 

total nitrogen and total phosphorus at S2 (baseline vs. continuous corn), S3 (baseline vs. 

corn/soybean) and S4 (baseline vs. corn/wheat) during (a) 2008–2012 and (b) 2008–2016.
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Figure 8. 
Percent differences relative to baseline for total suspended sediment, total nitrogen and total 

phosphorus for S2 (baseline vs. continuous corn), S3 (baseline vs. corn/soybean) and S4 

(baseline vs. corn/wheat) during (a) 2008–2012 and (b) 2008–2016.
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Table 1

Summarized Information of the Input Data Used in the SWAT Model

Data-set Description of data Source of data

Elevation 90 meter digital elevation model USGS (2016)

Soil 1:250,000 STATSGO soil map USDA-NRCS (2013)

Land use Assignment of crop rotations or other land use based on Cropland Data Layers data from 2008 to 
2009

USDA-NASS (2016)

Weather Historic daily precipitation, maximum temperatures, and minimum temperatures from 1,721 NWS 
stations

NCDC (2016)

Point sources Regression of population and SPARROW model outputs Schwarz et al. (2006)

Fertilizer input Nitrogen and phosphorus rates applied in corn, soybean, spring wheat and winter wheat USDA-NASS (2017)

Tillage practices No-till, mulch till, reduced till, and conventional till practices Baker (2011)

Reservoirs Reservoirs with maximum storage larger than 25,000 acre feet USACE (2012)

Abbreviation: SWAT, Soil and Water Assessment Tool.
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Table 2

The Average Values of N and P Fertilizer Application Rates for Corn, Soybean and Spring Wheat and Winter 

Wheat at MORB

Crop type Fertilizer type Average rate (kg/ha)
a

Corn N 141.0

P 39.9

Soybean N 4.5

P 12.3

Spring Wheat N 64.4

P 27.1

Winter Wheat N 61.8

P 22.2

Abbreviation: MORB, Missouri River Basin.

a
State average of each crop for the MORB.
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Table 3

List of Available Periods of Measured Streamflow, Total Suspended Sediment (TSS), Total Nitrogen (TN) and 

Total Phosphorus (TP) at 10 USGS Gauge

Site name Site number Hydrologically independent Drainage (km2) Streamflow TSS TN TP

Culbertson 06185500 Yes 232,731 1975–2019 – – –

Sidney 06329500 Yes 178,966 1975–1990
2000–2019

1975–2012 1975–1990
2000–2019

(311)

1975–1990
2000–2019

(349)

Bismarck 06342500 No 482,776 1975–2019 – – –

Forestburg 06477000 Yes 45,617 1975–2019 – – –

Ashland 06801000 Yes 216,524 1988–2019 – – –

Sioux 06486000 No 814,814 1975–2019 1975–1976
1991–2000
2003–2019

– –

Omaha 06610000 No 836,049 1975–2019 1975–1976
1991–2003
2008–2019

– –

Desoto 06892350 Yes 154,768 1975–2019 – 1975–2019
(199)

1975–2019
(214)

Bagnell 06926000 Yes 36,260 1975–2019 – – –

Hermann 06934500 No 1,353,270 1975–2019 – 1975–2019
(463)

1975–2019
(468)

Abbreviations: USGS, US Geological Survey.
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Table 4

Simulation Scenarios

No Description Notes

1 Areas identified as noncropland 
(10,154 km2) were assumed as 
grassland for the land use type, prior 
to their conversion to cropland 
(baseline)

The 2008 and 2009 CDLs were combined; then the combined layers were overlaid with 
locations of cropland conversion from Lark et al. (2015, 2020) to identify areas where 
noncropland was converted to cropland. For scenario 1, which is the baseline, those identified 
noncropland was assumed as grassland.

2 Grassland (10,154 km2) from scenario 
1 was converted to continuous corn

3 Grassland (10,154 km2) from scenario 
1 was converted to corn/soybean 
rotation

4 Grassland (10,154 km2) from scenario 
1 was converted to corn/wheat 
rotation

Abbreviation: CDLs, Cropland Data Layers.
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Table 5

Monthly Streamflow Calibration and Validation Statistics

Calibration (1997–2016) Validation (1975–1996)

Calibration points R2 NSE PBIAS R2 NSE PBIAS

Culbertson 0.81 0.51 −14.1 0.57 0.27 14.8

Sidney 0.75 0.67 −0.6 0.7 0.56 24.8

Bismarck 0.79 0.53 −10.2 0.75 0.55 14

Forestburg 0.52 0.5 24.6 0.39 0.26 −43.7

Ashland 0.51 −0.11 2.5 0.44 0.22 22.2

Sioux 0.81 0.75 −11.6 0.73 0.64 −0.8

Omaha 0.81 0.8 2.2 0.77 0.61 13.5

Desoto 0.6 0.52 1.4 0.77 0.74 14

Bagnell 0.85 0.85 4.2 0.89 0.88 1.2

Hermann 0.7 0.67 −3.6 0.75 0.74 6

Abbreviations: NSE, Nashe-Sutcliffe efficiency; PBIAS, Percent bias; R2, coefficient of determination.
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Table 6

Annual Streamflow Calibration and Validation Statistics

Calibration (1997–2016) Validation (1975–1996)

Calibration points R2 NSE PBIAS R2 NSE PBIAS

Culbertson 0.9 0.52 −13.7 0.66 0.29 14.9

Sidney 0.8 0.64 −1.1 0.82 −0.1 23.8

Bismarck 0.85 0.65 −10.2 0.85 0.44 14.2

Forestburg 0.63 0.57 24.4 0.49 0.29 −44.2

Ashland 0.57 −0.25 2.3 0.75 0.33 23

Sioux 0.85 0.77 −11.7 0.71 0.51 −0.9

Omaha 0.85 0.85 2 0.91 0.47 13.4

Desoto 0.82 0.8 1.2 0.93 0.89 13.7

Bagnell 0.94 0.92 4.3 0.98 0.96 1.6

Hermann 0.91 0.89 −3.6 0.98 0.95 5.9

Abbreviations: NSE, Nashe-Sutcliffe efficiency; PBIAS, Percent bias; R2, coefficient of determination.
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Table 7

Monthly TSS, TN and TP Calibration and Validation Statistics

Calibration (1997–2016) Validation (1975–1996)

Variable Calibration points R2 NSE PBIAS R2 NSE PBIAS

TSS Sidney 0.55 0.24 −13.6 0.57 0.56 21.1

Sioux 0.56 0.45 −20.7 0.18 −0.31 11.6

Omaha 0.4 −0.25 −20.3 0.3 0.12 27.9

TN Sidney 0.6 −0.13 −28.8 0.68 0.6 29.2

Desoto 0.59 0.33 −28.1 0.74 0.69 26.8

Hermann 0.69 0.67 12.2 0.68 0.65 17.7

TP Sidney 0.57 0.56 −4.6 0.59 0.53 27.9

Desoto 0.65 0.55 2 0.84 0.83 13.8

Hermann 0.71 0.7 3.9 0.78 0.75 −2.9

Abbreviations: NSE, Nashe-Sutcliffe efficiency; PBIAS, Percent bias; R2, coefficient of determination; TN, total nitrogen; TP, total phosphorus; 
TSS, total suspended sediment.
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Table 8

Annual TSS, TN and TP Calibration and Validation Statistics

Calibration (1997–2016) Validation (1975–1996)

Variable Calibration points R2 NSE PBIAS R2 NSE PBIAS

TSS Sidney 0.82 −0.15 −20.8 0.64 0.58 15.5

Sioux 0.69 0.61 −22.9 0.31 0.26 2.5

Omaha 0.49 −0.1 −22.2 0.42 −0.48 25

TN Sidney 0.53 −0.39 −29.4 0.81 0.1 28.1

Desoto 0.62 0.36 −28.1 0.89 0.67 26.8

Hermann 0.76 0.65 12.2 0.84 0.62 17.7

TP Sidney 0.56 0.53 −4.6 0.67 0.36 28.1

Desoto 0.68 0.62 2 0.93 0.87 13.8

Hermann 0.68 0.67 3.9 0.86 0.85 −2.9

Abbreviations: NSE, Nashe-Sutcliffe efficiency; PBIAS, Percent bias; R2, coefficient of determination; TN, total nitrogen; TP, total phosphorus; 
TSS, total suspended sediment.
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Table 9

Information on the Top 10 HUC8 Subbasins Producing the Highest Nutrient Loads

HUC8
PREC 
(mm)

SurQ 
(mm) USLE_LS

Cropland 
Percentage 

(%)
TSS 

(t/ha)

TN 
(kg/ha

)

TP 
(kg/ha

)
OrgN 

(kg/ha)
DisN

a 

(kg/ha) OrgP
DisP

b 

(kg/ha)

10240009 931.6 198.7 0.8 49.5 16.5 42.0 8.3 36.6 5.4 8.2 0.1

10230007 838.4 191.0 1.1 69.2 30.1 41.8 10.7 33.6 8.2 10.5 0.1

10240006 801.2 215.3 0.6 60.8 17.5 40.1 8.8 31.6 8.5 8.7 0.1

10240002 895.0 212.4 0.8 76.5 19.2 38.9 9.9 30.9 8.0 9.7 0.2

10300104 1074.2 279.4 0.5 40.7 9.8 36.6 6.6 30.3 6.3 6.4 0.2

10240008 836.1 253.6 0.6 52.1 16.8 36.2 7.8 28.6 7.6 7.6 0.1

10230006 827.8 177.3 1.0 48.1 12.4 35.9 7.4 28.4 7.5 7.3 0.2

10240003 923.9 225.8 0.8 66.0 16.6 32.6 8.3 25.3 7.3 8.2 0.2

10240010 924.8 181.8 0.7 48.6 7.5 31.5 5.8 25.8 5.7 10.5 0.1

10240012 986.0 219.1 0.6 37.9 8.6 28.0 5.1 22.7 5.3 8.7 0.1

Abbreviations: DisN, dissolved nitrogen; DisP, dissolved phosphorus; OrgN, organic N; OrgP, organic phosphorus; PREC, precipitation; SURQ, 
surface runoff; TN, total nitrogen; TP, total phosphorus; TSS, total suspended sediment; USLE, Universal Soil Loss Equation; USLE_LS, USLE 
equation slope factor.

a
Refers to nitrate and nitrite.

b
Refers to mineral P.
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Table 10

Mean Annual (1987–2016) SWAT Estimates of Flow, Sediment, N and P Constituents at the Outlet of the 

MORB Under Different Conversion Scenarios (2008–2012)

Scenario 1, 000 t/yr

No m3/s Flow TSS OrgN DisN
a TN OrgP DisP

b TP

1 Baseline 2581.3 35,860.3 106.2 107.4 213.6 9.0 30.1 39.1

2 Converted to continuous corn 2588.0 36,168.0 111.2 110.6 221.8 9.7 31.4 41.1

3 Converted to corn/soybean rotation 2583.8 36,118.7 111.4 109.9 221.3 9.5 31.1 40.6

4 Converted to corn/wheat rotation 2582.9 35,983.7 108.5 108.3 216.8 9.3 30.7 40.0

Abbreviations: DisN, dissolved nitrogen; DisP, dissolved phosphorus; MORB, Missouri River Basin; OrgN, organic N; OrgP, organic phosphorus; 
TN, total nitrogen; TP, total phosphorus; TSS, total suspended sediment.

a
Refers to nitrate and nitrite.

b
Refers to mineral P.
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Table 11

The Top 10 HUC8 Subbasins With the Greatest Increase Per Unit (Hectare of Land Area) of TSS, TN and TP 

at S2 (Baseline VS. Continuous Corn), S3 (Baseline VS. Corn/Soybean) and S4 (Baseline VS. Corn/Wheat) 

During 2008–2012

TSS (t/ha) TN (kg/ha) TP (kg/ha)

HUC8
a S2 S3 S4 HUC8

a S2 S3 S4 HUC8
a S2 S3 S4

10240009 1.51 1.61 0.62 10240009 3.09 3.18 1.30 10240009 0.77 0.65 0.35

10280102 1.43 1.58 0.66 10280102 2.58 2.69 1.19 10280102 0.74 0.59 0.38

10280101 1.24 1.36 0.51 10240007 2.42 2.35 0.87 10280101 0.64 0.49 0.30

10240007 1.08 1.21 0.36 10280101 2.16 2.13 0.91 10240007 0.61 0.54 0.24

10280201 0.85 0.94 0.40 10240012 2.09 2.07 0.84 10280201 0.54 0.40 0.26

10240012 0.84 0.90 0.34 10240010 2.06 2.17 0.88 10240012 0.52 0.42 0.23

10240010 0.77 0.78 0.34 10280201 1.99 1.94 0.78 10240013 0.51 0.44 0.24

10240013 0.73 0.70 0.26 10240013 1.92 1.81 0.68 10240010 0.50 0.43 0.23

10240008 0.62 0.67 0.24 10280103 1.26 1.22 0.53 10240008 0.35 0.28 0.16

10240006 0.53 0.58 0.24 10240008 1.22 1.13 0.49 10280103 0.32 0.25 0.16

Abbreviations: TN, total nitrogen; TP, total phosphorus; TSS, total suspended sediment.

a
All these HUC8 subbasins had land-use changes from grass to crop.
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