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SUMMARY

Using a health-services study as an illustrative example of longitudinal randomized field research 

with the potential for participants to be lost to follow-up, we apply a permutation test where the 

treatment indicator variable is randomly permuted in the context of regression models with 

covariates and attrition weighting. The test is applied to a multi-site randomized intervention trial 

of a quality-improvement program for adolescent depression treatment in primary-care settings, in 

which regression models were used to assess intervention effects with weights used to adjust for 

attrition bias. The foundation and motivation for this approach to the analysis are considered with 

attention to the demands associated with implementing such a strategy. The results from the 

permutation tests were qualitatively similar to the results obtained from conventional parametric 

models, and in fact suggested that the significance level from the conventional t-test was 

understated in this application.
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1. INTRODUCTION

The permutation test, or randomization test, has emerged as a useful tool in the analysis of 

randomized controlled trials as computing power has increased rapidly in recent years [1–8]. 

An important advantage of the permutation test, relative to conventional parametric 

inference procedures, is the ability to avoid strong parametric distributional assumptions. 

This article develops a permutation test to assess the effectiveness of a quality-improvement 

(QI) intervention for adolescent depression in primary-care clinics.

Our interest in pursuing this research is motivated in part by earlier mental health-services 

research projects involving members of our research team that were published in the Journal 
of the American Medical Association [9, 10] where questions were raised in the review 

process about the possibility of using permutation tests. Given those concerns regarding the 

appropriateness of parametric methods and the challenges involved in detecting departures 

from underlying statistical assumptions, we developed an approach for implementing 

analyses that make use of design-based techniques to reflect loss to follow-up and that use 

permutation tests to avoid parametric assumptions [9, 10]. This approach has the advantage 

of requiring fewer underlying assumptions than are invoked in traditional linear models (e.g. 

normality of residuals and equal variances) and can be viewed as a way to gauge the 

robustness of findings using traditional methods. Although the method could be used in any 

experimental setting in an effort to strengthen confidence in project results, the issue seems 

particularly important for studies that are difficult to replicate and have strong potential for 

influencing clinical practice and patient outcomes.

For testing the hypothesis of no treatment effect in a randomized clinical trial, a variety of 

randomization-based inferential tests have been developed [1–8]. Multiple statistical 

packages offer relevant software, such as the entire StatXact package (http://www.cytel.com/

Products/StatXact/), the ‘permute’ command in Stata (Stata Corporation, www.stata.com), 

and the NPAR1WAY procedure and the EXACT option in PROC FREQ in SAS (SAS 

Institute Inc., www.sas.com). However, applying these procedures to a covariate-adjusted 

analysis gives rise to subtleties and challenges. Gail et al. [11] proposed a permutation test 

that is based on the randomization distribution of residuals computed from a regression on 

covariates other than an indicator of treatment. In a design where units are assigned at 

random to one of two groups, the randomization distribution is straightforward, but the 

method can be used in more complicated designs. The appeal of this method is that the 

permutation test does not depend on the validity of traditional regression-model assumptions 

such as residuals being normal and homoscedastic. Rosenberger and Lachin [8] offer 

illustrative examples of permutation tests for covariate-adjusted analysis under different 

designs (e.g. blocked randomization, stratified urn randomization).

Various strategies have been proposed for permutation tests adapted to linear models [e.g. 

11–20]. Consider a linear model Y = β0+β1X+β2Z+ε′, where Y is the dependent variable, X 
is a vector of covariates, Z is a primary explanatory variable (e.g. treatment indictor in a 

randomized trial), the error-terms components of ε are assumed iid., and the null hypothesis 

is H0:β2=0. The method of Freedman and Lane [13] involves permuting observed residuals 

from model Y = β0+β1X+ε′, which they call permutation ‘under the reduced model’. For 
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each order of the n! possible reorderings, the permuted residuals are added to predicted 

dependent variables from the reduced model to form new versions of the dependent variable. 

These new values are then fitted in the full model to compute the permutation test statistic. 

The idea of this approach is that the residual from the reduced regression approximates the 

errors that meet the assumption of exchangeability under the null hypothesis. An alternative 

approach outlined by ter Braak [16] is to permute residuals ‘under the full model’ or ‘under 

the alternative hypothesis’. A third method, described by Manly [15], is to permute raw data 

values, which preserves the covariances among independent variables and hence can be used 

for testing the relationship of Y vs X and Z together. Given alternative study designs and 

analyses of interest, Anderson [21] provides a summary of empirical and theoretical results 

for these three methods and gives recommendations for their use. In our application, which 

tests treatment effects on outcome variables in a randomized trial, the Freedman and Lane 

approach is an attractive strategy because the assumption of exchangeability under the null is 

assured.

However, as in many longitudinal clinical trials, the problem of unit nonresponse 

complicates the interpretation of study results. To correct for attrition bias, weighting 

adjustment methods are commonly used [22, 23]. The objective of nonresponse weighting is 

to extrapolate from the observed follow-up sample to the population represented in the 

original sample. One common approach is to model the propensity that an individual would 

be lost to follow-up conditional on covariates and to use the inverse of the estimated 

probability as a nonresponse weight for each participant. Variations on the propensity model 

have been considered depending on whether the treatment indicator and its interaction with 

other covariates are included. In the situation that weights are correlated with the treatment 

indicator, the validity of permutation tests based on permutation distribution of residuals 

from weighted analyses is violated. To incorporate attrition weighting in a permutation test, 

one could consider alternatives that permute the treatment indicator variable either with or 

without conditioning on the covariates, analogous to the distinction between unconditional 

and conditional bootstrap analyses [24].

The method of permuting independent variables for linear models was used by Draper and 

Stoneman [12] for data analysis and evaluated in simulations by others [17, 19, 20]. Oja [14] 

used a distribution-free permutation test for studying the effect of a treatment variable Z on a 

response Y after allowing for the effects of a multivariate covariate X. By randomizing the 

Z-values to subjects, Oja approximated randomization distributions with the distributions of 

other test statistics. Manly [15] gave some general ideas regarding a more computer-

intensive approach that is straightforward for repeating the whole estimation procedure 

many times, permuting Z-values to obtain the randomization distribution for the absolute 

value of the coefficient of Z in a multiple regression relating Y to Z and the covariates X. 

Kennedy and Cade [17] called this method ‘Shuffle-Z permutation test’. A simulation study 

by O’Gorman [20] showed that the test based on permutations of independent variables has 

roughly equal power to the permute-residuals test and can be utilized in conjunction with 

weighted least-squares procedures, unlike the permute-residuals method.

The purpose of this study is to demonstrate the viability of permutation tests based on 

permuting treatment indicators in the context of complex randomization protocols, the 
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availability of covariates, the use of logistic regression or other nonlinear procedures, and the 

application of attrition weighting. Our method first permutes treatment status according to 

the original randomization design, and then reconstructs attrition weights using the permuted 

data. We then re-run weighted regressions using the reconstructed weights. Our proposed 

permutation test is illustrated using data from a randomized controlled trial, the Youth 

Partners-in-Care (YPIC) study, aimed at evaluating a health-services intervention for 

adolescent depression [10]. We describe the YPIC study in Section 2 below, develop a 

proposed method in Section 3, and present results in Section 4 based on applying the method 

to the YPIC study.

2. APPLIED CONTEXT: THE YPIC STUDY

YPIC is a multi-site randomized effectiveness trial comparing a QI intervention with a usual 

care (UC) control group [10]. The QI intervention included: (1) expert leader teams at each 

site, (2) care managers who supported primary-care providers (PCPs) with patient 

evaluation, medication and psychosocial treatment, and linkage with specialty mental health 

services, (3) training of care managers in manualized cognitive behavioral therapy (CBT) for 

depression, and (4) patient and provider choice of treatment modalities. UC patients had 

access to usual treatment at the site, but not to the specific mental health providers trained in 

the CBT and care management services used in the study.

Enrolled patients were assessed at baseline prior to the intervention and at six months. The 

assessment included CES-D total score for depressive symptoms (Center for 

Epidemiological Studies-Depression Scale) [25], a mental health summary score known as 

MCS-12 [26], satisfaction with mental health care assessed using a 5-point scale, and 

process of care; the baseline assessment also included socio-demographic characteristics 

such as age, gender, race/ethnicity, parent employment status, speaks another language at 

home, number of households lived in, insurance status, and family income. After completing 

the baseline assessment, participants were randomized to the QI or UC condition. We 

randomized patients within PCPs to assure a balance between the QI and UC groups in 

terms of provider mix. We also blocked patients over time within each PCP for the 

randomization to assure a balance between QI and UC patients in terms of patient sequence, 

i.e. patients entering into the study early vs late. We used a block size of two to maximize 

the balance of patient sequence. Screening/enrollment staff were masked to randomization 

status and sequence and were different from assessment staff. These design features 

prevented protocol subversion due to selection bias in enrollment that might occur with 

blocked randomization [27]. We also applied Berger–Exner’s test [28] to confirm this 

expectation. (We acknowledge an anonymous JAMA reviewer for our previous publication 

[10], for helpful comments on the threat of protocol subversion in blocked randomization.)

At baseline, the study enrolled and randomized 418 depressed patients aged 13–21 from five 

health-care organizations purposively selected to include managed care, public sector, and 

academic medical center clinics, with 211 patients assigned to the QI condition and 207 to 

the UC condition. The sample consisted of 378 patients randomized in 189 complete blocks 

of size two with 189 patients randomized to each arm, and 40 patients in 40 incomplete 

blocks of size one with 22 randomized to the QI condition and 18 randomized to the UC 
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condition. (An incomplete block is formed when an odd number of patients is enrolled from 

a PCP, leaving only one patient in the last block.)

At six months, 344 (82 per cent) patients completed the follow-up assessment with 170 in 

the QI condition and 174 in the UC condition. Among the original 189 complete blocks, 132 

remained as complete blocks at follow-up, 51 lost one patient (22 with the QI patient staying 

and 29 with the UC patient staying), and 6 lost both patients. Among the original 40 

incomplete blocks of size one, 29 remained at follow-up (16 in QI and 13 in UC), and 11 

lost their single patient (6 in QI, 5 in UC).

To control for potential nonresponse bias, attrition weights were constructed by fitting 

logistic regression models to predict follow-up status from baseline predictors including 

socio-demographic and clinical variables. These models were fitted separately for the two 

intervention arms. The fitted logistic regression models were used to derive the predicted 

probability for each individual respondent to remain in the follow-up. The reciprocal of the 

predicted probability was then used as the attrition weight for each participant. For the 

models, we started with a large set of independent variables to be considered for a logistic 

regression on the response outcome (coded 1 if response and 0 if nonresponse). The 

potential predictors included age, age group (13–18 vs 19–21), number of households lived 

in (1 vs 2 or more), other language spoken at home (yes vs no), ethnicity (4 categories: 

African American, Latino, Caucasian, and other), total number of counseling visits in past 6 

months, the Mental Health Inventory five-item version (MHI-5) [26], and study site 

variables. There was 1 case missing for MHI-5 and 7 cases missing for total number of 

counseling visits. The missing values were imputed by regression predictions. The final 

model included all predictors that were at least marginally significantly associated with 

response status (p<0.10) in a bivariate analysis. Although the follow-up rates did not differ 

significantly across intervention conditions (χ2(1)=0.87, p=0.35), we found that there were 

more covariates significantly associated with response status in the control group than in the 

intervention group. Within both the UC and QI groups, older youth and those living in more 

than one household had higher nonresponse rates compared with younger youth and those 

living in single households. Further, within the UC group, nonrespondents also reported 

poorer mental health at baseline and were less likely to speak another language at home.

To evaluate the intervention effects on 6 months outcome assessments, we conducted 

multiple linear regressions for the three continuously scaled outcome variables (CES-D total 

score, MCS-12, and satisfaction with mental health care) and logistic regressions for the four 

binary variables (severe depression defined as CES-D⩾24, any specialty mental health care, 

any psychotherapy/counseling, and any medication). All of these analyses were conducted 

with an ANCOVA specification with the intervention status as the primary explanatory 

variable and the baseline version of the outcome measure as the covariate. Because CES-D 

was not measured at baseline, the baseline measure MHI-5 was used as the covariate for the 

analysis of 6-month CES-D, both total score and dichotomized. (CES-D and MHI-5 were 

highly correlated, with Pearson’s correlation 0.78 for our follow-up data.)

All regression models were fitted with attrition weights to mitigate potential attrition bias. 

We used SUDAAN software [29] for estimating variance of the parameter estimates. For 
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weighted models, one could also use other software packages for complex survey data, such 

as the svy-commands in Stata and the SURVEYREG and SURVEYLOGISTIC procedures 

in SAS version 9. In SUDAAN, we used the design option ‘sampling with-replacement’ in 

linear and logistic regression models, which employs a Taylor-series linearization procedure 

in a manner equivalent to estimating variances of parameter estimates in the generalized 

estimating equations framework of Liang and Zeger [30, 31]. In contrast to a procedure 

based on the permutation distribution implied by the randomization process, our analysis is 

anchored in a model-based framework.

3. PERMUTATION TEST

Here we propose a permutation test that permutes treatment assignments for entire 

observations. Our technique attempted to reflect the design of the study, nonresponse 

adjustment, and adjustment for baseline covariates. Specifically, we permute the 

randomization indicators according to the blocked randomization design, and then we 

evaluate the intervention effect following the procedures in the original data analysis 

protocol, including weighting and covariate adjustments.

Consider a regression function: E(Y)=g(β0+β1X+β2Z), where Z is the treatment indicator 

(1=intervention,0=control), X is the vector of covariates, and g denotes a link function, with 

the identity link function appropriate for a linear model and the inverse of the logit function 

appropriate for a logistic regression model. The vector X could include fixed effects for 

blocks, or one could proceed with separate block effects, which is the approach we took in 

this application. The intervention effect is given by the regression coefficient β2; the 

significance of the intervention effect is tested with the null hypothesis H0:β2=0 vs Ha:β2 ≠ 

0. We use the ratio T = β2/se β2  rather than β2 as the test statistic since the attrition weights 

were used in the regression models.

The null distribution of T for testing β2=0 can be simulated by re-randomizing treatment 

assignment according to the original randomization protocol (such as the blocked 

randomization design for YPIC) while keeping outcomes and covariates as observed. For a 

blocked randomized study with attrition weighting, our method follows the three-step 

procedure below:

Step 1: Compute the test statistic for the actual data observed:

a. Select an attrition weighting model as described in Section 2.

b. Fit the attrition weighting model.

c. Derive attrition weights using model fitted in Step 1b.

d. Fit the regression model using SUDAAN protocols for linear or logistic 

regression with attrition weights derived in Step 1c to obtain the test statistic T 
for the null hypothesis H0:β2=0.

Step 2: Estimate the null distribution for the test statistic T with N replicates of the three 

sub-steps below:
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a. Re-randomize treatment assignment within each block.

b. Re-derive the attrition weights using the methods in Step 1a–1c.

c. Re-fit the regression model using SUDAAN for linear or logistic regression with 

attrition weights re-derived in Step 2b to re-derive the test statistic T.

Step 3: Derive the empirical p-value for the test statistic T from the null distribution based 

on the permutation distribution obtained in Step 2, i.e. p=(M+1)/(N+1), where M denotes the 

number of replicates for which the test statistic T obtained in the permutation procedure in 

Step 2 is equal to or greater than (in absolute value) the observed value of T obtained in Step 

1 and N denotes the total number of replicates. The addition of 1 in both numerator and 

denominator represents the observed test statistic for the original data, which is considered 

one of the realizations of the permutation distribution.

For the model selection in Step 2b, one might wonder whether there would be a difference in 

results between fixing covariates or carrying out variable selection for each permutation. 

These two approaches were included in our application. In Method 1, we used the exact 

predictors identified in Step 1a. Method 2 incorporated the model selection procedure in 

Step 1a, namely including all predictors that were at least marginally significantly associated 

with response status (p<0.10) in a bivariate analysis. The two approaches yielded similar 

results.

As a sensitivity analysis, we also carried out permutation tests without incorporating 

blocking in the analysis, regardless of the presence of blocks in Step 2a. Two variations on 

this procedure were conducted, one based on considering the entire sample at once and the 

other reflecting stratification by study site. Both methods treated the original size of each 

treatment group as fixed. Results were very similar across these alternatives, suggesting that 

intra-block correlation has a negligible effect in this context.

Note that Method 2 is demanding in its programming requirements. The permutation 

procedure in Step 2 can be greatly simplified if the attrition model does not include the 

treatment indicator variable. As a reviewer pointed out, bypassing Step 2 would eliminate 

the need to re-estimate the attrition weights for each permutation. When patterns of 

nonresponse do not differ substantially between treatment groups, the weighting model in 

Step 1 could be based on a single attrition model that does not use an intervention indicator 

as a predictor. If the resulting tests from two weighting models point to close agreement, 

then an argument can be made for using the simplified permutation method.

In our application, although the rates of nonresponse did not differ significantly across two 

treatment groups (19 per cent in the intervention group and 16 per cent in the control group, 

p=0.35), different predictors were found in propensity weighting models. To take into 

account the potential for differential nonresponse bias across treatment groups, we modeled 

attrition weights separately in a stratified analysis. A collateral feature of this decision was 

that marginal total sample sizes remained fixed in different replicates.
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4. PERMUTATION TEST APPLIED TO YPIC

We applied the permutation test described in Section 3 to the YPIC data, with N = 10 000 

replicates for the re-sampling procedure. At baseline when the randomization was 

conducted, there were 189 complete blocks with two patients in each block and 40 

incomplete blocks with only one patient in each block. For each complete block, the re-

randomization in Step 2a amounts to permuting the intervention condition for the two 

patients in the block. For each incomplete block, the re-randomization in Step 2a amounts to 

re-randomizing the intervention condition for the single patient in the block. Since our 

original analysis used all patients from both types of blocks, our permutation test mimics the 

original analysis, retaining the incomplete blocks.

The results are presented in Table I, showing the two-sided p-values based on the test 

statistic T. The first column presents the p-values based on the traditional t-test obtained 

with the actual observed data. The second column presents the p-values based on the 

permutation test. To account for variability of Monte Carlo approximation, we calculated 

Monte Carlo confidence interval for the estimated p-values PMC, where the standard error of 

the Monte Carlo estimate is se PMC = PMC 1 − PMC /N, and the 95 per cent confidence 

limits are defined as PMC ± 1.96 × se PMC .

For all seven outcome measures, the two versions of permutation tests and the usual t-test 

based on observed data lead to qualitatively similar p-values, suggesting that the results from 

the traditional analyses were robust.

Method 2, which re-derived the attrition weights, produced slightly smaller p-values in 5 

cases out of 7 than did Method 1, which used the same predictors as in the original data set. 

For five outcome measures (CES-D, satisfaction, severe depression, any psychotherapy/

counseling, and any medication), the p-values based on the traditional t-test were greater 

than the Monte Carlo 95 per cent upper confidence limits for both permutation methods, 

indicating that the differences between the p-values are not explained by sampling variability 

from the Monte Carlo procedure. For MCS12, the p-value based on the usual t-test fell 

within the Monte Carlo 95 per cent confidence interval for Method 2 but was greater than 

the upper endpoint of the interval produced by Method 1. For the seventh variable (any 

specialty mental health care), the p-value based on the usual t-test fell inside the Monte 

Carlo 95 per cent confidence interval for both methods.

5. DISCUSSION

The permutation tests considered in this article invoked two key elements: (1) the 

permutation of the treatment indicator is generated in a manner consistent with the original 

randomization scheme, and (2) the test statistic is computed in exactly the same manner as 

in the traditional analysis. The proposed strategy for relaxing distributional assumptions 

might be used as a routine technique to evaluate the findings of scientifically important field 

studies, in particular to assess whether results are sensitive to the parametric assumptions in 

traditional linear models and analysis-of-covariance procedures.
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We demonstrated that the permutation test can be applied to realistic settings such as the 

YPIC study by taking the randomization scheme into account along with the use of 

covariates and attrition weighting. As a further illustrative example, we also implemented 

the permutation test in a different study published in JAMA, a multi-center randomized 

controlled trial of a disease management program for late-life depression known as Project 

IMPACT (Improving Mood-Promoting Access to Collaborative Treatment) with which 

members of our research team were also involved [9]. The IMPACT study enrolled 1801 

depressed patients from 18 primary-care clinics belonging to eight health-care organizations, 

with random assignment at the individual level to a health-services intervention or to UC 

within strata defined by clinic and recruitment method (clinic screening or clinician referral) 

as well as within blocks of size 20. The originally planned analysis of the project made use 

of mixed-effects models to assess outcomes at four time points over 12 months of follow-up, 

but given concerns raised in the initial review about the extent to which the results might 

depend on modeling assumptions, we conducted analyses using design-based stratified exact 

permutation tests (using StatXact software). The fact that a few covariate items were missing 

on a few subjects added a layer of complication; in the original analysis, five multiply 

imputed data sets were created [32, 33], and in an effort to preserve the frequency properties 

of our testing procedures, the exact permutation test was conducted on the imputation 

version least favorable to intervention effects. Across 10 dependent variables, this procedure 

yielded significance results very similar to those from the mixed-effect models, with one 

exception (for the variable ‘Overall functional impairment’) where the permutation test 

produced a more significant p-value (p=0.0116) than the mixed-effect model (p=0.0233).

The fact that the permutation tests led, more often than not in our application, to stronger 

conclusions about significance reassures us about the use of the traditional analysis. This 

approach adds to extant methods for confirming results across diverse statistical methods 

and assumptions, and provides a useful strategy for enhancing confidence in research results 

with strong potential for impacting clinical care and patient outcomes.

Despite the similarity of significance findings between parametric techniques and 

permutation tests, there is room for philosophical debate surrounding the lingering 

differences: Do differences in significance findings lead one to favor the method that relies 

on fewer assumptions? Should there be a general expectation that analyses of randomized 

trials should rely primarily on permutation tests, or do limits of time and other resources 

suggest that scientific progress would be best served by embracing parametric tests, which 

are far more accessible to large numbers of applied researchers? Gains in insight into these 

questions might emerge from simulation studies, although we doubt that it would be possible 

to resolve such matters entirely. Still, the findings of the present investigation can serve as 

reference points for applied researchers, helping to reinforce intuition about the relevant 

tradeoffs based on having implemented a wide array of alternative analyses on the central 

scientific question at hand.
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Table I.

Comparison of p-values obtained with usual t-test based on actual data and permutation tests.

Permutation test
†

Usual t-test* Method 1 Method 2

p-Value Estimated p-value (95 per cent CI) Estimated p-value (95 per cent CI)

Continuously scaled variables

CES-D 0.0228 0.0186 (0.0160, 0.0212) 0.0180 (0.0154, 0.0206)

MCS12 0.0290 0.0265 (0.0233, 0.0296) 0.0252 (0.0221, 0.0283)

Satisfaction with mental health care 0.0038 0.0026 (0.0016, 0.0036) 0.0025 (0.0015, 0.0035)

Dichotomized variables

Severe depression 0.0199 0.0127 (0.0105, 0.0149) 0.0130 (0.0108, 0.0152)

Any specialty mental health care 0.0004 0.0007 (0.0002, 0.0012) 0.0004 (0.0000, 0.0008)

Any psychotherapy/counseling 0.0066 0.0041 (0.0028, 0.0054) 0.0034 (0.0023, 0.0045)

Any medication 0.7369 0.7214 (0.7126, 0.7302) 0.7229 (0.7142, 0.7317)

*
Weighted analysis with attrition weighting.

†
Permutation test with 10 000 replicates. Method 1: The nonresponse weights were created by using the same set of predictors from the original 

attrition weighting model for each permutation. Method 2: The nonresponse weights were remodeled by carrying out variable selection for each 
permutation.
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