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Abstract

Functional connectome “fingerprint” is a highly characterized brain pattern that distinguishes one 

individual from others. Although its existence has been demonstrated in adults, an unanswered but 

fundamental question is whether such individualized pattern emerges since infancy. This problem 

is barely investigated despites its importance in identifying the origin of the intrinsic connectome 

patterns that mirror distinct behavioral phenotypes. However, addressing this knowledge gap is 

challenging because the conventional methods are only applicable to developed brains with subtle 

longitudinal changes and typically fail on the dramatically developing infant brains. To tackle this 

challenge, we invent a novel model, namely, disentangled intensive triplet autoencoder (DI-TAE). 

First, we introduce the triplet autoencoder to embed the original connectivity into a latent space 

with higher discriminative capability among infant individuals. Then, a disentanglement strategy is 

proposed to separate the latent variables into identity-code, age-code, and noise-code, which not 

only restrains the interference from age-related developmental variance, but also captures the 

identity-related invariance. Next, a cross-reconstruction loss and an intensive triplet loss are 

designed to guarantee the effectiveness of the disentanglement and enhance the inter-subject 

dissimilarity for better discrimination. Finally, a variance-guided bootstrap aggregating is 

developed for DI-TAE to further improve the performance of identification. DI-TAE is validated 

on three longitudinal resting-state fMRI datasets with 394 infant scans aged 16 to 874 days. Our 

proposed model outperforms other state-of-the-art methods by increasing the identification rate by 

more than 50%, and for the first time suggests the plausible existence of brain functional 

connectome “fingerprint” since early infancy.
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1 Introduction

Using brain functional connectivity profiles to establish individual uniqueness among a 

cohort is important for individualized characterization of disease and health [1], 

understanding intrinsic patterns of brain organization [2] and their relationship with distinct 
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behavioral phenotypes [3]. To date, it has been shown that the brains of adults [1-4] and 

adolescents [5] exhibit highly individualized functional connectome patterns, which is 

unique enough to be taken as “fingerprint” for distinguishing an individual from others. Of 

note, most of the functional connectome fingerprinting studies focus on adults, in which the 

brain function is relatively stable across different scans. Only a few studies involved the 

developing brains from adolescent cohorts [4, 5]. To the best of our knowledge, there is no 

study on the brain functional connectome fingerprinting in infants, whose brains are 

undergoing dramatic development, although brain folding fingerprinting in infants has been 

investigated [22]. However, studying the fingerprinting capability of the infant functional 

connectivity is of great neuroscientific significance with the examination of: 1) Whether 

such individualized functional connectome pattern emerges early during infancy, which 

features the most critical and dynamic postnatal brain development [6, 7, 18, 19]; 2) Which 

functional connection(s) and network(s) manifest more individualized uniqueness during the 

early brain development. Addressing these questions is challenging because the intrinsic 

patterns for identifying an individual infant from their peers are overwhelmed by the rapid 

brain development. Conventional methods designed for adults only suite the scenario with 

subtle longitudinal brain change and are thus typically fail on infant data.

To fill this knowledge gap, we develop a novel model called disentangled intensive triplet 

autoencoder (DI-TAE). It restrains the overwhelming interference from brain development 

by separating the invariance of the individualized brain connectome from the variance of the 

dramatic brain development. Specifically, at first, triplet autoencoder [8, 9] is chosen as the 

basic model to enhance the discrimination capability of function connectivity for its 

potential on capturing high-order discriminative information from comparison within triplet 

sample. Then, the latent variables of the autoencoder are disentangled into identity-code, 

age-code, and noise-code, representing the individualized information, developmental 

information, and unconcerned noise, respectively. This new strategy helps to not only 

effectively extract the discriminative information for identification but also simultaneously 

model the variance and invariance in the brain connectome by unifying age prediction and 

individual identification in a single framework. A cross-reconstruction loss is further 

designed requiring the identity codes obtained from the same subjects are replaceable with 

each other in the reconstruction process, so as to guarantee the effectiveness of the 

disentanglement. Next, equipping with a new defined intensive triplet loss, the inter-subject 

dissimilarity is deeply emphasized to learn a more discriminative feature variable. Finally, 

since the high dimension of the whole brain functional connectivity features poses a 

significant challenge for efficient learning, a variance-guided bootstrap aggregating is 

designed, only including a small portion of features at each time, to boost the accuracy while 

preventing overfitting.

In experiments based on a longitudinal infant dataset, the high identification accuracy 

obtained by DI-TAE not only validates the superiority of our proposed model but also, for 

the first time, proves that brain functional connectome “fingerprint” emerges since infancy. 

With further analysis, networks that manifest more on individualized uniqueness during the 

early brain development were also identified for revealing the developmental trajectory of 

brain connectome fingerprint from infants to adults.
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2 Method

2.1 Disentangled intensive triplet autoencoder

Unifying disentanglement, age prediction, and individual identification into a triplet 

autoencoder, the disentangled intensive triplet autoencoder (DI-TAE) is trained with 

specifically defined losses and dedicatedly designed for infant functional connectome 

fingerprinting. The framework of DI-TAE is depicted in Fig. 1 and detailed below.

The individual infant identification test is performed across paired of scans consisting of one 

“target” and one “base” data, with the requirement that the target and base sessions are 

acquired from different ages. That is, each subject has two longitudinal fMRI scans from 

two different sessions. In the process of identification, one scan will be selected from the 

target set iteratively with the goal of determining the corresponding scan obtained from the 

same subject in the base set. The proposed model uses triplet examples to train the network. 

Denoted by (xia, xi
p, xin), the three input functional connectomes form the i-th triplet, where 

xia (anchor) and xi
p (positive) are of the same subject and from the target set and the base set, 

respectively, while xin (negative) belongs to a different subject and is from the base set. 

Herein, i = 1, ⋯, M and M is the total number of the triplets.

Encoding.—The three inputs xia, xi
p, and xin employ a neural network, denoted as E, as 

their shared encoder. The outputs of the encoder are called the latent variables, which 

denoted as zia, zi
p, and zin. Indices a, p, and n will be omitted unless otherwise specified when 

we are referring to a common process for xia, xi
p, and xin.

Latent variable disentanglement.—Since the age-related dramatic developmental 

variance highly interfere identifying the same subject’s functional connectome from the base 

set, we should separate the age-related variance and identity-related invariance in functional 

connectome. Here, zi is disentangled into three parts: Age(zi), ID(zi), and Noise(zi). They are 

called age-code, identity-code, and noise-code, which represent the developmental 

information, individualized information, and unconcerned noise, respectively. The basic 

requirements of the disentanglement are:

(1) The concatenation of Age(zi), ID(zi), and Noise(zi) equals zi;

(2) ID(zia) and ID(zi
p) should be as similar as possible, while ID(zia) differs from ID(zin) and 

also ID(zi
p) differs from ID(zin) as much as possible.

(3) Age(zi) is capable of age prediction;

(4) Noise(zi) obeys a Gaussian distribution.

Cross reconstruction requirements.—The elements in the triplet employ a neural 

network, denoted as G, as their shared decoder. Conventionally, since zi = [Age(zi), ID(zi), 

Noise(zi)] is the latent variable encoded from xi, a direct requirement is the reconstruction of 
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xi from zi, which signifies the similarity between xi and xi = G(zi). On the other side, since 

ID(zi) represents the identity-related invariance, ID(zia) and ID(zi
p) should be capable of 

replacing each other in reconstructing xia and xi
p. Therefore, to further ensure the 

effectiveness of the disentanglement, we introduce the cross reconstruction requirements: the 

similarity between xia and G([Age(zia), ID(zi
p), Noise(zia)]), and the similarity between xi

p and 

G([Age(zi
p), ID(zia), Noise(zi

p)]).

Age predictor and adversarial discriminator.—To ensure that the Age(zi) learns the 

age-related information, a neural network is designed as the regressor P to predict age from 

Age(zi). Furthermore, a discriminator D is designed to impose the adversarial regularization 

on Noise(zi), which tries to ensure Noise(zi) follows a Gaussian distribution through 

adversarial learning [16].

E, G, P, and D are all parameterized and learned together with the following losses.

Intensive triplet loss.—Ordinary triplet loss merely focuses on the relative distance 

between the (Anchor, Positive) and (Anchor, Negative) pairs. Considering that (Positive, 

Negative) is also a pair of different labels, as shown in Fig. 2, the inter-subject dissimilarity 

can be deeply enhanced if the relative distance between (Anchor, Positive) and (Positive, 

Negative) is also measured as a new constraint. Thus, a new intensive triplet loss ℒI − tri is 

defined as follows, where corr is the Pearson correlation:

ℒI − tri = ℒtri + ℒI (1)

ℒtri = ∑
i = 1

M
corr ID E(xia) , ID E(xi

p) − corr ID E(xia) , ID E(xin) (2)

ℒI = ∑
i = 1

M
corr ID E(xia) , ID E(xi

p) − corr ID E(xi
p) , ID E(xin) (3)

Reconstruction loss.—The reconstruction loss is defined based on the cross-

reconstruction requirements described above. It consists of ordinary reconstruction and cross 

reconstruction from the triplet samples. E is the expectation operator.

ℒrecon = ℒrecon_ordi + ℒrecon_cross (4)

ℒrecon_ordi = ∑j = a, p, n Exi
j(xi

j − G Age E(xi
j) , ID E(xi

j) , Noise E(xi
j) ) (5)
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ℒrecon_cross = ∑j ∈ B = {a, p}Exi
j(xi

j − G
Age E(xi

j) , ID E(xi
B ∖ {j}) , Noise E(xi

j) )
(6)

Age prediction loss.—L2 norm is adopted as our regression loss for age prediction:

ℒage = ∑j = a, p, n Exi
j(yi

j − P(Age E(xi
j) )) (7)

Where yi
j is the real age corresponding to xi

j.

Adversarial loss.—Let Prob(Noise(zi)) = N (Noise(zi) ∣ μ(xi), σ(xi)) be the prior 

distribution of Noise(zi), Prob(xi) be the distribution of the data, and q(Noise(zi)∣xi) be the 

encoding distribution. The distribution requirement on Noise(zi), defined by the 

disentanglement, requires the aggregated posterior distribution q(Noise(zi)) = ∫xi q(Noise(zi)

∣xi)Prob(xi)dxi matches the predefined prior Prob(Noise(zi)). This regularization on Noise(zi) 

is realized by an adversarial procedure with the discriminator D, which leads to a 

minE maxD ℒadv problem, where

ℒadv = ∑j = a, p, nExi
jlog D Noise E(xi

j) + Ezi
jlog(1 − D Noise(zi

j) ) (8)

Full Objective.—The objective functions to optimize E, G, P, and D are written as:

ℒD = ℒadv (9)

ℒE, G, P = λ1ℒI_tri + λ2ℒrecon + ℒadv_E + λ3ℒage (10)

where ℒadv_E = ∑j = a, p, nExi
jlog D Noise E(xi

j) , λ1, λ2, and λ3 are trade off parameters. 

The model alternatively updates E, G, P, and D with ℒE, G, P  and ℒD.

2.2 Variance-guided bootstrap aggregating

Brain functional connectome can be represented by the upper triangle of the functional 

connectivity matrix. However, the whole-brain functional connectivity matrix is a high 

dimensional vector that is inefficient for training or trends to overfit. It has been proved that 

the “thin slice” of the functional connectome may still lead to comparable accuracy for 

individual identification [12]; therefore, bootstrap aggregating with randomly chosen partial 

connectivity links from the full connectome is introduced to promote the learning efficiency 

and effectiveness. Specifically, 1) the discriminative capability (DC) of a connection e is 

measured by DC(e) = σ{Ci(e)∣i = 1, ⋯, N}, where Ci is the functional connectome of the i-th 

scan, σ is the standard deviation operator, and N is the number of scans in the base set; 2) K 
connectivity links with a dimensionality far smaller than that of the original connectome are 

randomly chosen out of the full connectome with the probability of {P_e = DC(e)/Σe 
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DC(e)}. By applying the chosen indices to all connectomes repetitively, we generate 

bootstrap samples; 3) T models are fitted by T bootstrap samples before the final 

identification result can be obtained by majority voting. We set K = 5000 and T = 50 in our 

experiment after several empirical tests.

3 Experiments

3.1 Data description

We verified the effectiveness of the proposed DI-TAE model and study the infant brain 

connectome fingerprinting on a high-resolution resting-state fMRI (rs-fMRI) data including 

104 subjects (53 females/51 males) with 394 longitudinal scans acquired at different ages 

ranging from 16 to 874 days in the UNC/UMN Baby Connectome Project [23]. All infant 

MR images were acquired during natural sleeping on a 3T Siemens Prisma MRI scanner 

using a Siemens 32 channel head coil. T1-weighted and T2-weighted MR images were 

obtained with the resolution = 0.8×0.8×0.8 mm3. The rs-fMRIs scans were acquired with 

TR/TE = 800/37 ms, FA = 80°, FOV = 220 mm, resolution = 2×2×2 mm3, and total volume 

= 421 (5 min 47 sec). All structural and functional MR images were preprocessed following 

a state-of-the-art infant-tailored pipeline [21, 24-27]. Cortical surfaces were reconstructed 

and aligned onto a public 4D infant surface atlases [20, 28, 29]. At each cortical vertex on 

the middle cortical surface, its representative fMRI time-series were extracted [17]. An 

infant-specific functional parcellation template with 420 cortical ROIs were then constructed 

and warped onto each individual cortical surface. The time series within each ROI were 

averaged and further correlated with those from all others. The functional connectivity 

matrix was derived by calculating the Pearson correlation coefficient between time series of 

each pair of ROIs. Fishers r-to-z transformation was conducted to improve the normality of 

the functional connectivity. To validate our model based on data sets with different 

distributions of age and inter-session time gap, three datasets (i.e., Dataset 1, Dataset 2, and 

Dataset 3) were generated from the 394 longitudinal rs-fMRI scans. Fig. 3. illustrates how 

the datasets were generated and the distribution of each dataset.

3.2 Validation of DI-TAE

We compare the proposed DI-TAE model with following seven methods: four state-of-the-

art methods in brain connectome fingerprinting study including (1) Euclidean distance based 

1-nearest neighbors algorithm (1-NN) [10]; (2) the Pearson correlation-based identification 

(P-Corr) [3, 4]; (3) PCA-reconstruction based identification (PCA-based) [11]; and (4) 

dynamic functional connectivity strength-based identification (DFC-Str) [1]. Three models 

derived from our DI-TAE for validating each of our proposed strategies, including: (5) 

taking differential power measure (DP) [3] as the contribution index to replace the 

discriminative capability measure, DC, defined in our model; (6) applying random selection 

[12] to replace the variance-guidance in the bootstrap aggregating in our model; and (7) 

taking the ordinary triplet loss to replace the intensive triplet loss in our model.

The encoder E and decoder G in DI-TAE were all designed as a two-layer perception neural 

networks. The predictor P constitutes of 6 densely connected layers of dimension (300, 500, 

100, 100, 20, 1) with ReLU as the activation function. The discriminator D constitutes of 5 
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densely connected layers of dimension (300, 30, 30, 10, 1) with ReLU as the activation 

function of the first 4 layers and Sigmoid as the activation function of the last layer. DI-TAE 

was implemented with Pytorch and optimized with Adam by a fixed learning rate as 0.001. 

The batch size was set as 200. The dimension of the latent variable was 2000, while the 

dimensions of age code, identity code, and noise code were set as 300, 1400, and 300, 

respectively. λ1 = 0.1, λ2 = 0.8, and λ3 = 0.1. Except the dedicated different parts for 

comparison, methods (5)-(7) share the same architecture with DI-TAE for the fairness of the 

comparison. For DFC-Str based identification, the sliding window has a width of 125 TR 

(i.e., 100 s) and slide on time with a time step of 1 TR (i.e., 800 ms). The PCA components 

number was set to 80 in PCA-based identification.

The identification rate was measured as the percentage of subjects whose identity was 

correctly predicted out of the total number of subjects. The predicted identity of the scan is 

correct means the corresponding scan obtained from the same subject in the base set is 

determined. The comparison results are shown in Table 1. Without training required, the 

identification tests of methods (1)-(4) were implemented directly. With training and testing 

required, our model and methods (5)-(7) were assessed by 10 times of 10-fold cross 

validation. The means and standard deviations of the 10 identification accuracies are 

reported. Our DI-TAE model outperformed the four state-of-the-art methods by increasing 

their identification accuracy by more than 50%. On Dataset 2, although the age gap between 

the two sessions are in average 191 days, the identification accuracy still reaches 81.7%. 

When changing the DC in our model to DP (or random selection) or changing the intensive 

triplet loss proposed by us to the ordinary triplet loss, the accuracy of the model was 

significantly reduced, further validating the effectiveness of the proposed strategies.

3.3 Infant functional connectome fingerprinting

Based on our proposed model DI-TAE, the identification rate of infants on the three data sets 

are over 70% on average, suggesting the plausible existence of brain functional “fingerprint” 

during early infancy. The most contributive connections for infant fingerprinting were 

further analyzed by the weights of the learned encoder in DI-TAE and shown in Fig. 4. It 

seems that the visual and somatomotor networks manifest more individualized uniqueness 

during the early brain development. Compared to our findings, the connections in the 

frontoparietal network are more important in adult functional fingerprinting [3, 14, 15], 

which shows that there may be difference between the developing infant brains and the 

stably developed adult brains. Moreover, since better identification performance were always 

obtained on Dataset 2 with all the methods, we can see that it is easier to identify the identity 

of the scan with more developed brains and smaller age difference between the two scan 

sessions.

4 Conclusion

In this paper, we proposed a disentangled intensive triplet autoencoder to address the 

absence of effective methods in studying functional connectome fingerprinting of infant 

brains. Disentangling the age-related variance from subject identity-related invariance, our 

model successfully captures individualized patterns of infant brain functional connectivity 
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out of the overwhelming dramatic brain development. With a high identification rate for 

infants, for the first time, our results suggest that the brain functional “fingerprint” may exist 

from early infancy. Our proposed DI-TAE model serves as a potentially powerful method for 

studying individualized brain connectome pattern and its development, even such 

connectome is undergoing dramatic changes.
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Fig. 1. 
The framework of our proposed DI-TAE model.
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Fig. 2. 
Compared with the triplet loss (a), intensive triplet loss (b) maximizes not only the distance 

between anchor and negative but also the distance between positive and negative.
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Fig. 3. 
Experimental datasets description. (a) The way that the three datasets constructed from the 

longitudinal scans; (b-d) The age distributions of the three datasets. Each line indicates a 

subject and each circle indicates a scan.
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Fig. 4. 
The most contributive connections for the whole identification model (a), for age prediction 

(b), and for subject identification (c). The most contributive connections were obtained by 

thresholding the whole connectome at the 99.9 percentile of weights. In the circle plots, the 

ROIs are organized into 7 networks [13] and lines represent connections. The numbers in the 

colored matrices are the number of contributive connections within and between each pair of 

networks. The correlation matrix between the scans of two sessions based on the original 

features and that based on the learned features by DI-TAE are shown in (d) and (e), 

respectively. Figure (e) shows that the correlation between the scans of the same subject is 

much larger than that of different subjects, indicating the significantly increased 

discriminative capability of the learned features.
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Table 1.

The comparison of DI-TAE with other seven methods with identification rate (%). The scans in Session 2 were 

acquired later than those in Session 1.

Target set-Base set Session 2- Session 1 Session 1- Session 2

Dataset 1 Dataset 2 Dataset 3 Dataset 1 Dataset 2 Dataset 3

1-NN [10] 21.12 33.64 20.19 23.08 34.62 16.35

P-Corr [3] 39.42 50.96 32.69 42.31 58.65 33.65

PCA-based [11] 38.46 52.88 28.85 37.50 55.77 29.81

DFC-Str [1] 39.42 53.85 31.73 38.46 56.73 31.73

DP [1] + ours 49.1 ± 1.3 62.5 ± 0.9 42.6 ± 1.1 47.5 ± 0.7 61.4 ± 1.5 42.6 ± 1.4

Random [12] + ours 50.2 ± 3.8 65.2 ± 2.6 42.3 ± 3.5 46.2 ± 3.6 59.7 ± 2.8 38.9 ± 2.7

Triplet loss [8] + ours 59.2 ± 1.3 77.6 ± 1.7 57.3 ± 1.3 58.8 ± 1.4 75.3 ± 1.8 57.1 ± 1.5

DI-TAE (proposed) 65.6 ± 1.3 81.7 ± 1.5 63.5 ± 1.3 66.5 ± 1.5 80.1 ± 1.7 62.7 ± 1.3
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