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Summary

Fecal microbiota transplantation (FMT) from healthy donor to patient is a treatment for 

microbiome-associated diseases. Although the success of FMT requires donor bacteria to engraft 

in the patient’s gut, the forces governing engraftment in humans are unknown. Here, we use an 

ongoing clinical experiment, the treatment of recurrent Clostridium difficile infection, to uncover 

the rules of engraftment in humans. We built a statistical model that predicts which bacterial 

species will engraft in a given host, and developed Strain Finder, a method to infer strain 

genotypes and track them over time. We find that engraftment can be predicted largely from the 

abundance and phylogeny of bacteria in the donor and the pre-FMT patient. Further, donor strains 

within a species engraft in an all-or-nothing manner and previously undetected strains frequently 

colonize patients receiving FMT. We validated these findings for metabolic syndrome, suggesting 

that the same principles of engraftment extend to other indications.

Graphical Abstract
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Smillie et al. profile the gut microbiota of recurrent Clostridium difficile patients during fecal 

microbiota transplantation (FMT) and uncover the principles of microbiota engraftment in 

humans. They validate their findings across several FMT datasets and in another disease context, 

metabolic syndrome.
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Introduction

Fecal microbiota transplantation (FMT) is an emerging treatment for infectious and 

autoimmune diseases, in which donor feces are implanted in a patient’s intestinal tract. This 

treatment cures recurrent Clostridium difficile infection (rCDI) in eighty-five percent of 

cases (van Nood et al., 2013) and there is some evidence it may be effective for other 

diseases, including inflammatory bowel disease (Moayyedi et al., 2015; Suskind et al., 

2015), metabolic syndrome (Ridaura et al., 2013; Vrieze et al., 2012), and autism (Hsiao et 

al., 2013). Putative mechanisms of FMT efficacy focus on the trillions of bacteria that 

inhabit the gastrointestinal tract, the gut microbiota. FMT is thought to restore these bacteria 

(Shahinas et al., 2012; Youngster et al., 2014), which may then alter host metabolism (Floch, 

2015; Trompette et al., 2014), inhibit pathogens (Britton and Young, 2014) and effect 

changes in host immunity (Furusawa et al., 2013; Ivanov et al., 2009; Round and 

Mazmanian, 2010).

Precision engineering of the gut microbiota with bacterial isolates in pure culture offers the 

therapeutic potential of FMT without the risks associated with the use of raw fecal matter 

(Petrof and Khoruts, 2014). Whether this next generation of microbiome-based therapeutics 

will effectively replace FMT will depend on whether: (i) the “active ingredients” of FMT 

that carry out a desired mechanism can be identified, (ii) these strains engraft in a patient’s 

gut, and (iii) they are sufficiently abundant to produce a clinical response.

While mechanism may be studied using in vitro or animal models of disease (as for 

traditional small molecule drugs), engraftment and abundance in humans are less well 

understood. If engraftment is governed by simple rules, such as the law of mass action, then 

it may be highly deterministic and easy to predict. Alternatively, if engraftment is governed 

by contextual factors, such as genetics, diet, antibiotics, and the immune system, then it may 

vary considerably among patients and be difficult to predict. A quantitative model of 

bacterial engraftment would accelerate drug discovery efforts by pinpointing the bacteria 

that engraft at high abundance in a given host. However, no such model exists, and despite 

significant advances in our understanding of FMT (Li et al., 2016), surprisingly few 

principles of bacterial engraftment in a human host are known.

Direct tests of bacterial engraftment are difficult, as animal models do not capture important 

aspects of human biology, and experiments in humans present regulatory and ethical 

challenges. However, there is already an ongoing large-scale experiment of engraftment in 

humans: the use of FMT to treat recurrent C. difficile infection.

C. difficile is a gram-positive pathogen that causes severe diarrhea and is responsible for 

500,000 infections, resulting in 30,000 deaths, per year (Lessa et al., 2015). It is often 

carried asymptomatically in the gut, where it is normally inhibited by gut commensals. 

Disruptions to this inhibition, often via broad-spectrum antibiotics, allow C. difficile to 

proliferate. First-line treatment with antibiotics can cure this infection, but in twenty percent 

of cases, C. difficile spores persist and reinitiate the cycle of infection. FMT is thought to 

break this cycle by restoring the protective gut microbiota that inhibit the growth of C. 
difficile and prevent recurrence of the infection (Aroniadis and Brandt, 2013).
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Bacterial engraftment is therefore thought to be responsible for the efficacy of FMT, yet few 

studies have examined the factors that promote the engraftment of individual strains. Here, 

we develop a method for strain inference, Strain Finder, and combine it with techniques 

from machine learning to quantitatively model bacterial engraftment in diverse human hosts. 

We uncover the principal factors that govern bacterial engraftment after FMT and show that 

these rules appear to generalize to the treatment of another disease, metabolic syndrome.

Results

Profiling fecal microbiota transplantation with shotgun metagenomics

Prior studies of recurrent C. difficile (Chang et al., 2008; Seekatz et al., 2014; Weingarden et 

al., 2015; Youngster et al., 2014) have used 16S rRNA sequencing to reveal species-level 

changes in the gut microbiota after FMT. However, these studies lack sufficient phylogenetic 

resolution to measure the engraftment of single strains (Thompson et al., 2005). Thus, to 

study engraftment in this human experiment, we used higher resolution deep shotgun 

metagenomics sequencing to follow nineteen recurrent C. difficile patients after FMT (Fig. 

1). Feces from one of four donors were administered to each patient. Stool samples and 

clinical metadata were collected from the donor and the patient before FMT, and in follow-

up visits ranging from one day to four months after FMT. In total, we sequenced 79 stool 

samples at a mean depth of 1.3 × 1010 bp, yielding high resolution snapshots of each 

patient’s gut microbiota before and after FMT.

To determine the abundances of bacterial taxa in these samples, we mapped each 

metagenome to a set of 649 non-redundant reference genomes from the Human Microbiome 

Project (Consortium, 2012). Because bacterial genes vary in copy number and horizontal 

gene transfer may obscure evolutionary relationships, we focused on 31 single-copy 

phylogenetic markers from the AMPHORA database (Wu and Eisen, 2008). We estimated 

the abundances of bacterial taxa as their mean depth of coverage, normalized to the total 

sequencing depth of each sample. For simplicity, we refer to these bacterial taxa as mg-

OTUs (“metagenomic OTUs”), following the convention used in 16S rRNA studies. These 

mg-OTUs roughly correspond to bacterial species (see Methods).

We identified 306 mg-OTUs in this dataset (Fig. S1A and Table S1). The number of mg-

OTUs per sample was weakly, but significantly associated with sequencing depth (Kendall’s 

tau = 0.19, p-value = 0.02). The mg-OTUs comprise all major taxonomic groups in the 

human gut, including the Bacteroidetes, Firmicutes, Actinobacteria, and Proteobacteria, 

along with less prevalent phyla such as the Fusobacteria and Verrucomicrobia. C. difficile 
was included in our set of reference genomes, but was only detected at low abundances: 5 of 

79 samples had reads covering at least 20% of the C. difficile reference, and no samples had 

reads covering more than 50% of the reference. One explanation for the low abundance of C. 
difficile in these samples is that patients had received extensive antibiotics leading up to 

sample collection.

Prior to FMT, the patient’s gut was marked by reduced species diversity and imbalances in 

many gut taxa (Fig. S1B and Fig. S1G). Whereas pre-FMT patients clustered into two 

community types, dominated by Enterobacteriales and Lactobacillales, samples from donors 
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and post-FMT patients were dominated by Bacteroidales and Clostridiales (Fig. S1C). To 

visualize the effects of FMT, we applied principal coordinates analysis to the weighted 

UniFrac distances among all samples (Fig. S1E). Principal Coordinate 1 (PC1) was 

significantly associated with dysbiosis, as pre-FMT patients and donors formed distinct 

clusters along this axis (Wilcoxon test, p-value = 0.002). FMT led to increased PC1 usage in 

nearly all patients (Wilcoxon signed rank test, p-value = 0.001), which became more similar 

to the donor (Fig. S1F, Wilcoxon test, p-value = 0.01). However, because patients received 

antibiotics before FMT, this analysis is unable to separate the effects of FMT from bacterial 

growth following the cessation of antibiotics.

A machine learning model predicts bacterial engraftment

After FMT, the gut microbiota of the patient is distinct from that of the donor and of itself 

before FMT. On average, only 35% of the mg-OTUs in the donor (N= 436, SD = 27%) and 

42% of the mg-OTUs in the pre-FMT patient (N = 287, SD = 31%) were detected on the 

first follow-up visit after FMT. The post-FMT patient also acquires new bacteria, as 39% of 

the mg-OTUs in these samples (N = 295, SD = 28%) were undetected prior to FMT. These 

bacteria may be acquired from the environment or resurrected from low abundances (below 

the detection limit) in the donor or the patient. To examine the relationships among samples, 

we clustered them according to their mg-OTU abundances (Fig. 2). Post-FMT patient 

samples do not cluster with the correct pre-FMT patient or donor samples (Figs. 2A and 2B), 

nor with weighted averages of these samples (Fig. S2). The gut microbiota of the patient is 

therefore not a simple combination of the donor and the pre-FMT communities, but instead, 

is a complex mixture of bacteria from the donor, the patient, and the environment.

Although FMT outcomes cannot be inferred from simple combinations of the donor and 

patient gut microbiota, it is possible that after accounting for all clinical and metagenomics 

data, these post-FMT communities may be predictable. To test this hypothesis, we used data 

from the donor and the pre-FMT patient to build a machine learning model of the presence 

and the abundance of mg-OTUs in the patient after FMT. The inputs to this model were the 

clinical metadata, along with the abundance, phylogeny, and several genomic features of 

each mg-OTU (Table S2). The model consists of two steps: first, it uses Random Forest 

classification to predict which mg-OTUs are present in all samples, then it uses Random 

Forest regression to predict their abundances. In the second step, we remove the sequencing 

depth of the post-FMT sample from the model because this feature was used to normalize 

mg-OTU abundances.

We used Random Forest because it is nonlinear, it accepts categorical and continuous 

predictors, and it is robust to overfitting. Random Forest internally estimates the test error 

using “out of bag” samples that are hidden from the training algorithm, eliminating the need 

for cross-validation or a separate test set. The statistics reported in this work therefore reflect 

the model’s performance on test data (i.e. test accuracy), rather than training data (i.e. 

training accuracy).

Both the incidence and abundance of mg-OTUs in the post-FMT patient were predictable 

(Figs. 2C and 2D, AUC = 0.92 and r2 = 0.40 for all time points). These predictions were not 

only accurate, but also specific, as they clustered perfectly with the gut microbiota of the 
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post-FMT patients (Fig. 2E). The model’s accuracy, despite not including major 

determinants of the gut microbiota, such as diet, bacterial species interactions, host genetics, 

and the immune system, suggests that knowledge of these factors is not strictly necessary to 

predict the post-FMT gut community. However, it is possible that the addition of these 

features would yield even more accurate predictions of bacterial engraftment after FMT.

We next assessed the model’s accuracy when the mg-OTU is missing from the donor and the 

pre-FMT patient. As expected, in 91% of such cases the mg-OTU is also absent from the 

post-FMT community, and the model predicts this result 88% of the time. However, when 

we focus on the 810 mg-OTUs that were unseen before the FMT and later found in the post-

FMT patient, the model predicts that the mg-OTU is present in the post-FMT community in 

38% of such cases, representing a 3-fold increase in the probability of engraftment. 

Therefore, even when there is no direct evidence that an mg-OTU is present in the donor or 

the patient, the model can successfully predict its colonization of the post-FMT patient.

In addition to measuring the model’s performance on test data, we used permutation tests 

and extensive subsampling to further confirm that our model is not overfitting. As expected, 

the model is no longer accurate when the abundances of mg-OTUs are shuffled among the 

post-FMT patients (Fig. S3A). We confirmed that the model can predict long-term outcomes 

by removing all samples collected within fourteen days of FMT (Fig. S3B). The model is 

also accurate when we subsample one mg-OTU from each genus and average the results 

across all such models, indicating that redundancy in our set of reference genomes does not 

significantly affect our results (Fig. S3C). To minimize the potential for overfitting, we built 

a reduced model using only mg-OTU abundances, sequencing depth, the mg-OTU phylum, 

and the amount of elapsed time since the FMT. Despite its simplicity, this reduced model 

accurately predicts the presence and abundance of mg-OTUs in the post-FMT patient (Fig. 

S3D).

Resolving strain-level dynamics with Strain Finder

Until now, we have used reference genome alignments to study engraftment. However, these 

species-level data cannot determine whether a single strain is shared by the donor and the 

patient, preventing direct measurement of engraftment. Shotgun metagenomic sequencing 

has the potential to generate higher resolution, strain-level data because it captures the full 

bacterial genome. However, this approach yields short reads that are difficult to assemble 

into strain genotypes with existing methods because two strains may differ by relatively few 

SNPs.

Prior attempts to circumvent this problem have used copy number variation (Greenblum et 

al., 2015) and single nucleotide variants (Li et al., 2016; Schloissnig et al., 2013) as proxies 

of strains. However, these methods cannot recover the strain genotypes that are present in a 

sample because they do not solve the problem of metagenome assembly, which requires 

linking SNPs into larger strain haplotypes. One solution to this problem is to assemble strain 

genotypes using the SNP frequencies themselves. Here, the intuition is that SNPs derived 

from the same strain will be present at roughly equivalent frequencies across samples. We 

use this intuition to develop a maximum-likelihood method, Strain Finder, which infers the 

genotypes and frequencies of strains in complex metagenomics samples (see Methods).
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We validated this method in silico by simulating 6,000 alignments with varying numbers of 

strains (N = 2 – 32), samples (N = 2 – 64), SNPs (N = 4 – 1024), and sequencing depths (25 

– 1000X). In total, these alignments encompassed 74,400 unique strains distributed across 

126,000 samples. To assess the accuracy of strain inference, we searched for a distance 

metric that could account for the similarity between the estimated strains and the true strains, 

both in terms of their estimated genotypes and frequencies. The weighted UniFrac distance 

(Lozupone et al., 2011) measures the number of SNPs shared by our predictions and the true 

strains, weighted by their frequencies along every branch of the strain phylogeny. Because 

this metric accounts for the phylogenetic relationships among strains, it elegantly handles 

situations in which two closely related strains are merged into a single strain profile, 

penalizing only the algorithm’s failure to identify the SNPs that discriminate between those 

two strains.

With sufficient data, Strain Finder can accurately predict over 32 strains in as few as 16 

samples (Fig. S4). The weighted UniFrac distances between our predictions and the true 

strains were less than 0.10 for many parameters, indicating that Strain Finder captures 90% 

of the frequency-weighted SNPs, and that the total deviance of the predicted frequencies 

from the true frequencies is less than 10%. We compared these predictions to two null 

models, in which the strain frequencies are sampled from a Dirichlet multinomial 

distribution and the strain genotypes are sampled from either a discrete uniform distribution 

(Null Model 1) or from the alignment data itself (Null Model 2). Strain Finder outperforms 

both null model (Fig. S4).

We also tested Strain Finder against another strain inference method, ConStrains, which is 

not based on a complete statistical model. Following the methods in (Luo et al., 2015), we 

used 16 Escherichia coli genomes to simulate 16 alignments of 8 samples each (see 

Methods). Across these alignments, we varied the number of strains (N = 4 – 16) and the 

depth of coverage (25 – 1,000X). We ran Strain Finder with default parameters and 

ConStrains in two modes: separately for each sample (Constrains 1) and on all samples 

combined (Constrains 2). While Strain Finder and ConStrains were both more accurate than 

Null Model 1, only Strain Finder outperformed Null Model 2 (Fig. 4, p-value < 1e-10 for all 

comparisons, Wilcoxon test on weighted UniFrac distances to true strains). Strain Finder 

was more accurate than ConStrains across all simulated datasets (Fig. 4, p-value < 1e-10 for 

all comparisons, Wilcoxon test on weighted UniFrac distances to true strains).

We also find empirical support for Strain Finder’s accuracy on real-world metagenomics 

data: with no a priori knowledge of the underlying structure of the data, Strain Finder 

recovers the correct donor-patient pairs using only the similarity of their strain profiles (see 

below).

To systematically determine the impacts of FMT on bacterial engraftment in the human gut, 

we used Strain Finder to infer the strain genotypes and frequencies of 306 bacterial species 

across the 79 metagenomics samples in our dataset. In total, we identified 1,091 bacterial 

strains, with each sample containing an average of 130 strains with a relative abundance of 

at least one percent of their respective species (Fig. S1D). Within a species, strains differed 

by a median of 182 SNPs across the thirty-one AMPHORA genes (IQR = 9 – 321), 
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corresponding to a sequence identity of roughly 99.5% at these loci. For comparison, a 

sequence identity of 97% at the more highly conserved 16S rRNA gene is widely used to 

delineate bacterial species. Analysis of this vast dataset allows us to track the transfer of 

hundreds of bacterial strains from the donor to the patient during FMT, and to follow the 

persistence of these strains for months after treatment.

The engraftment and persistence of bacterial strains

At the strain level, we observe several patterns of bacterial dynamics after FMT (Fig. 5A). 

When an mg-OTU is present in the patient, but absent from the donor, the composition of 

strains tends to remain stable after FMT (Fig. 5A, Klebsiella pneumoniae). Conversely, 

when an mg-OTU is present in the donor, but absent from the patient, the patient tends to 

adopt the strain composition of the donor (Fig. 5A, Faecalibacterium prausnitzii). 
Competition between strains in the donor and the patient can lead to a range of outcomes: 

the patient strains may resist invasion by donor strains, the donor strains may outcompete the 

patient strains, the donor strains and patient strains may coexist, or the patient may acquire 

new strains (Fig. 5A, E. coli and Dorea longicatena).

Bacterial strains from the donor were directly transmitted to the patient’s gut during FMT. In 

total, we identified 439 unique strains that were found in the donor and the post-FMT 

patient. The presence of strains in the donor was predictive of their presence in the post-

FMT patient (Fisher test, p-value < 1e-10). While these findings are consistent with direct 

transfer, an alternative hypothesis is that unrelated subjects harbor similar strains, which may 

reflect a healthy or unperturbed state. We therefore examined strain specificity, finding that 

in terms of strain composition, the post-FMT patient more closely resembles its donor than 

other donors (Fig. 5B, Wilcoxon test on 455 mg-OTUs, p-value < 1e-10). We also confirmed 

that the post-FMT patient is more similar to its pre-FMT self than to other pre-FMT patients 

(Fig. 5B, Wilcoxon test on 232 mg-OTUs, p-value < 1e-10). Shared strains in the donor and 

the patient are therefore best explained by direct transmission, rather than incidental 

similarity.

After FMT, strains from the donor colonize the patient’s gut for months or even longer. To 

study persistence, we focused on donor-derived strains, which we define as being unique to 

the donor before FMT and present in the patient after FMT. We expected the number of 

donor-derived strains to decline over time, as they are replaced by strains from the patient 

and the environment. In agreement with this hypothesis, when we focused on patients with 

multiple follow-up visits, we identified 125 donor-derived strains on the first visit after FMT 

(mean = 10, SD = 15). This number declined to 82 strains by the final follow-up visit (mean 

= 7, SD = 6), including 58 strains that were detected more than one month after FMT. 

Donor-derived strains may therefore persist in the patient’s gut for months after FMT, 

although studies with larger sample sizes are required to more rigorously assess their long-

term dynamics.

We searched for strains that have high engraftment rates relative to their sister taxa, as such 

strains may represent promising candidates for microbial therapeutics. However, in contrast 

to bacterial species, closely related strains did not vary significantly in their overall levels of 

engraftment (Kruskal-Wallis test, adjusted p-value > 0.05). While this negative result may be 
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due to low statistical power, simulations indicate that our test is powered to detect mean 

differences in engraftment rates exceeding 15%. Therefore, differences in the engraftment of 

individual strains are expected to be small, relative to the vast interspecific differences in 

engraftment that were previously observed.

Although only a fraction of bacterial species engrafts in the patient’s gut, bacterial strains 

engraft in an all-or-nothing manner, in which no strains or complete sets of strains colonize 

the patient (Fig. 5C). The engraftment of partial sets of strains is infrequent, comprising 15% 

of all transferred donor mg-OTUs. This surprising observation reveals a strong coupling 

among closely related strains: rather than transferring independently of one another, strains 

within a species transfer together as a cohesive unit. This observation suggests that species 

traits are the major determinants of bacterial transmission, while functional differences 

between stains are relatively less important for patient colonization after FMT.

Once donor strains have been transferred to the patient, they adopt the same composition in 

the patient that they held in the donor. The strain compositions of mg-OTUs in the donor 

were nearly perfectly correlated to those in the post-FMT patient (median cosine similarity 

of 455 mg-OTUs = 0.90). This result is significant when compared to a control group of 

unrelated donors (median cosine similarity of 472 mg-OTUs = 0.14; Wilcoxon test, p-value 

< 1e-10). The strain compositions of mg-OTUs in the patients were also strongly correlated 

before and after FMT (median cosine similarity of 232 mg-OTUs = 0.93). Therefore, while 

the abundances of bacterial species in the patient are shaped by the host, the abundances of 

bacterial strains are controlled by their input levels (i.e. dose dependence).

Strain signatures reveal engraftment rates following FMT

Because the donor and the pre-FMT patient have distinct strain signatures that are stable 

through time, we were able to use these signatures to infer the origins of the post-FMT gut 

microbiota with high confidence. We used these estimates to calculate the probability of 

engraftment for each bacterial species in the donor’s gut microbiota (Table S3). Consistent 

with our previous findings, the probability of engraftment of a bacterial species was strongly 

correlated to its mean abundance in the donor gut microbiota (Kendall’s tau = 0.50, p-value 

< 1e-10). While Prevotella copri and B. vulgatus had some of the highest engraftment rates, 

the closely related P. tannerae and B. pectinophilus had some of the lowest engraftment 

rates, underscoring the importance of understanding bacterial engraftment for engineering 

the human gut microbiota.

We used the inferred origin of each bacterial species to determine the contributions of the 

donor, the patient, and the environment, to the recovery of the patient’s gut microbiota after 

FMT (Fig. 5D). These contributions vary substantially among patients, with donor-derived 

strains comprising as little as one percent, or as much as eighty percent, of the total 

community. Strains that were previously undetected in the donor or the patient, which were 

either below the detection limit or derived from the environment, contribute substantially to 

the gut microbiota after FMT. FMT may therefore facilitate the expansion of lowly abundant 

strains, or the colonization of new strains from environmental reservoirs (i.e. ingested food). 

However, further work with appropriate controls is required to rigorously determine the 
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mechanisms underlying the expansion of these previously undetected strains in the post-

FMT patient.

FMT success, defined as the clinical resolution of diarrhea without relapse after eight weeks, 

was not associated with the fraction of cells in the community that engrafted (Mann-

Whitney test, p-value > 0.05). This raises the possibility that the engraftment of individual 

strains, rather than the total community, may underlie the efficacy of FMT in treating 

recurrent C. difficile infection. Consistent with this hypothesis, a mixture of six bacterial 

strains can treat recurrent C. difficile infection in mice (Lawley et al., 2012). There is 

significant interest in identifying an analogous strain mixture for humans, but the discovery 

of strain mixtures is time-consuming and manufacturing a diverse strain mixture, in order to 

maximize the probability of engraftment, may be prohibitively expensive. An understanding 

of engraftment may accelerate drug discovery by pinpointing which bacteria will engraft in a 

given host.

Discussion

Determinants of bacterial engraftment in a human host

The most important factors in our model were the bacterial abundances, the bacterial 

taxonomy and the amount of elapsed time since the FMT (Fig. 2F). The importance of each 

feature was estimated by removing it from the model and measuring the resultant increase in 

error. Sequencing depth, while biologically uninformative, was important because it 

determines the bacterial detection limit, which is leveraged by our model. No measured 

clinical factors, such as the type of antibiotics used, the route of FMT administration, or 

whether the patient had taken immunosuppressants had a significant impact on our 

predictions.

We found evidence for the direct transmission of bacterial species from the donor to the 

patient: the presence of mg-OTUs in the donor was highly predictive of their presence in the 

post-FMT patient (Fisher test, p-value < 1e-10). In addition to acquiring bacteria from the 

donor, the patient also retains species from before FMT. The presence of mg-OTUs in the 

patient before FMT was highly predictive of their presence after FMT (Fisher test, p-value < 

1e-10). Efforts to engineer the gut microbiota with FMT should therefore account for the 

effects of bacteria from both the donor and the patient before FMT.

We explored two mechanisms that may shape bacterial abundances after FMT: dose 

dependence and host control. Under a model of dose dependence, the abundances in the 

patient after FMT are determined by their input levels in the donor and the patient. In 

contrast, under a model of host control, these abundances are determined by selective forces 

in the patient’s gut. mg-OTU abundances in the donor were strongly correlated to mg-OTU 

abundances in the patient after FMT (Fig. 3A, N = 346, Kendall’s tau = 0.28, p-value < 

1e-10) and we observed an even stronger correlation between mg-OTU abundances in the 

patient before and after FMT (Fig. 3B, N = 175, Kendall’s tau = 0.40, p-value < 1e-10). 

While these findings are consistent with a model of dose dependence, an alternative 

hypothesis is that unrelated hosts select for similar levels of each mg-OTU and that these 

results are therefore explained by host control.
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We hypothesized that by focusing on mg-OTUs that were present in both the donor and the 

patient before FMT, it would be possible to measure each sample’s impacts on mg-OTU 

abundances in the post-FMT patient. Using partial regression, we controlled for the 

correlation in abundances between the pre-FMT and post-FMT patient, and found that donor 

abundances were no longer significant in the model (F-test, N = 76, p-value > 0.05). When 

we performed the reciprocal test, controlling for the correlation between the donor and the 

post-FMT patient, the abundances in the patient remained significant (F-test, N = 76, p-value 

= 1e-4), suggesting that host control, rather than dose dependence, determines bacterial 

abundances after FMT.

The next most important factor shaping engraftment was the bacterial phylogeny. We used 

partial dependence plots to measure the marginal impact of each bacterial order on the 

probability of engraftment, while controlling for abundance, elapsed time, and sequencing 

depth in our reduced model (Fig. 3C). Clades with high marginal effects on engraftment may 

represent bacteria that survive the FMT and engraft with high efficiency in the patient’s gut. 

Conversely, clades with low marginal effects on engraftment may represent bacteria that 

have low rates of engraftment in the patient’s gut.

We attempted to identify the traits that underlie this phylogenetic signal using predictions of 

bacterial physiology from genome sequences (Markowitz et al., 2014). Although the FMTs 

were performed aerobically, neither oxygen tolerance nor the ability to sporulate 

significantly impacted abundances after FMT. In addition to these traits, other factors may 

contribute to this phylogenetic signal, including the ability to degrade host mucins and 

dietary carbohydrates (Koropatkin et al., 2012), the ability to associate with colonic crypts 

(Lee et al., 2013), and the ability to evade the immune system (Cullen et al., 2015). 

However, these traits are difficult to predict from genome sequences or are present in too 

few organisms to leave statistical signals.

Validating our model of bacterial engraftment across multiple FMT trials

While metagenomic sequencing provides high resolution for the detection of individual 

strains, its high cost makes it difficult to study FMT trials with large numbers of donors, 

patients, and mg-OTUs. To confirm that our model of engraftment generalizes to larger 

datasets, we therefore performed 16S rRNA sequencing on the 79 samples in this study 

(Youngster et al., 2014), along with 83 samples from another study of FMT for the treatment 

of recurrent C. difficile infection. We combined these data with the sequence data from three 

prior studies of FMT (Seekatz et al., 2014; Song et al., 2013; Staley et al., 2016), yielding a 

final dataset comprising 375 samples from 93 patients and 69 donors (Table S4). We mapped 

the 16S rRNA sequences from these studies onto the Greengenes OTUs clustered at 97% 

sequence identity, yielding OTUs that roughly correspond to bacterial species.

For each of the five FMT trials, we separately trained a model of bacterial engraftment, 

predicting the post-FMT gut microbiota using only the OTU abundances in the donor and 

the pre-FMT patient, the phylum and order of each OTU, the amount of elapsed time since 

the FMT, and the sequencing depth of each sample (Table S2). No clinical metadata were 

used in these models because they were not consistently available across studies. Because 

these datasets differ with respect to several factors that are known to induce strong batch 
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effects (e.g. DNA extraction and amplification, the targeted region of the 16S rRNA, and 

DNA sequencing technology), we were unable to train a model on one dataset and test it 

against the remaining datasets. However, when we tested these models on out-of-bag test 

data from the same FMT trial, they accurately predicted the composition of the post-FMT 

gut microbiota (Figs. 6A and 6B, AUC = 0.84, r2 = 0.36), confirming that our modeling 

approach can be extended to larger FMT trials. Although they were independently trained on 

separate datasets, these models discovered similar rules of engraftment: the relative effects 

of bacterial orders on the predicted levels of engraftment were correlated across all models 

(Fig. 6C, mean Kendall’s tau = 0.62, p-value < 1e-2 for all tests).

Extending our model of engraftment to other diseases

To assess whether our findings generalize beyond recurrent C. difficile infection, we 

analyzed a separate metagenomics dataset from a study of FMT for the treatment of 

metabolic syndrome (Li et al., 2016). This study, comprising five patients treated with 

allogeneic stool samples and five controls treated with autologous stool samples, differs 

from our study of recurrent C. difficile infection in several ways. While recurrent C. difficile 
is an infectious disease that causes severe gut dysbiosis and can be effectively treated with 

FMT, metabolic syndrome is a multifactorial disorder that is weakly associated with the gut 

microbiota for which the efficacy of FMT is unknown. Moreover, the treatment of recurrent 

C. difficile patients with antibiotics may free up niche space in the gut, facilitating the 

engraftment of donor bacteria. In contrast, the patients with metabolic syndrome did not 

receive antibiotics prior to FMT, potentially making them less amenable to colonization by 

exogenous bacteria.

Despite the considerable differences between these studies, the gut microbiota of patients 

with metabolic syndrome were predictable after FMT, both in terms of mg-OTU presence 

(Fig. S5, AUC = 0.82) and mg-OTU abundance (Fig. S5, Kendall’s tau = 0.39, p-value < 

1e-10). Here, we conservatively used our reduced model of bacterial engraftment, which 

only includes the pre-FMT abundances, the mg-OTU phylum, sequencing depth, and 

elapsed time. The post-FMT samples did not cluster with their corresponding samples from 

the donor or the pre-FMT patient, but clustered perfectly with our predictions (Fig. S5). Our 

approach therefore extends beyond the treatment of recurrent C. difficile infection to the 

treatment of metabolic syndrome.

To determine whether the same underlying principles drive both models of engraftment, we 

estimated the importance of each feature in our model. Consistent with our previous findings 

for recurrent C. difficile infection, the abundances and phylum of the mg-OTU were among 

the most important features for predicting bacterial engraftment (Fig. S5). To elucidate the 

effects of the bacterial phylogeny on engraftment for metabolic syndrome, we augmented 

our reduced model with the taxonomic order of each mg-OTU and calculated the marginal 

effects of each order on our predictions. The marginal effects were highly correlated to those 

estimated for recurrent C. difficile infection (Fig. 7, Kendall’s tau = 0.50, p-value < 1e-10). 

Together, these findings suggest that the principles of engraftment we discovered for 

recurrent C. difficile infection may generalize to other disease indications, including 

metabolic syndrome.
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Conclusions

In addition to recurrent C. difficile infection (Khanna et al., 2016), significant efforts are 

underway to develop bacterial therapeutics for several other diseases. Recent work shows 

that species belonging to Bacteroides and Bifidobacterium are important to eliciting T-cell 

responses in mice with checkpoint inhibitors (Sivan et al., 2015; Vétizou et al., 2015). 

However, these experiments use germ-free mice in controlled environments, where the gut 

microbiota is relatively easy to manipulate. The success of this treatment in humans will 

depend on whether these bacteria engraft in hosts with previously established gut 

microbiota. In another study, butyrate-producing bacteria were found to promote the 

differentiation of colonic Tregs, leading to the attenuation of colitis in mice (Atarashi et al., 

2013; Furusawa et al., 2013). In humans, it will be necessary to identify butyrate producers 

that not only engraft in the gut, but also reach sufficient abundances to impact levels of 

colonic butyrate. In both examples, the engraftment of bacteria in a human host is needed to 

design therapies to engineer the human gut microbiota.

Because our model of engraftment was developed for recurrent C. difficile infection, 

additional work is needed to develop and test models for other diseases. Recurrent C. 
difficile may be particularly amenable to modeling for several reasons: it is treated with 

antibiotics, the disease mechanism is associated with the depletion of gut bacteria, and its 

resolution involves a transition from a dysbiotic state to a healthy state. Nevertheless, the 

modeling framework we provide may be extended to other studies, including the 145 

registered clinical trials investigating the use of FMT to treat indications including 

inflammatory bowel disease, metabolic syndrome, and cancer (U.S. National Institutes of 

Health). Our model of engraftment for the treatment of metabolic syndrome suggests that 

this is not only possible, but that the same principles of engraftment may generalize to these 

other diseases. By elucidating the principles of bacterial engraftment in the human gut, such 

work will advance our understanding of FMT and accelerate the development of bacterial 

therapeutics that target these diseases.

STAR Methods

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Eric Alm (ejalm@mit.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Study cohort: This study was reviewed and approved by the Partners Human Research 

Committee (IRB) as well as by the Food and Drug Administration (FDA) (Investigational 

New Drug application number 15199), and all donors and recipients provided written 

informed consent to participate. We have previously published descriptions of the trial 

design, patient selection, donor screening, sample collection and sample processing 

(Youngster et al., 2014). A repository of pre-screened frozen donor stool from healthy, non-

pregnant adults 18–50 years of age on no medications with normal BMI (18.5 – 25mg/m2) 

was established. Extensive donor screening was performed and donor inocula were 
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processed and prepared as previously described (Youngster et al., 2014). Recipients received 

pre-screened, frozen stool from an unrelated donor via colonoscopic or nasogastric tube 

administration for the treatment of recurrent or relapsing CDI between 2012 and 2013 

following inclusion/exclusion criteria as previously published. (Youngster et al., 2014).

Validation cohort: The study was conducted at Brigham and Women’s Hospital and 

included subjects with recurrent CDI, defined by 3 or more a confirmed episodes and failure 

with standard anti-CDI antibiotics. Main exclusion criteria included neutropenia or evidence 

of bowel perforation. Stool samples were collected pre and post FMT under a protocol 

reviewed and approved by the Partners Human Research Committee (IRB) at Brigham and 

Women’s Hospital. All recipients provided written informed consent to participate. FMT 

was performed either via colonoscopy or via capsule, pending patient preference, between 

March, 2015 and March, 2016. Donor material, regardless of delivery modality, was 

obtained from OpenBiome, the largest stool bank in the United States. Screening, sample 

collection, and sample processing were performed according to established protocols at 

OpenBiome previously described (Fischer et al., 2016).

METHOD DETAILS

Metagenomic data collection (study cohort): A total of 7 stool samples from 4 

donors and 67 stool samples from 19 patients were analyzed before and after FMT for the 

treatment of recurrent or relapsing CDI. Stool samples were stored at −80°C until DNA 

extractions from stool were carried out using the QIAamp DNA Stool Mini Kit (Qiagen, 

Inc., Valencia, CA, USA). Shotgun sequencing for metagenomics using the Illumina GAIIx 

platform was performed as previously described (Consortium, 2012). Clinical metadata 

collected included sample collection date, most recent antibiotic administered prior to FMT, 

route of administration, use of immunosuppression, general health scale as previously 

published (Youngster et al., 2014), overall stool frequency, and presence of CDI recurrence 

at 8 weeks post FMT. Immunosuppression was defined as use of prednisone 40 mg or less or 

steroid-equivalent dose. Patients on major immunosuppressive agents were excluded: high-

dose corticosteroids (greater than 40 mg oral prednisone or steroid-equivalent dose), 

calcineurin inhibitors, mTOR inhibitors, lymphocyte-depleting biologic agents, anti-TNFα 
agents, and chemotherapeutic anti-neoplastic agents.

16S rRNA data collection (validation cohort): A total of 52 samples from 10 donors 

and 18 patients were analyzed before and after FMT for the treatment of recurrent or 

relapsing CDI. Stool samples were shipped in RNAlater to the University of Michigan 

Microbial Systems Laboratory for 16S rRNA sequencing. DNA extractions were performed 

with the PowerSoil-htp 96 Well Soil DNA isolation kit (MO BIO Laboratories). The V4 

region of the bacterial 16S rRNA gene was amplified using custom barcoded primers and 

sequenced as previously described using an Illumina MiSeq sequencer (Kozich et al., 2013).

QUANTIFICATION AND STATISTICAL ANALYSIS

Reference alignments: We used AMPHORA (Wu and Eisen, 2008) to identify thirty-one 

single-copy phylogenetic markers in a set of 649 non-redundant reference genomes from the 

Human Microbiome Project (Consortium, 2012). We mapped the metagenomics reads from 
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each sample to these genes using BWA-mem (Li and Durbin, 2009) with the “-a” flag and a 

cutoff of ninety percent sequence identity. In order to ensure that these alignments 

represented strains, rather than species, this cutoff was conservatively selected to be below 

the species boundary (Fig. S6). These alignments were filtered as follows. First, we removed 

all monomorphic sites, retaining only positions with SNPs. Next, we removed all samples 

with zero coverage at greater than 25% of the alignment sites, as such samples may reflect 

cases where the reference genome is not representative of bacteria in the sample. Finally, we 

removed alignment sites with atypical coverage, defined as being greater than 1.5 standard 

deviations away from the mean coverage.

mg-OTU abundances: To estimate the abundances of mg-OTUs from metagenomic 

alignments, we calculated the mean depth of coverage of each alignment, normalized to the 

total sequencing depth. We externally validated this approach using the 16S rRNA sequences 

that were generated from the same samples. At the genus level, the abundances inferred 

from the 16S rRNA and the metagenomic sequence data were in significant agreement (Fig. 

S7, median Spearman’s rho across samples = 0.60). For comparison, we also estimated the 

abundances in the metagenomic data using the mOTUs pipeline (Sunagawa et al., 2013), 

which was significantly less accurate for this particular dataset (one-sided Wilcoxon signed 

rank test on Spearman’s correlation coefficients, p-value = 5e-5).

16S rRNA abundances: To estimate the abundances of OTUs in the 16S rRNA sequence 

data, we used the UPARSE pipeline (Edgar, 2013). Primers and barcodes were trimmed 

from the de-multiplexed reads. USEARCH (Edgar, 2010) was used to map these reads onto 

the Greengenes reference OTUs (DeSantis et al., 2006) clustered at 97% sequence identity 

(version gg_12_8). The sequence identity of the mapping was 0.97. Singleton OTUs were 

discarded, but no other quality filtering or length trimming was performed because low-

quality reads would not map to the reference database. OTU abundances were estimated as 

the total number of mapped reads for each OTU, normalized to the total sequencing depth.

Principal coordinates analysis: We used the phyloseq package in R (McMurdie and 

Holmes, 2013) to calculate the weighted UniFrac distances between all samples (i.e. beta-

diversity). The NCBI taxonomy was used to estimate the phylogenetic relationships among 

all organisms. Principal coordinates analysis on this pairwise dissimilarity matrix was 

performed using the ‘pcoa’ function in the ape package in (Paradis et al., 2004).

Model of engraftment: We used the Random Forest package in R (Liaw and Wiener, 

2002) to predict the presence (using Random Forest classification) and the abundance (using 

Random Forest regression) of each mg-OTU in every post-FMT patient sample. For a 

dataset comprising M samples and N mg-OTUs, these models are trained on (M × N) total 

instances. The inputs to these predictions are listed in Table S2. We used an iterative 

subsampling scheme to ensure that all examples and features in the training set were 

independent. At each iteration, we randomly selected one sample from each patient, and one 

mg-OTU from each bacterial species, and trained a model on this reduced dataset. After 100 

iterations of subsampling, we averaged the predictions across all such models. All results 

reflect the model’s accuracy on test data (i.e. the test error) calculated from out-of-bag 
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samples. The predictions of mg-OTU presence used Random Forest classification with 

default parameters. We accounted for class imbalances, which may bias the predictions in 

favor of the majority class, by setting the “sampsize” argument to the minimum class size. 

For mg-OTUs that were predicted to be present in a sample, we next predicted their log-

transformed abundances using Random Forest regression with default parameters. Both 

predictions used the same input features, with the exception of the sequencing depth of the 

post-FMT sample, which was only used to predict mg-OTU presence, and not mg-OTU 

abundances.

The use of multiple time points in the model: Samples collected from the same 

patient at different time points are not statistically independent. Therefore, in all statistical 

tests, we conservatively used only the final sample collected from each patient (unless 

otherwise indicated). In order to display all of the data, plots show data from all time points.

The use of sequencing depth in the model: Sequencing depth was used in the model 

of OTU (or mg-OTU) presence. However, because the OTU (or mg-OTU) abundances are 

normalized to the sequencing depth, we removed this feature from the data before predicting 

OTU abundances.

Clustering: We clustered the gut microbiota of the donor, the pre-FMT and post-FMT 

patient, and our predictions according to their OTU (or mg-OTU) abundances. When 

samples from multiple time points were available, we used the mean OTU (or mg-OTU) 

abundances across these time points. For each subject, we constructed a vector of log-

transformed abundances and standardized this vector by subtracting the mean and dividing 

by the standard deviation. We calculated pairwise distances among samples using the cosine 

dissimilarity function. For the metagenomic engraftment models, subjects were clustered 

based on this dissimilarity matrix, using complete-linkage clustering with the ‘hclust’ 

function in R. For the 16S rRNA models of engraftment, we used the Hungarian algorithm 

to calculate the optimal assignments between the post-FMT samples and their predicted 

values, minimizing the total dissimilarity among samples.

Feature importance: Feature importance was calculated in the Random Forest by 

removing each feature from the model and measuring the decrease in accuracy (for 

presence) or the increase in the mean-squared error (for abundance). To combine these 

importance scores into a single metric in Figure 2, we rescaled each set of scores to the (0, 

1) interval and calculated the average of these rescaled scores across both models.

Phylogenetic effects: To estimate the marginal impact of each bacterial order on the 

probability of engraftment, we augmented our reduced model of OTU (or mg-OTU) 

presence with the order of each OTU and trained this model on 1,000 subsampled datasets 

(as previously described). We used the partialPlot function in the Random Forest package to 

estimate each bacterial order’s marginal effect on the model’s predictions, then averaged 

these estimates across all such models. The Interactive Tree of Life (Letunic and Bork, 

2007) was used to visualize all phylogenetic trees.
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Strain inference: Our strain inference method first aligns all of the metagenomic reads 

against a reference sequence and tabulates the SNPs at every position of the alignment. We 

assume that these SNPs are conditionally independent given the underlying strain 

frequencies (z), the strain genotypes (π), and the sequencing error rate (ε). The probability 

of generating an alignment of M samples and L positions is then 

P(x ∣ π, z, ε) = ∏i = 1
M ∏j = 1

L P xij ∣ π, z, ε , where xij is a 4-vector of nucleotide counts in 

position j of sample i. Strain Finder assumes that within each sample, the alignment data at 

any given position can be modeled as a multinomial distribution, where the probability of 

observing SNP k at position j in sample i is equal to the frequency of strains with nucleotide 

k at position j in sample i. To account for sequencing error, we assume that with some 

probability ε, a random nucleotide is observed instead. The probability of any alignment can 

then be calculated from three latent parameters: the (M × N) strain frequencies, the (N × L × 

4) strain genotypes, and the error rate: 

P(x ∣ π, Z, ε) = ∏i = 1
M ∏j = 1

L nij
xij

∏k = 1
4 ε 1

4 + (1 − ε)∑l = 1
N Zilπljk , where nij = ∑k = 1

4 xijk

is the depth of sample i at position j, j,
nij
xij

 is the multinomial coefficient, zil is the frequency 

of strain l in sample i, and πljk is a dummy variable that is equal to 1 when strain l has 

nucleotide k at position j and 0 otherwise. The log-likelihood function is then: 

logℒ(π, Z, ε ∣ x) ∑i = 1
M ∑j = 1

L ∑k = 1
4 log ε 1

4 + (1 − ε)∑l = 1
N zilπljk . Strain Finder finds 

maximum likelihood estimates of the strain frequencies (z) and strain genotypes (π) by 

iteratively updating them using the expectation-maximization (EM) algorithm. To estimate 

strain frequencies, Strain Finder uses the OpenOpt NLP solver with SLSQP to maximize the 

log-likelihood function while constraining the strain frequencies within a sample to sum to 

one. To estimate strain genotypes, Strain Finder exhaustively searches genotype space, or in 

cases with large numbers of strains, solves a continuous optimization problem as follows. 

Strain Finder allows strains to have ‘fuzzy’ genotypes, where the nucleotide probabilities 

vary continuously from 0 to 1 at every site. It then uses the OpenOpt NLP solver with 

SLSQP to maximize the L2-penalized log-likelihood, then discretizes the final genotypes by 

selecting the dominant nucleotide at every site. The L2 penalty biases the estimated 

genotypes toward discrete values. Because it is more accurate than the optimization, the 

exhaustive search was used for all strain estimates, except for the simulations of 16 and 32 

strains. As the EM algorithm only converges to a local optimum, we repeat the strain 

inference for thousands of initial conditions to approximate a global solution. For each mg-

OTU, Bayes information criterion was used to select an optimal number of strains. Strain 

Finder is available at http://www.github.com/cssmillie/StrainFinder.git.

Simulations: To validate our strain inference method, we simulated alignments while 

varying the numbers of samples (2, 4, 8, 16, 32, and 64), numbers of strains (2, 4, 8, 16, and 

32), sequencing depths (25, 100, 500, and 1000 nucleotides per position) and alignment 

lengths (4, 16, 64, 256, and 1024 SNP positions). For each simulation, we select random 

strain frequencies and random strain genotypes, which are then used to generate an 

alignment. Strain frequencies are sampled from a Dirichlet distribution with uniform 

concentration parameters. To select random strain genotypes, we use Dendropy (Sukumaran 
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and Holder, 2010) to generate a random phylogenetic tree using an unconstrained Kingman 

coalescent process. We simulate the evolution of the strain genotypes on this tree, producing 

strain genotypes with realistic evolutionary relationships. This process is conservative, as it 

generates alignments with mostly dimorphic sites, which are most challenging for our model 

to predict. To generate a random alignment, we sample nucleotides from a multinomial 

distribution, where the event probabilities are determined by the strain frequencies and 

genotypes. More explicitly, the probability of sampling nucleotide k at position j in sample i 
is equal to the frequency of strains with nucleotide k at position j in sample i. We performed 

10 simulations for each parameter combination and averaged the results, for a total of 6,000 

simulations. To evaluate the accuracy of this method, we used the Hungarian algorithm to 

find optimal assignments between the inferred strains and the true strains, minimizing the 

total edit distance among their genotypes. We then calculated the similarity of the inferred 

strains and the true strains in terms of their genotypes and frequencies across samples.

ConStrains comparison: We obtained the full genome sequences of 16 Escherichia coli 
strains from NCBI: O157 H7, 536, APEC 01, CFT073, IAI1, SE11, ETEC H10407, K12 

MG1655, HS, DH1, 2011C-3493, NRG 857C, BLK9, SLK172, CFSAN051542, and 

SF-468. We simulated 128 synthetic metagenomes following the methods of (Luo et al., 

2015). For a given number of strains (N = 4, 8, 12, or 16), we sampled 1,000 strain 

compositions from a Dirichlet multinomial with uniform concentration parameters, then 

calculated the entropy of each strain composition. We selected 8 strain compositions 

corresponding to the 1st through 9th deciles of the entropy distribution, for a total of 32 

strain compositions. We used NeSSM (Jia et al., 2013) to simulate 80 bp metagenomic reads 

for each strain composition at four different sequencing depths (25X, 100X, 500X, and 

1000X). Reads were aligned to the MetaPhlAn Escherichia coli marker genes (Segata et al., 

2012) using Bowtie 2 with default parameters (Langmead and Salzberg, 2012). Strain Finder 

and ConStrains were run on the resulting alignments, resulting in strain estimates for each 

sample. RAxML (Stamatakis, 2014) was used to estimate the phylogenetic relationships 

among the true strains and the strains inferred by Strain Finder, ConStrains, and each null 

model. These midpoint-rooted phylogenetic trees were used to calculate the weighted 

UniFrac distances between the true and inferred strain profiles, which were used to assess 

each method’s accuracy.

Specificity: Donor specificity was calculated as the ratio of the distance from the donor to 

the post-FMT patient, relative to the mean distance from other donors to the post-FMT 

patient. Patient specificity was calculated as the ratio of the distance from the pre-FMT 

patient to the post-FMT patient, relative to the mean distance from other pre-FMT patients 

to the post-FMT patient. Distances were calculated using the Jensen-Shannon divergence 

and these ratios were log-transformed to make them symmetric about zero.

Probability of engraftment: We used our strain estimates to determine whether each 

bacterial species from the donor engrafted in each patient. For a given bacterial species, we 

assume that the number of successful engraftment events is a binomial random variable with 

a fixed probability of success. Because we have a limited number of observations for each 

mg-OTU, we estimated this probability using a Bayesian estimate of the mean: p = x + 1
N + 4 , 
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where x is the number of successes, N is the number of trials, and 1
4  reflects the prior 

probability of engraftment, which we estimated from all bacterial species across all FMTs. 

We provide a 95% confidence interval for the probability of engraftment, estimated using the 

‘binom.test’ function in R.

DATA AND SOFTWARE AVAILABILITY

Strain Finder is available at http://www.github.com/cssmillie/StrainFinder.git. The C. 
difficile 16S and shotgun metagenomic data are available from the European Nucleotide 

Archive under accessions PRJEB23489 and PRJEB23524.

Supplementary Material
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Highlights

• Gut microbiota of 18 C difficile patients profiled during fecal microbiota 

transplantation

• Developed Strain Finder, a method to infer strain genotypes and track them 

over time

• Bacterial abundance and phylogeny are the strongest determinants of 

microbiota engraftment

• Unlike bacterial species, closely related strains engraft in an all-or-nothing 

pattern
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Figure 1: Study design for the use of fecal microbiota transplantation to treat recurrent 
Clostridium difficile infection.
Nineteen patients with recurrent Clostridium difficile infection were treated with feces from 

one of four donors. Stool samples were collected and FMTs were performed at the indicated 

time points. For each patient, we show the class of antibiotics they were most recently 

treated with and the success of the overall treatment.
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Figure 2: A machine learning model predicts the gut microbiota of the post-FMT patient.
Samples were clustered according to their species compositions (dendrograms). Samples 

from the same patient are connected with colored arcs. (A) Donor samples (white dots) do 

not cluster with the corresponding post-FMT patient samples (black dots). (B) Pre-FMT 

patient samples (white dots) do not cluster with the corresponding post-FMT samples (black 

dots). (C) The receiver operating characteristic (ROC) curve for the model of mg-OTU 

presence. (D) Predicted abundances were correlated to the measured abundances in the post-

FMT samples. (E) Samples from post-FMT patients (black dots) cluster perfectly with their 

predicted values (white dots). (F) The mean relative importance of each feature across both 

models. Because sequencing depth was only used in the model of OTU presence, only this 

feature importance is reported.
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Figure 3: The abundance and phylogeny of bacterial species are the strongest determinants of 
bacterial engraftment.
(A) The abundances of mg-OTUs in the donor are strongly correlated to their abundances in 

the post-FMT patient. (B) The abundances of mg-OTUs in the patient are strongly correlated 

before and after FMT. (C) The partial dependence of engraftment on each taxonomic order, 

reflecting the orders’ marginal effects on the probability of engraftment in the reduced 

model. Orders are arranged on the bacterial taxonomy, with phylum labels on the right.

Smillie et al. Page 26

Cell Host Microbe. Author manuscript; available in PMC 2021 July 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4: Strain Finder outperforms ConStrains on simulated metagenomic alignments 
generated from a set of Escherichia coli genomes.
We simulated 16 metagenomic alignments of 8 samples each, with varying numbers of 

strains (N = 4, 8, 12, and 16) and depths of coverage (N = 25, 100, 500, and 1,000X). 

ConStrains was run on each sample separately (CS Model 1) and on all samples combined 

(CS Model 2). (A) The weighted UniFrac distances from the true strain profiles to the 

predictions of Strain Finder, ConStrains, and Null Model 1. (B) The weighted UniFrac 

distances from the true strain profiles to the predictions of Strain Finder, both ConStrains 

models, and Null Model 2. Asterisks denote significant comparisons (*** = p-value < 1e-10) 

as determined by a Wilcox test. N.S. denotes non-significant comparisons.
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Figure 5: Complete sets of donor strains and previously undetected strains engraft in the patient 
after FMT.
(A) The strain compositions of mg-OTUs in the pre-FMT patient, the donor, and the post-

FMT patient. The frequencies of strains that are unique to the donor, unique to the patient, 

shared by the donor and the patient, and undetected are shown on the right. (B) Strain 

specificity of mg-OTUs in the donor (N = 3,090) and the pre-FMT patient (N = 2,024). 

Strain specificity is measured as the log-ratio of (i) the distance from the donor (or pre-FMT 

patient) to the post-FMT patient, and (ii) the distance from an unrelated donor (or unrelated 

pre-FMT patient) to the post-FMT patient. (C) Across mg-OTUs, the percentages of strains 

from the donor (N = 3,090) and the pre-FMT patient (N = 2,024) that were transferred to the 

post-FMT patient. (D) The fraction of each community that is unique to the donor, unique to 

the patient, present in the donor and the patient, and previously undetected. Treatment 

success is provided on the right.
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Figure 6: Engraftment modeling is accurate in a meta-analysis of five FMT trials for the 
treatment of recurrent C. difficile.
Models of bacterial engraftment were trained on the 16S rRNA sequence data from five 

FMT trials for the treatment of recurrent C. difficile infection. (A) ROC curves for the 

predictions of OTU presence in each of the five FMT datasets (see legend in panel B). (B) 
Statistics describing the performance of each model, including the number of patients in the 

dataset, the AUC (for predictions of OTU presence), the r-squared (for predictions of OTU 

abundance), and the percent of predictions that correctly cluster with their target samples 

(see Methods). (C) Heatmap showing the partial dependence of the models of OTU presence 

on each bacterial order. High values indicate that the taxon has a favorable impact on 

engraftment.

Smillie et al. Page 29

Cell Host Microbe. Author manuscript; available in PMC 2021 July 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 7: Shared phylogenetic principles drive models of engraftment for recurrent C. difficile 
infection and metabolic syndrome.
Partial dependence reflects the impact of each bacterial order on the predicted frequency of 

bacterial engraftment, with high values indicating that a taxon has a favorable impact on 

engraftment. Partial dependence values estimated for recurrent C. difficile infection and 

metabolic syndrome are strongly correlated (Kendall’s tau = 0.50, p-value < 1e-10). 

Prevalent gut commensals, such as Lactobacillales and Clostridiales, had consistently 

positive impacts on predicted levels of engraftment, while bacteria that are rarely found in 

the gut, such as Caulobacterales and Chromatiales, had consistently negative effects.
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