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Abstract

Science, Technology, Engineering and Mathematics (STEM) jobs have grown in importance in the 

labor market in recent decades, and they are widely seen as the jobs of the future. Using data from 

the U.S. Census and American Community Survey, we first investigate the role of employment in 

STEM occupations when it comes to recent changes in the occupational employment distribution 

in the U.S. labor market. Next, with data from the High School and Beyond sophomore cohort 

(Class of 1982) recent midlife follow-up, we investigate the importance of high school students’ 

mathematics and science coursework, knowledge, and skills for midlife occupations. The Class of 

1982 completed high school prior to technological changes altering the demand for labor. We find 

that individuals who took more advanced levels of high school mathematics coursework enjoyed 

occupations with a higher percentile rank in the average wage distribution and were more likely to 

hold STEM-related occupations. Findings suggest that the mathematics coursework enabled 

workers to adapt and navigate changing labor market demands.
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1. Introduction

Science, Technology, Engineering and Mathematics (STEM) jobs have grown in importance 

in the labor market in recent decades, and they are widely seen as the jobs of the future. 

Policy makers around the world try to entice pupils to enroll more in high school courses 

that prepare them for the increasing STEM skill requirements of work, and more and more 

schools establish STEM programs. However, to date, we know little about how the formal 

educational processes in schools – the curriculum to which students are exposed – prepares 

individuals for the STEM skill requirements of the labor market. This study examines 

whether high school coursework in mathematics and science (which we refer to as STEM 

training) as well as non-STEM coursework, fosters people’s adaptability to the increased 

STEM skill requirements over the long run.

Before investigating how coursework in school affects later labor market outcomes, we first 

put STEM jobs in the context of recent changes in the U.S. labor market. The structure of 

jobs in the U.S. has polarized over the past four decades, with the share of employment in in 

high skill and low skilled occupations increasing relative to that in middle skilled workers 

(Acemoglu and Autor, 2011). Although STEM occupations are generally considered to be 

high skill jobs that demand specialized training (Xie et al., 2016), there are also a number of 

STEM occupations that are middle-skill jobs (Rothwell, 2013). Recent work suggests that 

the labor market outcomes of those in the middle of the wage distribution strongly depends 

on the workers’ skills, with more able workers better adapting to the changing labor markets 

(Cortes, 2016), but a question remains about which specific skills this includes. We 

document that STEM occupations in the middle of the occupational wage distribution had 

countervailing effects on the general evolution of employment in that area of the wage 

distribution, and that they are important for positive employment developments more 

generally. Our results thus suggest that STEM skills are the skills that help workers to adjust.

Next, we analyze the relation between school coursework and labor market success later in 

life. Although research shows the knowledge and skills that U.S. students develop in their 

coursework at school are related to their labor force outcomes in the short-run (c.f. Altonji, 

1995, Arum and Shavit, 1995, Carbonaro, 2007, Altonji et al., 2012), we know little about 

what happens in school that might contribute to their ability to adapt over the long-run in a 

rapidly changing knowledge-based economy (Powell and Snellman, 2004). This study 

examines whether high school STEM training helps workers adapt to the changing labor 

market over the long run.

We focus on advanced math and science course-taking in schools and argue that they matter 

the most for the adaptability of workers to the changing skill requirements of work in recent 

decades. Recent research suggests that technology shifted the task composition of 

occupations toward analytical and interactive tasks that are complementary to computers’ 

capabilities, and away from routine cognitive and routine manual tasks for which computers 
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tend to substitute (Autor et al., 2003; Spitz-Oener, 2006; Spitz-Oener, 2008, among others). 

Employees possessing computer-complementary skills enjoy higher demand and positive 

wage developments because computers both raise the demand for their skills and increase 

their marginal product. Workers in STEM jobs possess the computer (technology)-

complementary skills that have experienced increasing demand and increasing marginal 

products in recent decades.

Why might mathematics coursework be important for later access to STEM jobs? Beginning 

with Algebra 1, students are introduced to abstract mathematical concepts and complex 

reasoning that form the building blocks of advanced mathematics and science curriculum 

(Heppen et al., 2012). Geometry introduces supporting concepts, and Algebra 2 provides the 

knowledge and skills for advanced knowledge and skills tested on college entrance exams, 

and for supporting persistence to a baccalaureate degree (Adelman, 1999, 2006). Students 

who progress through calculus, either in high school or early in college, typically have the 

foundational knowledge to succeed in science, engineering, and statistics fields in higher 

education (Sadler and Tai, 2007). Thus, one reason for focusing on mathematics coursework 

is that students are exposed to abstract concepts and obtain skills in these courses that allow 

them to tackle workforce challenges that demand flexible STEM knowledge and skills that 

can be applied across STEM fields. Each level of mathematics course may contribute 

different but complementary skills and knowledge to form an increasingly advanced 

foundation of expertise as the student transitions from Algebra 1 as far as calculus (or more). 

Or it may be that the levels simply reflect the number of years in high school similar abstract 

concepts were reinforced, with more years of reinforcement simply representing a higher 

“dose” of exposure to abstract advanced curriculum. We control for the number of 

mathematics and science credits a student accumulated by the end of high school in order to 

test whether we still find an independent effect of the specific advanced courses. This is 

consistent with the hypothesis that the more advanced coursework contributes to 

increasingly advanced knowledge of concepts and skills rather than just a higher dose of 

mathematics.

We use longitudinal data from the High School and Beyond sophomore (HS&B:SO) cohort, 

including a recent midlife follow-up. The HS&B began in 1980 as a nationally 

representative sample of high school sophomores in over 1000 public and private high 

schools in the United States. Against the background of recent technological changes and 

the topic of this study, this is a particularly interesting cohort. The HS&B:SO cohort—the 

Class of 1982—graduated from high school the month that the New York Times featured a 

National Science Foundation report stating that “technology could transform society” 

(Reinhold, 1982). This was a year before the influential A Nation at Risk (Gardner et al., 

1983) report declared that schools should teach more rigorous coursework, especially in 

mathematics and science, to meet national workforce challenges. The Class of 1982 

completed high school at a time when personal computers were just released and their 

diffusion at workplaces was still scarce, with no one realizing how large and profound the 

impact of this technology on job content and skill requirements in the labor market would 

be.
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For these reasons, we argue that at the beginning of the 1980s students chose their high 

school coursework with very limited knowledge of future labor market demands. However, 

their high school coursework and the knowledge and skills that they developed may have 

helped them to adapt to the labor market challenges that they would face during their adult 

years. The relatively rapid shifts in the occupational structure during this period provides an 

excellent opportunity to observe how individuals adjust their labor force participation to the 

polarization.

The HS&B:SO database enables us to estimate whether high school academic achievement 

predicts individuals’ labor market outcomes over the long run, holding constant their family 

background, fixed high school characteristics, and subsequent degree attainment. With a 

focus on how individuals’ mathematics and science training predicts their labor force 

outcomes, the nationally representative HS&B:SO data provide an opportunity to better 

understand the relationship between two key institutions that structure inequality in our 

society: education and workforce. Specifically, we focus on high school coursework that 

develops knowledge and skills in mathematics and science, and employment in a STEM 

occupation, wages, and occupational upgrading between 1991 and 2013. The results indicate 

that an individual’s high school mathematics coursework is an important predictor of their 

labor market success, even net of students’ high school mathematics test scores and their 

background. These results suggest a role for rigorous mathematical preparation for all 

students to best prepare them for the changing labor market.

2. Background and related literature

2.1. Workforce polarization and STEM STEM

Many studies document the profound changes in occupational employment in the United 

States and other countries in recent decades (Autor et al., 2003; Goos and Manning, 2007; 

Acemoglu and Autor, 2011; Goos et al., 2009; Goos et al., 2014; Harrigan et al., 2020, 

among others).1 In addition, skill requirements have changed within occupations (Spitz-

Oener, 2006; Atalay et al., 2020; Deming and Kahn, 2018).

Efforts to link specific skills of workers to their occupations and to the polarization of the 

workforce have had limited success. While it is clear that recent technological changes have 

altered the demand for skills, we know little about the origins of those skills (Liu and 

Grusky, 2013). We focus on STEM fields and argue that if growth of occupations is 

connected to computerization then it should be evident in the STEM fields (Rothwell, 2013). 

We thereby follow policy reports and academic work that has long focused on the STEM 

fields as key drivers of innovation and economic growth in the context of the United States 

maintenance of a competitive economic advantage globally (National Academy of Sciences 

et al., 2007, 2010; Bush, 1945; Grogger and Hanson, 2015; Hanson and Slaughter, 2013, 

2016) and more generally on global economic development (Goldin and Katz, 2008; Schofer 

et al., 2000).2

1For a criticism, see Hunt and Nunn (2019). Work in sociology includes Oesch and Menes (2011); Oesch(2013); Murphy and 
Oesch(2018); Fernandez-Macias (2012); Hurley and Fernandez-Macias (2008).
2Many aspects of STEM employment have recently received attention in the literature. Kerr and Kerr (2013), for example, illustrate 
the role played by immigration in the evolution of employment in STEM occupations, and Kerr et al (2016) put STEM employment in 
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Indeed, more nuanced versions of the now standard polarization figures illustrate the 

connection between STEM and STEM-related fields and the changing structure of 

employment. Fig. 1 uses data from the U.S. Census and the American Community Survey 

(ACS), and begins by replicating earlier work by Acemoglu and Autor(2011) depicting the 

change in the share of U.S. employment from 1980 to 2019 broken down by occupation 

(excluding employment in agriculture).3 The occupations are ranked on the horizontal axis 

according to the mean wage of workers in the occupation in 1980. The vertical axis shows 

the change in employment share from 1980 to 2019 at each occupational wage percentile. 

Below the 26th percentile, employment growth by occupation was declining nearly 

monotonically, with employment growth positive below the 9th percentile and negative 

thereafter. Above the 26th percentile, growth in employment shares increases relatively 

monotonically, with occupations above the 55th percentile increasing as a share of total U.S. 

employment. Overall, the figure shows the pronounced polarization of employment in the 

U.S. labor market, with the declining share of middle-wage occupations offset by the 

increase in employment in high and low-wage occupations. The red circles in Fig. 1 depict 

the distribution of STEM occupations across occupational wage percentiles, and the radiuses 

of the circles represent how many STEM occupations are in each percentile. When we 

examine STEM occupations, more specifically, we see that, although STEM occupations are 

primarily higher-wage occupations, there are also a non-trivial number of STEM 

occupations in the middle of the occupational wage distribution.

Next, we examine the evolution of employment in STEM occupations along the 

occupational wage distribution. To do so, we break down total employment changes by 

terciles of the average occupational wage distribution and consider STEM occupations 

relative to other occupations, by decade. Fig. 2 Panel A shows the result for the first tercile, 

i.e. changes in aggregate employment shares in the set of occupations included in the lowest 

tercile of the 1980 average wage distribution. Although there are few STEM occupations in 

the first tercile (as seen in Fig. 1), it is apparent from Fig. 2 Panel A, that employment in 

those occupations evolved very differently compared to employment in other low-wage 

occupations. In particular, during the 1980s, 1990s and after 2010, decades in which 

employment contracted in low-wage occupations generally (see “All occupations”), 

employment in low-wage STEM occupations was immune to those developments 

(“STEM”).4

Fig. 2 Panel B shows the evolution of the employment share of occupations included in the 

second tercile of the U.S. occupational average wage distribution. When we focus on the 

the context of the “global talent flow”. Peri et al. (2015) investigate the consequences of foreign STEM workers on wages of natives. 
Arcidiacono et al. (2016) investigate differences across universities to graduate students in STEM fields. There are, of course, other 
technology-complementary skills. Deming (2017), for example, highlights the growing importance of social skills, as does Deming 
and Kahn (2018).
3For ease of presentation we refer to STEM and STEM-related simply as STEM fields. A full list of all 315 occupations considered by 
STEM (35 occupations), STEM-related (24 occupations) and non-STEM occupation are shown in AppendiX Table A1.
4Focusing on the first quintile, Autor and Dorn (2013) document how employment in service occupations at the low end of the wage 
distribution evolved very differently to the overall trends, and played a crucial role when it comes to employment growth at the low 
end of the wage distribution. In our Figure 2, employment in service occupations is included in the “Non-STEM” category. When we 
exclude service occupations from the “Non-STEM” category, we also find that the evolution of employment in that part of the wage 
distribution would have looked much grimmer than Figure 2, Panel A, suggests. In particular, the increase in total low-skill 
employment during the 2000s is the result of a large decline in employment in “Non-STEM and Non-Service” occupations, but an 
even larger increase in employment in service occupations (the detailed graphs can be obtained from the authors upon request).
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second tercile, we are interested in to what extent the evolution of STEM employment 

counteracted the overall trend in employment in the middle of the U.S. occupational wage 

distribution. During the 1990s and 2000s, decades in which employment shares declined in 

this part of the occupational wage distribution (see “All occupations”), employment in 

STEM occupations (“STEM”) clearly counteracted overall developments, providing a 

countervailing force to the declining employment shares in the middle of the U.S. wage 

distribution.

The third tercile (Fig. 2 Panel C) shows that if it weren’t for STEM occupations, 

employment at the high-wage end of the occupational distribution would have looked very 

different as well. During the 1980s and after 2000, employment would have increased much 

less even in those occupations. The fact that employment as a share of total employment 

would have evolved very differently even among high-wage occupations were it not for 

STEM occupations is striking.

This pattern can be observed more clearly by considering the change in employment shares 

during the period, along the 1980 occupational wage distribution. Fig. 3 shows the observed 

evolution of employment share (solid line) together with the evolution of employment shares 

along the occupational wage distribution had employment in STEM occupations remained at 

its 1980 level (dashed line). The figure demonstrates that employment in STEM occupations 

was not only an important component of employment growth at the high-wage end of the 

occupational wage distribution, but also important for employment growth in the middle of 

the distribution in recent decades.

Turning to wages, Fig. 4 highlights the contribution of wage changes in STEM occupations 

to aggregate (log) wage changes along the occupational wage distribution, again by 

contrasting the observed changes (solid line) with changes that arise when wages in STEM 

occupations are held constant at their level in 1980 (dashed line). Again, it is striking how 

pervasive the influence of wage growth in STEM occupations was, encompassing every 

percentile of the occupational distribution above about the 20th percentile.

Motivated by these findings, we look to the role of schools in preparing workers for the 

labor force in this manuscript. Scholars have already investigated the importance of 

majoring in STEM and, more recently, how the returns to STEM degrees change over the 

working life.5 Recent work by Deming and Noray(2020) find that for “applied” STEM 

majors such as engineering and computer science, the earnings premium is high at labor 

market entry, but then declines by more than 50 percent in the first decade of working life. 

The change in task content is particularly rapid for those STEM jobs, making the skills 

learned in college depreciate particularly fast. This pattern does not hold for “pure” STEM 

majors such as biology, chemistry, physics and mathematics.

5Field of study more generally is an important mediator when it comes to the determinants of the returns to education, and studies 
show that the returns to STEM degrees are particularly large, see for example Altonji et al. (2016), Lemieux (2014),Kinsler and 
Pavan(2015) and Grave and Goerlitz(2012). Altonji et al. (2012) and Lemieux (2014), among others, show the clustering of graduates 
from different fields of study in specific occupations. De Philippis (2017) investigates the role of high school science curriculum on 
STEM field enrollment and completion in college. We do not investigate the contribution of field of study specifically. Note, however, 
that our results are robust to controlling for study degrees.
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Against the background of these findings, the availability of data of course taking in “pure” 

STEM classes in schools as well as data at different times over the career of the Class of 

1982 of HS&B:SO is particularly interesting.

2.2. Schools, STEM preparation, and labor market outcomes

The substantive content of high school mathematics curriculum effectively sorts and 

stratifies students, and results in structuring unequal opportunities to learn and develop skills 

in high school. Typically, students advance through levels of mathematics courses in a lock-

step pattern across years of high school because the knowledge and skills accumulate, with 

material in one year serving as a prerequisite for the next year (Adelman, 1999). Nearly all 

high school students take mathematics, at least in the first few years, but the level of their 

courses can vary considerably in content depth and level of abstraction. Algebra 1 provides a 

critical foundation by introducing abstract reasoning and analysis. It also serves as a gateway 

to advanced courses in both mathematics and science that require those abstract and analytic 

skills (Domina et al., 2015; Carraher and Schielmann, 2007; Howe, 2005; Schmidt et al., 

2005).

Evidence suggests that the knowledge and skills developed in high school mathematics 

courses influences short-run labor force outcomes. Using HS&B:SO high school transcript 

data, Rose and Betts (2001, 2004) found that students who completed more advanced levels 

of mathematics coursework earned higher wages in 1991 compared to those who took less 

advanced mathematics courses. An important threshold in determining higher wages was 

whether or not students completed Algebra 1 and geometry by the end of high school, 

although students who took more advanced courses earned even higher wages. Furthermore, 

they found that mathematics coursework helped to explain the gap in early adult wages 

between people raised in lower and higher SES families, and it accounted for a substantial 

portion of the effect of an additional year of education on early adult wages. Their results are 

robust to controls for other academic coursework and to adjustments for selection into the 

courses (instrumental variable, propensity matching, high school fixed effects). Using 

HS&B:SO and the National Longitudinal Study of Youth 1997 (NLSY97) data, including 

high school transcripts, Levine and Zimmerman (1995) found a positive effect of taking 

more mathematics courses on entering technology occupations and on wages for early adult 

workers in those fields. Evidence from international studies also supports a link between 

knowledge and skills developed in advanced high school mathematics coursework and labor 

force outcomes. Two different British cohort studies, one using the 1958 birth cohort 

(Dolton and Vignoles, 2002) and the other using the 1970 birth cohort (Adkins and Noyes, 

2016), found positive effects of advanced mathematics coursework on earnings at around 

age 33. These studies did not find similar effects of advanced coursework in science, 

English, or foreign language.

I Identification in this area of empirical research is complicated by issues of unobserved 

heterogeneity and potential heterogeneous preferences across students for different subjects 

in schools as, for example, highlighted by Altonji et al. (2012). The authors state “Even with 

excellent data, identifying the causal effects of high school courses on educational 

attainment, choice of college major and occupation, and wage rates is a difficult task (p. 
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197)”.6 Observed effects of coursework on labor force outcomes may be due to students’ 

development of knowledge and skills, or may instead be a function of unmeasured factors 

that are unrelated to the individual’s mathematics-related skills (Bills, 2003; Altonji et al., 

2012).

Joensen and Nielsen (2009) is, to the best of our knowledge, the only study using a natural 

experiment of high school course assignments in Danish schools. The authors found a 

positive effect of high-level mathematics coursework (but not high-level liberal arts 

curriculum) on income in early adulthood. Their OLS results with many detailed controls 

are very similar to the IV result, suggesting that selection may not be a big issue.

Although it is impossible to be certain that the knowledge and skills that individuals develop 

in mathematics courses are causally related to labor force outcomes with a database like 

HS&B, the robustness of findings across datasets and analytic approaches described above is 

reassuring. A key limitation of these studies, however, is that they all examine the 

relationship between high school and earnings while respondents are still young. In addition, 

the HS&B:SO data provide rich opportunities to control on a range of factors related to 

course selection.

A related issue is whether the observed effect of mathematics coursework on labor force 

outcomes is due to the development of mathematics knowledge and skills, or if it reflects a 

more general pattern of stratification within the school, with implications beyond 

mathematics to level of advanced curriculum across subjects. Indeed, tracking is a concept 

that has been used to describe within school categories of learning opportunities, like 

academic/college preparatory, general, and vocational streams of study (Gamoran and Mare, 

1989; Hallinan, 1996). Students in more advanced tracks have access to higher quality 

instruction and more advanced learning opportunities that result in better skills in reading 

and writing skills (Carbonaro and Gamoran, 2002), and they are more likely to take foreign 

language and other college preparatory courses (Alexander and Pallas, 1984; Adelman, 

1999; Nord et al., 2011). Although tracks have been used as a general indicator of level of 

academic curriculum, Lucas (1999) showed with the HS&B:SO that many schools did not 

actually track students in the early 1980s, and students often took a mix of courses at 

different levels. Our analyses control for foreign language coursework to account for more 

generalized advanced programs of study.

3. Data and method

3.1. Sample

High School and Beyond (HS&B) began in 1980 as part of the National Center for 

Education Statistics (NCES) Secondary Longitudinal Studies Program. The base year and 

first follow-ups contained a representative two-stage stratified probability sample of nearly 

30,000 sophomores in over 1000 high schools. The first stage sampled high schools with a 

tenth grade, and the second stage involved sampling students from tenth grade rosters 

6For a thorough discussion of the dynamic decision process as well as the different approaches taken in the literature for estimation 
seeAltonji et al. (2016). Webber (2014) investigates differences in lifecycle earnings across majors, including STEM majors, and 
particularly focuses on taking self-selection effects into account.
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provided by the school. NCES constructed sample weights (based on the inverse of the 

probability of selection) that took into account the complex sample design, including 

oversamples (e.g., Catholic, high performing private, and public schools with a large share 

of Cuban students) and other elements of the stratified design (based on factors like region 

of the country, urbanicity). Further adjustments were made for school and student non-

response (Jones et al., 1983). Subsequent follow-ups weights were further adjusted for non-

response (Sebring et al., 1987; Muller et al., 2019). Each school contained a representative 

sample of 36 sophomores, making inferences about each school and its student body 

possible. For this study we use the sophomore longitudinal panel (N =14,830),7 which was 

re-surveyed in 1982 (when most were high school seniors), 1984, 1986, and 1992; in 2014, 

the HS&B sophomores were re-interviewed when most were about 50 years old. Our 

analyses use two panels: the 1980–1992 panel (individuals who participated in the two 

waves, N = 11,850) and the 1980–2014 panel (N = 8790) and the weights constructed for 

those panels. From these we select respondents with a reported occupation in 1991 (N = 

10,730) or in 2013 (N = 7300).8

Base year and first follow up student questionnaires gathered rich information about 

educational experiences and the development of cognitive (reading, math, science and social 

studies test scores) and non-cognitive skills (e.g., locus of control, self-concept, 

extracurricular activities, course taking, academic effort), as well as detailed information 

about family background (e.g., parental education, family composition, siblings, parenting 

practices and parents’ educational and occupational expectations for their children). High 

school transcripts were gathered for the sophomore cohort and provide detailed course 

taking information for each year of high school. All follow-ups gathered information about 

cohort members’ educational, employment, and family activities and transitions. The 2014 

survey gathered occupation and labor market information, as well as information about 

family and health at midlife (Muller et al., 2019).

3.2. Measures

Labor Force Outcomes.—Our dependent variables are whether the respondent is 

working in a STEM or STEM-related occupation in 1991 and in 2013 and the average wage 

percentile of the respondents’ occupations in those two years. We define STEM or STEM-

related occupation using the U.S. Census definition.9 Unfortunately, HS&B:SO does not 

include information on wages, so that we have to impute that information from other 

sources. Our measure is the respondent’s occupation average wage percentile. It is computed 

by rank ordering occupations according to average wage in all non-agricultural occupations 

in the public-use microdata sample (PUMS) of the U.S. Census 1990 and the American 

Community Survey (ACS) respectively for 1991 and 2013. Based on the national 

distributions in each year, the percentile score for the average wage is assigned to the 

HS&B:SO respondent’s 1991 and 2013 occupations.

7All unweighted sample sizes have been rounded to the nearest 10, as required by the NCES restricted use data license.
8These sample sizes are for the models predicting a STEM or STEM related occupation. Because the wage percentile of the 
occupation was unavailable for a handful of cases, the sample sizes for the wage percentile models are slightly smaller (10,560 for 
1991 and 7,240 for 2013). Descriptive statistics for these samples are available upon request.
9For a detailed description seehttps://www.census.gov/people/io/methodology/ and Appendix Table A1.
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STEM Training, Knowledge and Skills.—Our main analytic interest is in the effects of 

the STEM training that students obtained in high school. Using students’ high school 

transcripts that show all courses taken, we characterize the highest level of mathematics and 

science taken by the end of high school. In mathematics, our levels distinguish between 

lower than Algebra 1 (omitted category), Algebra 1, geometry, Algebra 2, and advanced 

mathematics (e.g., precalculus, trigonometry) and/or calculus. Although the substantive 

curriculum covered in science courses generally requires less prerequisite knowledge from 

the previous year, science courses are typically also sequenced; we distinguish levels by less 

than biology (the omitted category, such as general science), biology, chemistry, physics, and 

advanced science as the highest level.10 During the period that HS&B:SO students attended 

high school, completing Algebra 2 or more was a clear indicator of preparation for college 

(Adelman, 1999). We also control for the total number of credits taken so that any estimated 

effect of the levels of advanced mathematics and science reflects the curriculum and not 

simply more hours of classroom exposure.

To measure mathematics cognitive skills, we include the students’ 1982 mathematics test 

score, standardized to a mean of zero and standard deviation of one. Although related to one 

another, mathematics test scores and coursework represent distinct dimensions of cognitive 

skills development and academic preparation. The HS&B:SO base year mathematics test 

score measures a combination of knowledge of mathematics concepts, mathematics ability, 

and also reflects what has been learned from high school coursework (Coleman and Hoffer, 

1987; Rose and Betts, 2001; Rose and Betts, 2004).11

Finally, we also measure locus of control, one dimension of non-cognitive skills that is 

associated with academic achievement. In 1980, sample members responded to four items 

based on the Rotter scale of locus of control.12 The indicator, constructed by NCES, is a 

weighted average of the items standardized to a mean of zero and a standard deviation of 

one.

Controls.—In addition to the numbers of mathematics and science credits mentioned 

above, we also control for the number of foreign language credits to account for the student 

simply taking more advanced high school courses in general. Our background controls 

include student’s sociodemographic (gender, race and ethnicity, age) and family 

characteristics (highest parental educational attainment [less than high school, high school 

graduate, some college, college graduate] and the number of siblings) and student’s 

education attainment by 1992. Table 1a shows summary statistics for the HS&B:SO1980–

1992 and 1980–2014 panels. Table 1b shows summary statistics for the HS&B: SO1980–

1992 separately for respondents who work in STEM and those who do not. We clearly see 

that those working in STEM have higher fractions of Algebra 2 and Advance math/calculus 

10See Appendix Table A2 for the distribution of math and science course taken by sample members.
11Note that the mathematics test used in our models was administered in 1982, after some of the coursework was completed. This 
provides a conservative estimate of the effects of coursework on the outcomes. Students were given a similar test in 1980; substituting 
the early test score in the models our estimated effects of mathematics and science are larger.
12The four items are “How strongly do you feel about each of the following statements?” a) Good luck is more important than hard 
work for success; b) Every time I try to get ahead, something or somebody stops me; c) Planning only makes a person unhappy, since 
plans hardly ever work out anyway; and d) People who accept their condition in life are happier than those who try to change things.” 
Response categories include: “Agree strongly,” “Agree,” “Disagree,” “Disagree strongly,” and “No opinion.”
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course completion, as well as physics and advanced science. They also learned more foreign 

languages in school and did better in terms of math test scores. In terms of background 

characteristics, Whites are overrepresented in STEM whereas Hispanics are 

underrepresented, with no notable differences for the other race categories. In terms of 

family background, those working in STEM clearly come from more favorable educational 

parental backgrounds. Hence it is important to control for these differences in the empirical 

analyses.

3.3. Empirical approach

Our empirical strategy is to relate labor market outcomes to the training and knowledge and 

skills that the worker developed during high school. To do so, we estimate the following 

baseline equation using Ordinary Least Squares (OLS):

Y ij = β0 + β1Xi + β2Zi + δj + εij (1)

where Yij denotes the labor market outcome of interest for individual ifrom high school j, Xi 

is a vector of STEM training, knowledge, and skills variables, Zi is a vector of controls 

(presenting nested models, first only numbers of mathematics, science and foreign language 

credits, second student and family sociodemographic characteristics, and third degree 

attainment), and finally δj represents high school fixed effects. Our coefficient of interest is 

β1, which represents the relationship between STEM training, knowledge skills and labor 

market outcomes.

In our main analysis, we consider labor market outcomes at two points in time. We first 

consider how high school training is related to long-term employment outcomes generally; 

that is, we investigate how employment in 2013 is related to high-school course-taking. At 

this point, the individuals are around age 50 and have witnessed two decades of large 

changes in the labor market. We examine whether their training in school is related to 

employment (as opposed to unemployment) in the long-run. In a next step, we focus on 

employment in STEM occupations, and distinguish between medium- and long-term 

outcomes; that is, we first investigate whether an individual is employed in a STEM 

occupation in 1991. At this point, the individuals are approximately 28 years old and most 

have completed their academic degrees by this point. As we have shown in the previous 

section, STEM occupations better weathered the labor market changes that workers in this 

cohort were forced to endure. By looking at 1991 first, we try to capture the labor market 

succees at mid-career.

We then again take a longer-term stance and consider whether the worker was employed in a 

STEM occupation in 2013. Importantly, we can examine this relationship both with and 

without controlling for an indicator of whether the individual was in a STEM occupation in 

1991 to see if, conditional on this, training and skills affected later labor market outcomes. 

We also present a saturated model predicting the 2013 outcomes for individuals who did not 

hold a STEM job in 1991 (about 89% of the 1991 analytic sample) as a step to estimate the 

effects of STEM training, knowledge, and skills on switching into STEM in the later period, 

at midlife.
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Finally, we use the same strategy of model nesting to examine two other outcomes, the 

percentile of the average wage of the worker’s occupation in 1991 and 2013. This is another 

metric of labor market success and, again, it is important to understand the role of training 

and knowledge in the ultimate financial success of the individual.

As discussed earlier, a key limitation of our work, along with much of the work in this area, 

is the endogenous nature of training. Students are not randomly assigned to courses in high 

school, nor are students randomly assigned to high schools. In fact, it may be that some 

schools do not offer the training that is offered in other, often more affluent schools. 

Different types of parents, with different family background characteristics, are likely 

sending their children to different types of schools and encourage them to take different 

types of classes. Although we are unable to completely address this issue, we can include a 

large number of controls in an effort to mitigate omitted variable bias.13 In addition, we can 

control for fixed high school characteristics, thereby comparing individuals who attended the 

same high school with the same cognitive and non-cognitive skills, and the some observable 

parental background characteristics, who took different courses. Moreover, be reminded that 

we are looking at one cohort of sophomores at high schools in 1980, so unobserved 

socioeconomic macro effects were relevant for all of them, as was the state of technology at 

that time, as well as the predictions of how technology would evolve in the future. While all 

of this is imperfect, it does alleviate some concerns about comparisons across students who 

were attending high schools of differing quality.

Our results are quite robust to a variety of different specification choices. As part of the 

analysis process, we conducted many sensitivity analyses and robustness checks. We 

estimated all models with a reduced sample that only included cases for which both 1991 

and both 2013 outcome variables were non-missing.14 Although we do not include grade 

point average (GPA) as a control in our models, preferring to include controls of 

mathematics and science credits separately (which are an element of the computation of 

GPA), we did estimate an alternate set of models with GPA substituted as a control. GPA is a 

weak or insignificant predictor of working in a STEM occupation in all models. Although 

GPA did predict workers’ occupation percentile of the wage distribution, the coefficient is 

attenuated to insignificance when 1992 level of educational attainment was included in the 

models, both in predicting the early adult and midlife outcomes. As we present, the math 

course level is a strong predictor.15

Results of all of these sensitivity tests are consistent with the findings that we present. We 

also estimated several heterogeneous effects models, by 1992 educational attainment, low 

and high mathematics test scores, and low and high non-cognitive skills. Although a full 

analysis of heterogeneous effects is beyond the scope of this study, we do present selected 

results by gender. Models based on alternative specifications are available upon request. 

13Of course, just adding more controls is not always better, and we need to be aware of “bad control” issues (see, for example, Angrist 
and Pischke, 2015, p. 525ff.). The first set of controls we use such as math test scores and locus of control were generally measured 
early on, at the beginning of students’ school course choices that are relevant for our analyses. Degree attainment in 1992 might be 
viewed more critically as it is correlated with our explanatory variables of main interest and the outcome variables. A similar logic 
applies when we control for “STEM occupation in 1991”. We carefully adjust our discussion of results accordingly.
14See Appendix Table A3 for analyses based on reduced sample.
15Results can be obtained from the authors upon request.
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Only the selected coefficients for estimated effects of coursework, test scores, and non-

cognitive skills are shown; full models are available from the authors upon request. Analyses 

are performed with weights for fourth follow-up (1991 outcome) and fifth follow-up 

questionnaire data (2013 outcome), and we use multiple imputation (20 imputations) for 

missing values on all independent variables (Muller et al., 2019).

4. Results

Table 2 shows the results of the models estimating whether high school course taking is at 

all related to longer-term labor market employment prospects. The first column shows the 

results for a specification that controls for parental background, number of credits in various 

fields, the results of the second column are for specifications that additionally include 

information about the respondents’ educational attainment by 1992. The overall pattern is 

very similar for both sets of results: high school math course-taking at the level of Algebra 1 

or higher has a positive effect on long-term employment. This suggests that Algebra 1, when 

more abstract concepts are introduced into the curriculum, is important for long run access 

to jobs.

Table 3 presents the results of models estimating the effects of high school students’ STEM 

course taking and skills on an indicator for whether the individual is employed in a STEM 

occupation in 1991. Column 1 shows the results for the most parsimonious model, 

controlling only for the number of mathematics and science credits. The first four 

coefficients in the column are indicators for the highest level of mathematics taken 

compared to the omitted category of less than Algebra 1. We also include indicators for 

whether the individual has taken biology, chemistry, physics, and/or advanced science. 

Finally, we include measures of cognitive and non-cognitive skills (mathematics test scores 

and locus of control). With this set of controls, we find that individuals with more advanced 

mathematics and sciences courses are significantly more likely to be employed in a STEM 

occupation in 1991. To get a sense of the magnitude, an individual who took advanced 

mathematics or calculus is predicted to be 9.0 percentage points more likely on average to be 

working in a STEM occupation compared to someone who took less than Algebra 1, net of 

controls. People who took Algebra 2 have an advantage of 2.8 percentage points on average 

compared to those who took less than Algebra 1. From the first model we see that 

individuals who took physics and advanced science coursework are on average 8.5 and 4.5 

percentage points, respectively, more likely to be in a STEM occupation in 1991 compared 

to people who took low level science (less than biology), independent of their mathematics 

course level and net of controls. The second model, in column 2, also includes controls for 

family and sociodemographic background, including indicators for race and gender, and 

produces very similar estimates. All coefficients are robust to these extensions of the 

specification.

The model shown in column 3 adds controls for 1992 educational attainment which renders 

part of the coefficients insignificant such as the importance of math test scores in 

determining the outome. We next take advantage of the school-level sampling design of the 

HS&B data. Because of this school-level sampling, we observe multiple students within the 

same high school and can include high school fixed effects in our specification. Column 4 
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presents the results when we include background, educational attainment, and high school 

fixed effects. With this last model we estimate that a student who took advanced 

mathematics or calculus in high school is on average 7.4 percentage points more likely to be 

in a STEM or STEM-related occupation in 1991 compared to someone in his or her high 

school who only completed less than Algebra 1 mathematics, net of family background, 

math test scores, locus of control and their other college preparatory coursework (foreign 

language).

As shown earlier, employment in STEM occupations evolved more favorably in recent 

decades than in other (non-STEM) occupations, and we consider employment in a STEM 

occupation therefore to be a useful proxy for labor market success. We consider the relative 

average wage of the occupation as another. In Table 3, columns 5 – 8, we present the results 

where our outcome is the percentile ranking of the occupation in terms of average wage. 

When we do this, we find again that advanced level mathematics and science courses are 

positively associated with wages, as are cognitive and non-cognitive skills. Individuals who 

completed advanced mathematics or calculus by the end of high school have an occupation 

that is more than a decile higher in relative average wages compared to a person who only 

completed less than Algebra 1, net of controls. Even in the model that includes 1992 

educational attainment and in which individuals are compared only to others in their same 

high school (school fixed effects), those who took advanced mathematics or calculus have an 

occupation with average wages that are around 8.1 percentile points higher than an 

otherwise similar schoolmate who only took less than Algebra 1 (note that wage ranks 

generally increase in math course taking). The mathematics coursework, mathematics test 

scores and non-cognitive skills effects are robust to changes in the specifications, but the 

estimates of science coursework effects are not statistically significant once degree 

attainment is included in the model, shown in column 7.

4.1. Midlife labor market outcomes

Beyond the relationship between STEM training and short-run labor market outcomes, what 

is even more interesting is how early training and skills affect long-run success. This is 

particularly important in the context of the HS&B cohort. While personal computers were 

only first appearing when this cohort was in school, the labor market they entered changed 

tremendously in the years that followed. How have members of this cohort fared, and did 

their early training and skills help?

In Table 4, columns 1 – 4, we examine the role of these earlier experiences on an indicator 

of whether the individual is working in a STEM occupation in 2013, and columns 5 – 8 

present the results when we look at the occupation’s percentile of the wage distribution in 

2013. The results estimating effects of coursework on STEM occupations in 1991 and 2013 

are remarkably consistent. Advanced mathematics, Algebra 2, geometry, physics, and 

advanced science all predict whether an individual ends up in a STEM occupation in 2013, 

even controlling for the academic degree earned by 1992. The model in column 4 indicates 

that the results for advanced mathematics or calculus and physics are robust to high school 

fixed effects estimates. Interestingly, in none of the specifications mathematics test scores 

and non-cognitive skills as proxied by locus of control are significant.
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When we examine the percentile distribution of the average wage of the occupation for 

individuals’ 2013 occupations, we again see a strong relationship between mathematics 

coursework and the percentile of the wage distribution, again even when we control for high 

school fixed effects (column 8). Individuals who took advanced mathematics or calculus in 

high school hold occupations with nearly a decile higher average wages, even when their 

degree attainment is held constant. Mathematics test scores and non-cognitive skills predict 

the percentile of the individual’s occupation in the wage distribution, as well.

However, it may be the case that, in this long-run analysis, we are simply picking up the fact 

that there is persistence over time in occupational choice. To address this concern, we 

estimate similar regressions but now add controls for whether the individual was employed 

in a STEM occupation in the earlier period, shown in Table 5, columns 1 – 4 and 6 – 9. By 

including this control, our coefficients of interest now provide information about one’s 

ability to change into or persist in a STEM occupation. If, for example, early skills and 

training led to early STEM jobs, which in turn led to later STEM jobs, the inclusion of this 

new variable would entirely absorb the effects of STEM training. As an extra step, we 

estimate an additional (fully saturated) model selecting only those who were not in a STEM 

occupation in 1991 and were therefore in a position to transition into a STEM occupation; 

they comprise about 89 percent of the 1992 sample. These results are presented in Table 5, 

columns 5 and 10.

Individuals who held a STEM occupation in 1991 are 47 percentage points more likely to be 

in a STEM occupation in 2013 compared to those who did not hold a STEM occupation in 

1991. It is interesting to note that, although the coefficient on this indicator is large, positive 

and statistically significant, there is still a significant role for STEM training on the 

likelihood that an individual is observed in a STEM occupation in 2013. People who took 

advanced mathematics or calculus in high school are 8.0 percentage points more likely on 

average to be in a STEM occupation in 2013 compared to those who took lower than 

Algebra 1 (Column 4, including school fixed effects). When we examine the wage percentile 

of an individual’s occupation, we see again that holding a STEM job in 1991 is associated 

with being in an occupation with a higher average wage in midlife, but there remain 

substantial roles for early coursework and cognitive and non-cognitive skills. Models 5 and 

10 show that there is also a role for early math coursework among individuals that did not 

occupy a STEM occupation in 1991. Those who took advanced math or calculus were 8.4 

times more likely to be in a STEM occupation in 2013 and the percentile rank of their 

occupation was over eight points higher compared with individuals who took lower than 

Algebra 1.

The previous results indicate that employment in a STEM occupation in the long-run is not 

merely a reflection of those who entered STEM occupations early in their career. For this 

reason we look into occupational transitions into more detail. Table 6 shows the results of 

regression specifications that are similar to the previous ones; this time, however, the 

dependent variables are indicator variables for the transition from a non-STEM to a STEM 

occupation between 1991 and 2013 (Column 1), from STEM to a non-STEM occupation 

(Column 2), or for staying in a STEM occupation (Column 3). Here we observe that 

advanced math or calculus coursework predicts moving from a non-STEM occupation to a 
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STEM occupation and persisting in a STEM occupation between 1991 and 2013, during the 

period when STEM occupations were expanding. Physics coursework predicts persistence in 

STEM, as well.

4.2. Heterogeneous effects by gender

Overall, these results suggest that STEM training in school predicts later labor market 

adaptability and success. So far, we have assumed that the estimated effects of coursework 

and skill are constant across our sample. Although it is beyond the scope of the present 

analysis to examine all dimensions of heterogeneous effects, the gender gap in STEM 

education and occupations (Buchmann and DiPrete, 2006; Glass et al., 2013; England, 2010) 

makes gender an especially important consideration. To examine the possibility that the 

relationships between STEM training and midlife occupation are different for men and 

women, we split our sample to estimate selected models by gender. As our main interest is 

in long-run effects, we only present models predicting the 2013 occupation.16 We present 

the results from the fully saturated models, before and after including whether the 

respondent held a STEM occupation in 1991, shown in Table 7.

We observe positive estimated effects of having taken advanced mathematics/calculus 

coursework on holding a STEM occupation in 2013 and the wage percentile of the 

occupation for both men and women. When 1991 STEM occupation is held constant, the 

advanced mathematics or calculus coursework effect on holding a STEM occupation 

remains statistically significant for men and women. For women, taking Algebra 1 or 

Algebra 2 significantly increases their likelihood of working in STEM occupation in 2013. 

The effect of taking Algebra 1, geometry, Algebra 2 or advanced mathematics or calculus 

compared to taking lower than Algebra 1 mathematics on 2013 occupational wage percentile 

are positive and statistically significant for women. Women who took advanced mathematics 

or calculus hold occupations that are around a decile higher in average wage percentile. 

Although we observe nuanced differences in the estimated effects of coursework on labor 

force outcomes, the differences between men and women are not statistically significant. It 

is striking to observe that the high school mathematics coursework positively predicts 

holding a STEM occupation and the occupational average wage percentile of both men and 

women at midlife.

In Table 7 we also observe that women but not men who scored higher on their high school 

math achievement test occupy higher wage occupations, and this difference is statistically 

significant.17 Based on fully saturated models, among women a one standard deviation 

increase in high school math test score is associated with an occupational wage that is over 

three percentiles higher on the wage distribution.

5. Discussion and conclusion

This study examines whether high school coursework in mathematics and science (which we 

refer to as STEM training) fosters people’s adaptability to the increased STEM skill 

16Results for models of the 1991 outcomes are available from the authors upon request
17An ancillary analysis indicates that the interaction term in a pooled model is also statistically significant.
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requirements over the long run. This topic is an important, highly policy relevant research 

question, as policy makers around the world try to entice pupils to enroll more in high 

school courses that prepare them for the increasing STEM skill requirements of work, and 

more and more schools establish STEM programs. However, to date, we know little about 

how the formal educational processes in schools – the curriculum to which students are 

exposed – prepares individuals for the later STEM skill requirements of the labor market.

For students of the Class of 1982, who we analyze in this study, the nature of work changed 

rapidly and much more unexpectedly than for later cohorts. They were in school at a time 

period in which computers and information technology more generally just started to 

become widespread. The internet would not be available for civilian users for another 

decade. Our findings shed light on how the formal educational processes in schools—the 

curriculum to which students were exposed—contribute to how individuals navigate the 

challenges of a rapidely changing labor market. Reports and policy initiatives have long 

emphasized the importance of STEM education for economic growth, and the need for 

students to develop skills and prepare for STEM jobs. Although scholars have linked STEM 

training to STEM and STEM related-occupations in the short run, to our knowledge this 

study is the first national study in the U.S. linking STEM training during adolescence to 

occupations at midlife. The results highlight how school curriculum provides individuals 

with resources to adapt to changing workforce demands.

We first described the role of STEM and STEM-related occupations when it comes to labor 

market polarization in recent decades and document that STEM occupations in the middle of 

the occupational wage distribution had important countervailing effects on the evolution of 

employment—with the net employment effect in those “middle” occupations still being 

negative, but to a considerably smaller extent due to the positive evolution of employment in 

STEM occupations. This pattern is important against the backdrop of recent technological 

changes that profoundly changed job content and skill requirements in the labor market, 

with detrimental effects particularly for workers with jobs in the middle of the occupational 

skill distribution.

It has been over half a century since the release of the Coleman Report (Coleman et al., 

1966) that showed that family background plays an important role in determining who gets 

advanced learning opportunities, higher quality schools provide advanced academic 

preparation for children from less advantaged backgrounds. This observation was elaborated 

two and a half decades later with the HS&B (c.f. Coleman and Hoffer, 1987, Bryk et al., 

1993, Rose and Betts, 2001), which pinpointed the role of high school mathematics 

coursework in distinguishing higher quality learning opportunities. The findings of the 

current study contribute to this body of knowledge by suggesting the enduring effects of 

exposure to more advanced mathematics curriculum.

Succeeding in advanced coursework requires a combination of advanced academic curricular 

offerings at school and individual cognitive and non-cognitive skills to meet the coursework 

demands and learn. Quality schools may provide the advanced curriculum and a social 

environment of peers and supporting adults in which students are encouraged to excel and 

develop cognitive skills (Coleman et al., 1982b; Coleman and Hoffer, 1987; Bryk et al., 
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1993; Bailey et al., 2017). Our results suggest independent effects of mathematics 

coursework on labor force outcomes net of these school and environmental factors, first with 

controls at the individual level to estimate the effect of coursework independent of 

background and skills, and then with school fixed effects models to estimate the outcomes 

for a student relative to his or her high school peers.

We examined two different outcomes—having a STEM or STEM-related occupation and the 

occupation’s percentile rank from the distribution of mean wages—early in adulthood and at 

midlife. These two outcomes capture two important dimensions related to workforce 

inequality. The capacity to obtain a STEM job is certainly an important element of 

workforce success because of the employment growth in these occupations. Yet, most 

members of the HS&B:SO cohort, 89 percent in 1991 and 86 percent in 2013, did not hold 

STEM or STEM-related jobs. The average wage percentile of the occupation captures an 

alternate dimension of inequality. Given the growth of STEM jobs and as technology 

becomes a broader component of our everyday lives, it is likely that STEM skills are in 

demand and hold a wage premium even in non-STEM occupations (Rothwell, 2013). 

Indeed, we estimated substantial and robust effects of mathematics coursework on 

occupation wage percentile. Among those who did not hold a STEM or STEM-related 

occupation in 1991, we found effects of mathematics coursework on 2013 workforce 

outcomes. We observed a connection between STEM training during high school and STEM 

occupation, and between STEM training and higher wage and skill occupations, across all 

types of occupations. It is worth noting that we also observed an effect of physics 

coursework on many of the STEM workforce outcomes, net of the math coursework. This 

finding is worthy of future study.

The HS&B:SO cohort finished high school the year before the publication of A Nation at 
Risk (Gardner et al., 1983), a report that recommended intensification of advanced 

curriculum in high schools, particularly in STEM fields. At the heart of the report was the 

recommendation that all students, not just the more select college-bound students, should be 

required to take more advanced foundational mathematics coursework. Indeed, subsequent 

cohorts of students have graduated with increasingly higher levels of rigorous coursework 

(Nord et al., 2011). Whereas less than 37 percent of the HS&B:SO cohort graduated having 

completed Algebra 2 or higher (Green et al., 1995), 71 percent of the Class of 2013 had 

taken Algebra 2 or higher level mathematics (Kena et al., 2016).18

There is also a question of whether we can expect that the long run returns to advanced 

coursework for younger cohorts who are recent and future high school graduates will be the 

same as what we have observed for the High School Class of 1982. This is, of course, 

impossible to observe until the younger cohorts reach midlife. However, evidence on short 

run returns to more advanced mathematics coursework is affirmative, with qualification. In 

younger cohorts, more advanced coursework predicts postsecondary degree completion and 

higher wages in early adulthood net of postsecondary degree completion (Gaertner et al., 

2014; Rose and Betts, 2004). By contrast, Domina et al. (2015) recently found that when 

18This percentage refers to all high school graduates. Forty-two percent of individuals in our sample took Algebra 2. The difference is 
due primarily to our exclusion from the analysis of persons who were not in the labor force.
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California mandated that students take Algebra 1 prior to entering high school, there was 

substantial inequality in the benefits of the course in terms of higher test scores. Higher 

achieving students appeared to benefit from the courses, but lower achieving students’ test 

scores appeared to have been hurt. A recent national study of curriculum content in Algebra 

1 courses showed that there is considerable variability in the rigor of the courses, with 

students of color taking courses with less rigorous curricular material (Brown et al., 2013). 

Clearly, the actual curricular content rather than the course title is an important consideration 

in evaluating the effects of future coursework, especially as more students take advanced 

coursework. We cannot be certain of what skills will be needed in the future, yet our findings 

from this study suggest that advanced mathematics curriculum provides foundational 

training to adapt.

Although this study provides important new evidence about the possible role of schools in 

individuals’ capacity to adapt and succeed at work through midlife, and therefore about the 

role of schools in the production of inequality, it also has limitations that are worth 

mentioning. The panel was not interviewed between 1992 and 2014, a period of 22 years 

during which the economy was changing at a rapid pace. Moreover, the 2014 interview was 

short, and we lack detail about respondents’ current wages and their workforce participation 

during most of their adult working years. For example, we do not know what other jobs they 

held in the intervening years, about their unemployment spells, or even wages.19 Data on 

these topics could provide extremely rich information about mechanisms and processes 

through which the high school experiences lead to the outcomes that we observed. It should 

be a priority to fill in some of this information, if possible, from either administrative records 

or future interviews. Additionally, observational data do not allow us to determine whether 

the mathematics coursework that students took in high school caused them to have better or 

worse labor force outcomes. These problems about making causal inferences are inherent in 

research designs like HS&B, and have been a source of debate using HS&B (c.f., Evans and 

Schwab, 1995, Coleman et al., 1982a, Altonji et al., 2012). We attempt to acknowledge this 

limitation both in our modeling strategy and in the interpretation of results. Finally, although 

it is important to consider the possibilities of heterogeneous effects, such as for individuals 

from different racial and ethnic or social classes, or people who have higher and lower 

cognitive or non-cognitive skills, such analyses are both beyond the scope of the present 

study and in some cases may require different data. Data limitations are especially acute for 

estimating the binary STEM outcome and for fixed effects models. Nonetheless, full 

consideration of heterogeneous effects should be a future priority.
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Appendix

Tables A1, A2, A3

Table A1

Occupations Classified as STEM, STEM-Related, and Non-STEM, and values of their 

position in the 1980 occupational wage percentile.

Occupations 1980 Percent Rank

STEM jobs

Aerospace engineers 99

Metallurgical and materials engineers 99

Petroleum, mining, and geological engineers 99

Chemical engineers 99

Civil engineers 97

Electrical engineers 99

Industrial engineers 96

Mechanical engineers 99

Engineers and other professionals, n.e.c. 98

Computer systems analysts and computer scientists 97

Operations and systems researchers and analysts 96

Actuaries 99

Mathematicians and statisticians 94

Physicists and astronomists 99

Chemists 94

Atmospheric and space scientists 94

Geologists 97

Physical scientists, n.e.c. 92

Agricultural and food scientists 67

Biological scientists 77

Foresters and conservation scientists 67

Medical scientists 97

Economists, market and survey researchers 97

Black et al. Page 20

Res Policy. Author manuscript; available in PMC 2022 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Occupations 1980 Percent Rank

Psychologists 81

Social scientists and sociologists, n.e.c. 70

Urban and regional planners 93

Engineering technicians 71

Drafters 64

Surveryors, cartographers, mapping scientists/techs 56

Biological technicians 45

Chemical technicians 74

Other science technicians 56

Computer software developers 82

Technicians, n.e.c. 68

Sales engineers 99

STEM-related jobs

Managers of medicine and health occupations 90

Physicians 96

Dentists 97

Veterinarians 80

Optometrists 97

Podiatrists 64

Other health and therapy occupations 64

Registered nurses 63

Pharmacists 90

Dieticians and nutritionists 36

Respiratory therapists 38

Occupational therapists 56

Physical therapists 61

Speech therapists 67

Therapists, n.e.c. 37

Physicians’ assistants 33

Clinical laboratory technologies and technicians 46

Dental hygienists 66

Health record technologists and technicians 41

Radiologic technologists and technicians 45

Licensed practical nurses 22

Health technologists and technicians, n.e.c. 31

Optical goods workers 36

Dental laboratory and medical appliance technicians 37

Non-STEM related jobs

Chief executives, public administrators, and legislators 75

Managers and administrators, n.e.c. 89

Financial managers 94

Human resources and labor relations managers 91
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Occupations 1980 Percent Rank

Managers and specialists in marketing, advertising 95

Managers in education and related fields 92

Managers of properties and real estate 39

Funeral directors 44

Accountants and auditors 74

Insurance underwriters 66

Other financial specialists 80

Management analysts 97

Personnel, HR, training, and labor rel. specialists 72

Purchasing agents and buyers of farm products 61

Buyers, wholesale and retail trade 62

Purchasing managers, agents, and buyers, n.e.c. 83

Business and promotion agents 74

Construction inspectors 73

Inspectors and compliance officers, outside 80

Management support occupations 81

Subject instructors, college 91

Kindergarten and earlier school teachers 11

Primary school teachers 70

Secondary school teachers 73

Special education teachers 55

Teachers, n.e.c. 45

Vocational and educational counselors 67

Librarians 56

Archivists and curators 58

Social workers 54

Clergy and religious workers 10

Welfare service workers 5

Lawyers and judges 98

Writers and authors 74

Technical writers 82

Designers 58

Musicians and composers 43

Actors, directors, and producers 72

Painters, sculptors, craft-artists, and print-makers 44

Photographers 45

Dancers 14

Art/entertainment performers and related occs 35

Editors and reporters 65

Announcers 35

Athletes, sports instructors, and officials 36

Airplane pilots and navigators 100
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Occupations 1980 Percent Rank

Broadcast equipment operators 37

Programmers of numerically controlled machine tools 89

Legal assistants and paralegals 42

Sales supervisors and proprietors 50

Insurance sales occupations 71

Real estate sales occupations 58

Financial service sales occupations 98

Advertising and related sales jobs 67

Salespersons, n.e.c. 77

Retail salespersons and sales clerks 17

Cashiers 7

Door-to-door sales, street sales, and news vendors 11

Sales demonstrators, promoters, and models 17

Computer and peripheral equipment operators 46

Secretaries and stenographers 26

Typists 13

Interviewers, enumerators, and surveyors 17

Hotel clerks 5

Transportation ticket and reservation agents 67

Receptionists and other information clerks 10

Correspondence and order clerks 36

Human resources clerks, excel payroll and 
timekeeping

31

Library assistants 9

File clerks 14

Records clerks 22

Bookkeepers and accounting and auditing clerks 28

Payroll and timekeeping clerks 36

Billing clerks and related financial records processing 28

Mail and paper handlers 21

Office machine operators, n.e.c. 17

Telephone operators 42

Postal clerks, excluding mail carriers 90

Mail carriers for postal service 82

Mail clerks, outside of post office 19

Messengers 12

Dispatchers 58

Shipping and receiving clerks 45

Stock and inventory clerks 35

Meter readers 45

Weighers, measurers, and checkers 42

Material recording, sched., prod., plan., expediting cl. 55
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Occupations 1980 Percent Rank

Insurance adjusters, examiners, and investigators 50

Customer service reps, invest., adjusters, excl. insur. 55

Eligibility clerks for government prog., social welfare 37

Bill and account collectors 31

General office clerks 21

Bank tellers 11

Proofreaders 26

Data entry keyers 21

Statistical clerks 41

Teacher’s aides 5

Administrative support jobs, n.e.c. 61

Housekeepers, maids, butlers, and cleaners 2

Laundry and dry cleaning workers 4

Fire fighting, fire prevention, and fire inspection occs 57

Police and detectives, public service 77

Sheriffs, bailiffs, correctional institution officers 55

Crossing guards 10

Guards and police, except public service 31

Protective service, n.e.c. 3

Supervisors of food preparation and service 13

Bartenders 6

Waiters and waitresses 1

Cooks 3

Food preparation workers 4

Miscellaneous food preparation and service workers 2

Dental Assistants 9

Health and nursing aides 8

Supervisors of cleaning and building service 42

Superv. of landscaping, lawn service, groundskeeping 56

Gardeners and groundskeepers 12

Janitors 19

Pest control occupations 26

Barbers 12

Hairdressers and cosmetologists 9

Recreation facility attendants 11

Guides 12

Ushers 5

Baggage porters, bellhops and concierges 17

Recreation and fitness workers 9

Motion picture projectionists 38

Child care workers 0

Personal service occupations, n.e.c 5
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Occupations 1980 Percent Rank

Supervisors of personal service jobs, n.e.c 35

Public transportation attendants and inspectors 77

Animal caretakers, except farm 5

Automobile mechanics and repairers 38

Bus, truck, and stationary engine mechanics 61

Aircraft mechanics 90

Small engine repairers 28

Auto body repairers 42

Heavy equipement and farm equipment mechanics 65

Industrial machinery repairers 65

Machinery maintenance occupations 67

Repairers of industrial electrical equipment 59

Repairers of data processing equipment 90

Repairers of household appliances and power tools 56

Telecom and line installers and repairers 92

Repairers of electrical equipment, n.e.c. 63

Heating, air conditioning, and refrigeration mechanics 62

Precision makers, repairers, and smiths 39

Locksmiths and safe repairers 37

Repairers of mechanical controls and valves 64

Elevator installers and repairers 95

Millwrights 94

Mechanics and repairers, n.e.c. 66

Supervisors of construction work 93

Masons, tilers, and carpet installers 57

Carpenters 48

Drywall installers 55

Occupations

Electricians 81

Electric power installers and repairers 91

Painters, construction and maintenance 37

Paperhangers 58

Plasterers 58

Plumbers, pipe fitters, and steamfitters 73

Concrete and cement workers 58

Glaziers 54

Insulation workers 60

Paving, surfacing, and tamping equipment operators 54

Roofers and slaters 34

Structural metal workers 81

Drillers of earth 42

Misc. construction and related occupations 42
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Occupations 1980 Percent Rank

Drillers of oil wells 46

Explosives workers 63

Miners 75

Other mining occupations 66

Production supervisors or foremen 80

Tool and die makers and die setters 82

Machinists 64

Boilermakers 92

Precision grinders and fitters 71

Patternmakers and model makers 82

Engravers 34

Other metal and plastic workers 67

Cabinetmakers and bench carpenters 31

Furniture/wood finishers, other prec. wood workers 12

Dressmakers, seamstresses, and tailors 10

Upholsterers 21

Shoemakers, other prec. apparel and fabric workers 9

Hand molders and shapers, except jewelers 33

Bookbinders 34

Other precision and craft workers 38

Butchers and meat cutters 48

Bakers 19

Batch food makers 17

Water and sewage treatment plant operators 59

Power plant operators 94

Plant and system operators, stationary engineers 90

Other plant and system operators 75

Lathe, milling, and turning machine operatives 64

Punching and stamping press operatives 46

Rollers, roll hands, and finishers of metal 91

Drilling and boring machine operators 56

Grinding, abrading, buffing, and polishing workers 47

Forge and hammer operators 66

Molders and casting machine operators 37

Metal platers 43

Heat treating equipment operators 75

Sawing machine operators and sawyers 21

Nail, tacking, shaping and joining mach ops (wood) 17

Other woodworking machine operators 30

Printing machine operators, n.e.c. 56

Typesetters and compositors 45

Winding and twisting textile and apparel operatives 11
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Occupations 1980 Percent Rank

Knitters, loopers, and toppers textile operatives 14

Textile cutting and dyeing machine operators 12

Textile sewing machine operators 5

Shoemaking machine operators 5

Clothing pressing machine operators 5

Miscellaneous textile machine operators 12

Cementing and gluing machne operators 28

Packers, fillers, and wrappers 32

Extruding and forming machine operators 41

Mixing and blending machine operators 46

Separating, filtering, and clarifying machine operators 75

Food roasting and baking machine operators 58

Washing, cleaning, and pickling machine operators 42

Paper folding machine operators 12

Furnance, kiln, and oven operators, apart from food 67

Slicing, cutting, crushing and grinding machine 35

Photographic process workers 26

Machine operators, n.e.c. 41

Welders, solderers, and metal cutters 60

Assemblers of electrical equipment 33

Painting and decoration occupations 35

Production checkers, graders, and sorters in 
manufacturing

44

Truck, delivery, and tractor drivers 54

Bus drivers 36

Taxi cab drivers and chauffeurs 13

Parking lot attendants 9

Railroad conductors and yardmasters 95

Locomotive operators: engineers and firemen 96

Railroad brake, coupler, and switch operators 92

Ship crews and marine engineers 64

Miscellaneous transportation occupations 54

Operating engineers of construction equipment 67

Crane, derrick, winch, hoist, longshore operators 81

Excavating and loading machine operators 61

Stevedores and misc. material moving occupations 58

Helpers, constructions 17

Helpers, surveyors 21

Construction laborers 34

Production helpers 34

Garbage and recyclable material collectors 22

Machine feeders and offbearers 30
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Occupations 1980 Percent Rank

Garage and service station related occupations 5

Vehicle washers and equipment cleaners 13

Packers and packagers by hand 14

Laborers, freight, stock, and material handlers, n.e.c. 30

Data Source: Author calculations from U.S. Census PUMS and American Community Survey (ACS) data.

Table A2

Cross-tabulation of Math and Science Courses Taken in 1991 and 2013 Samples.

General science Biology Chemistry Physics Advanced science N

Below Algebra 1 1991 34.56 55.74 3.77 2.23 3.69 2470

2013 34.00 54.48 4.30 2.57 4.65 1440

Algebra 1 1991 21.59 62.31 7.75 2.14 6.21 1820

2013 20.59 61.17 9.04 2.26 6.95 1200

Geometry 1991 10.52 54.99 21.41 5.35 7.73 1640

2013 10.66 54.03 21.77 5.38 8.15 1120

Algebra 2 1991 5.37 32.48 32.48 15.63 14.03 2870

2013 4.88 30.77 33.43 16.62 14.30 2030

Adv Math/Calculus 1991 2.95 14.95 24.57 41.59 15.93 1930

2013 2.63 14.35 24.23 41.67 17.12 1520

Total 1991 15.18 43.18 18.57 13.37 9.70 10,730

2013 13.62 40.57 19.99 14.99 10.84 7300

Data Source: Author calculations from U.S. Department of Education, National Center for Education Statistics, The High 
School &Beyond Midlife Follow-Up Study, Sophomore Cohort.

Row Percentage within each math course is shown for each science course.

Table A3

OLS Regression Estimates of 1991 and 2013 Labor Market Outcomes, Restricted to 

Reduced Sample (N = 6520).

STEM 1991 STEM 2013

(1) (2) (3) (4) (5) (6) (7) (8)

Highest math 
course

Algebra 1 0.011 0.014 0.011 0.025 0.032* 0.031* 0.029 0.040*

(0.014) (0.013) (0.013) (0.014) (0.015) (0.015) (0.015) (0.016)

Geometry 0.036 0.038* 0.029 0.046* 0.029 0.028 0.022 0.008

(0.019) (0.018) (0.017) (0.019) (0.016) (0.017) (0.017) (0.020)

Algebra 2 0.048* 0.052** 0.038* 0.065** 0.048** 0.049** 0.044* 0.033

(0.020) (0.019) (0.018) (0.021) (0.017) (0.018) (0.018) (0.022)

Adv math/
Calculus

0.123*** 0.127*** 0.103*** 0.129*** 0.088*** 0.090*** 0.085*** 0.075**

(0.024) (0.024) (0.023) (0.026) (0.023) (0.023) (0.024) (0.029)

Highest science 
course
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STEM 1991 STEM 2013

(1) (2) (3) (4) (5) (6) (7) (8)

Biology − 0.011 − 0.010 − 0.012 − 0.040* 0.000 0.000 − 0.001 0.000

(0.013) (0.012) (0.013) (0.016) (0.014) (0.014) (0.014) (0.017)

Chemistry 0.010 0.013 0.002 − 0.027 0.001 − 0.001 − 0.004 − 0.005

(0.019) (0.018) (0.019) (0.022) (0.021) (0.021) (0.021) (0.024)

Physics 0.080** 0.087*** 0.075** 0.041 0.071** 0.074** 0.070** 0.067*

(0.025) (0.025) (0.025) (0.030) (0.027) (0.026) (0.026) (0.030)

Advanced science 0.066** 0.070** 0.058* 0.020 0.045 0.044 0.042 0.042

(0.022) (0.023) (0.023) (0.031) (0.026) (0.026) (0.026) (0.032)

Math test score 0.007 0.010 0.006 0.004 − 0.006 − 0.006 − 0.007 − 0.002

(0.007) (0.007) (0.007) (0.008) (0.007) (0.007) (0.007) (0.008)

Locus of control 0.014** 0.014** 0.011* 0.004 0.003 0.003 0.002 0.006

(0.005) (0.005) (0.005) (0.006) (0.005) (0.005) (0.005) (0.006)

STEM 1991 0.475*** 0.474*** 0.469*** 0.466***

(0.026) (0.026) (0.026) (0.024)

Background No Yes Yes Yes No Yes Yes Yes

1992 education No No Yes Yes No No Yes Yes

School fixed 
effects

No No No Yes No No No Yes

R2 0.227 0.229 0.231 0.371 0.186 0.224 0.240 0.396

Data Source: Author calculations from U.S. Department of Education, National Center for Education Statistics, The High 
School &Beyond Midlife Follow-Up Study, Sophomore Cohort.
*
p<.05

**
p<.01

***
p<.001 (two-tailed tests)

Note: Reduced model includes the numbers of mathematics credits, science credits, and foreign language credits. 
Background characteristics include race/ethnicity, gender, age, parental education, and number of siblings. 1992 education 
is the respondents’ educational attainment (less than high school degree, high school graduate, postsecondary certificate, 
associate’s degree, bachelor’s degree, master’s degree, advanced or professional degree) by 1992.
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Fig. 1. 
Smoothed Changes in Employment Shares 1980–2019 and Number of STEM Occupations 

(indicated by radius of circles) by 1980 Percentile Rank of Mean Occupations’ Wages

Notes:The figure plots changes in employment shares by 1980 occupational wage percentile 

rank using a locally weighted smoothing regression (bandwidth 0.8 with 100 observations), 

where wage percentiles are measured as the employment-weighted percentile rank of an 

occupation’s mean log wage in the Census IPUMS 1980 5 percent extract. Employment in 

each occupation is calculated using workers’ hours of annual labor supply times the Census 

sampling weights. Consistent occupation codes are from Autor and Dorn (2013). The circles 

superimposed on the plot at different occupational percentiles indicate the location of STEM 

occupations along the occupational wage structure, where the size of the circle indicates the 

number of STEM occupations. Data Source: Authors calculations from U.S.Census PUMS 

and American Community Survey (ACS) data.
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Fig. 2. 
Changes in Share of Aggregate Employment, by Occupation Type (all, STEM, Non-STEM) 

and Decade (1980–2019), by Average Occupation Wage in 1980 Terciles

Notes: The figure plots decadal changes in shares of aggregate employment for all 

occupations, STEM occupations and non-STEM occupations, separately by terciles of the 

1980 occupational wage rank. The occupational wage ranks are measured as the 

employment-weighted percentile rank of an occupation’s mean log wage in the Census 

IPUMS 1980 5 percent extract. Employment in each occupation is calculated using workers’ 
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hours of annual labor supply times the Census sampling weights. Consistent occupation 

codes are from Autor and Dorn (2013). Data Source: Authors calculations from U.S.Census 

PUMS and American Community Survey (ACS) data 1980, 1990, 2000, 2010 and 2019.
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Fig. 3. 
Change in Employment Share, 1980–2019, by 1980 Percentile Rank of Mean Occupation 

Wage

Notes: The figure plots changes in employment shares by 1980 occupational wage 

percentile rank using a locally weighted smoothing regression (bandwidth 0.8 with 100 

observations), where wage percentiles are measured as the employment-weighted percentile 

rank of an occupation’s mean log wage in the Census IPUMS 1980 5 percent extract. 

Employment in each occupation is calculated using workers’ hours of annual labor supply 

times the Census sampling weights. Consistent occupation codes are from Autor and Dorn 

(2013). The “observed” line depicts the actually observed changes in employment shares, 

the dashed “comparison” line shows the changes when STEM employment is held constant 

at the 1980 STEM employment level. Data Source: Authors calculations from U.S.Census 

PUMS and American Community Survey (ACS) data.
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Fig. 4. 
Changes in Mean Wages by Occupational Wage Percentile among Full-Time, Full-Year 

(FTFY) Workers, 1980–2019

Notes: The figure plots changes in mean log real weekly wages between 1980 and 2019, by 

1980 occupational wage percentile rank using a locally weighted smoothing regression 

(bandwidth 0.8 with 100 observations), where wage percentiles are measured as the 

employment-weighted percentile rank of an occupation’s mean log wage in the Census 

IPUMS 1980 5 percent extract. Weekly wages are calculated as annual earnings divided by 

weeks worked. The dashed “comparison” line shows the change in log real wages had 

STEM occupations’ wages not grown between 1980 and 2019. Data Source: Authors 

calculations from U.S. Census PUMS and American Community Survey (ACS) data.
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Table 1b.

Descriptive Statistics by Working in STEM Occupations in 1991.

Not working in STEM Working in STEM Sig.

Highest math course

 Below algebra 1 0.29 0.10 ***

 Algebra 1 0.21 0.11 ***

 Geometry 0.15 0.12 *

 Algebra 2 0.23 0.31 ***

 Advanced math/Calculus 0.13 0.36 ***

Highest science course

 Less than biology 0.19 0.06 ***

 Biology 0.48 0.26 ***

 Chemistry 0.16 0.21 ***

 Physics 0.09 0.29 ***

 Advanced science 0.09 0.18 ***

Foreign language course

 0 0.54 0.31 ***

 1 0.17 0.16 N.S.

 2 0.16 0.29 ***

 3 or more 0.13 0.23 ***

 Math test score − 0.00 0.54 ***

(0.88) (0.93)

Locus of control − 0.02 0.34 ***

(0.94) (0.78)

Math credits 2.97 3.57 ***

(1.21) (1.20)

Science credits 2.08 2.91 ***

(1.07) (1.22)

Male 0.50 0.47 N.S.

Age 27.34 27.22 ***

(0.59) (0.52) ***

Number of siblings 2.93 2.68 ***

(1.76) (1.67)

Race

 White 0.73 0.80 ***

 Hispanic 0.13 0.07 ***

 Native American 0.01 0.00 ***

 Asian 0.01 0.02 ***

 Black 0.11 0.10 N.S.

 Other race 0.01 0.01 N.S.

Parental education

 Below high school 0.12 0.08 ***
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Not working in STEM Working in STEM Sig.

 High school graduate 0.34 0.27 ***

 Some college 0.27 0.28 N.S.

 College graduate or above 0.22 0.34 ***

 Missing 0.05 0.03 N.S.

Education attainment in 1992

 Below high school 0.05 0.01 ***

 High school graduate 0.52 0.20 ***

 Certificate 0.12 0.09 *

 Associates 0.08 0.16 ***

 Bachelor 0.19 0.42 ***

 Master 0.03 0.08 ***

 PhD/Professional 0.01 0.04 ***

 Missing 0.00 0.00 *

N 9,530 1,190

Data Source: Author calculations from U.S. Department of Education, National Center for Education Statistics, The High School &Beyond 
Midlife Follow-Up Study, Sophomore Cohort.

*
p<.05

**
p<.01

***
p<.001 (two-tailed tests).
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Table 2

OLS Regression Estimates of Employment in 2013.

Highest math course

(1) (2)

Highest math course

 Algebra 1 0.078*** 0.072**

(0.022) (0.022)

 Geometry 0.090*** 0.079***

(0.023) (0.023)

 Algebra 2 0.087*** 0.072**

(0.023) (0.023)

 Adv math/Calculus 0.096*** 0.077**

(0.025) (0.025)

Highest science course

 Biology 0.010 0.004

(0.021) (0.021)

 Chemistry 0.036 0.024

(0.026) (0.026)

 Physics 0.051 0.038

(0.029) (0.029)

 Advanced science 0.051 0.038

(0.030) (0.030)

Math test score 0.005 0.001

(0.008) (0.008)

Locus of control 0.014 0.011

(0.007) (0.007)

Background Yes Yes

1992 education No Yes

R2 0.050 0.059

N 7,810 7,810

Data Source: Author calculations from U.S. Department of Education, National Center for Education Statistics, The High School &Beyond 
Midlife Follow-Up Study, Sophomore Cohort.

*
p<.05

**
p<.01

***
p<.001 (two-tailed tests).

Note: Reduced model includes the numbers of mathematics credits, science credits, and foreign language credits. Background characteristics 
include race/ethnicity, gender, age, parental education, and number of siblings. 1992 education is the respondents’ educational attainment (less than 
high school degree, high school graduate, postsecondary certificate, associate’s degree, bachelor’s degree, master’s degree, advanced or 
professional degree) by 1992.
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Table 6

OLS Regression Estimates of Occupational Transition between 1991 and 2013.

Move from non-STEM to STEM Move from STEM to non-STEM Staying in STEM

Highest math course

 Algebra 1 0.020 − 0.002 0.014

(0.014) (0.009) (0.008)

 Geometry 0.014 0.005 0.021

(0.015) (0.013) (0.011)

 Algebra 2 0.040* 0.017 0.022

(0.016) (0.015) (0.013)

 Adv math/Calculus 0.061** 0.031 0.072***

(0.021) (0.017) (0.017)

Highest science course

 Biology 0.011 0.006 − 0.017*

(0.013) (0.010) (0.008)

 Chemistry 0.007 0.012 − 0.010

(0.018) (0.013) (0.014)

 Physics 0.037 0.007 0.067**

(0.022) (0.015) (0.021)

 Advanced science 0.041 0.029 0.028

(0.023) (0.016) (0.018)

Math test score − 0.001 0.009 − 0.004

(0.006) (0.005) (0.006)

Locus of control 0.002 0.005 0.005

(0.005) (0.003) (0.004)

Background Yes Yes Yes

1992 education Yes Yes Yes

R2 0.015 0.025 0.100

N 6,520 6,520 6,520

Data Source: Author calculations from U.S. Department of Education, National Center for Education Statistics, The High School &Beyond 
Midlife Follow-Up Study, Sophomore Cohort.

*
p<.05

**
p<.01

***
p<.001 (two-tailed tests).

Note: Reduced model includes the numbers of mathematics credits, science credits, and foreign language credits. Background characteristics 
include race/ethnicity, gender, age, parental education, and number of siblings. 1992 education is the respondents’ educational attainment (less than 
high school degree, high school graduate, postsecondary certificate, associate’s degree, bachelor’s degree, master’s degree, advanced or 
professional degree) by 1992.
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