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Abstract

The epidemic of opioid use disorder (OUD) directly affects millions of women of child-bearing 

age. Unfortunately, parenting behaviors – among the most important processes for human survival 

– are vulnerable to the effects of OUD. The standard of care for pregnant women with OUD is 

opioid maintenance therapy (OMT), of which the primary objective is to mitigate addiction-related 

stress. The aim of this review is to synthesize current information specific to pregnancy and 

parenting that may be affected by OUD. We first summarize a model of the parental brain 

supported by animal research and human neuroimaging. We then review animal models of 

exogenous opioid effects on parental brain and behavior. We also present preliminary data for a 

unifying hypothesis that may link different effects of exogenous opioids on parenting across 

species and in the context of OMT. Finally, we discuss future directions that may inform research 

and clinical decision making for peripartum women with OUD.
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1. Introduction to the parental brain

It has been established in animal (Numan and Young, 2016) and human (Swain and Ho, 

2017) brain research that parenting involves an evolutionarily conserved Maternal 
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Behavior Neurocircuit (MBN) under neuroendocrine control and opioid influence (Numan 

and Young, 2016; Brunton et al., 2008) (see Fig. 1).

1.1. Parental brain in health

Healthy parenting is governed by the MBN with two reciprocally modulating subsystems 

that either activate maternal caregiving behaviors solicited by the offspring (care 
processing) or defensive and aggressive behaviors when the mother or offspring is 

threatened (defense processing). The former “care” subsystem consists of the medial 

preoptic area (mPOA) in hypothalamus (HYP), ventral tegmental area (VTA), nucleus 

accumbens (NAc) and ventral pallidum (VP), which activate sensitive maternal care 

behaviors across species (Lonstein et al., 2015). Examples of maternal care processing 
behaviors for rats include nursing, licking, grooming and characteristic vocalizations (Bayerl 

and Bosch, 2019). Among humans, sensitive parenting includes attuned interactions with 

appropriate tone of voice and resourcefulness in dealing with infant negative states in order 

to sustain infant life and optimize development (Swain and Ho, 2017; Bornstein et al., 

2017). In the latter defense processing subsystem, which includes the periaqueductal gray 

(PAG), regulation of different opioid receptors in rodents can activate maternal “defense” or 

aggressive behaviors, such as hostility towards intruders or predatory behaviors in rats 

(Klein et al., 2014). The PAG is less-well studied in humans (preliminary data presented 

below in Section 4.3). These opposing care and defense behaviors must be reciprocally 

modulated to regulate sensitive maternal behavior according to contextual demands. The 

brain orchestrates these behaviors with the amygdala (AMY), insular cortex (IC), and 

orbitofrontal cortex (OFC) (Stolzenberg and Numan, 2011) and neuromodulators such as 

oxytocin and cortisol (Klampfl and Bosch, 2019).

Indeed, the healthy maternal brain undergoes tremendous neuroendocrinological adaptations 

in response to peripartum circumstances, including rising levels of progesterone, estrogens 

and modulation of oxytocin, endogenous opioids and stress-regulation hormones such as 

cortisol (Brunton et al., 2008; Feldman and Bakermans-Kranenburg, 2017; Swain et al., 

2011; Brunton and Russell, 2008). For example, for virgin rodents, pups usually constitute 

an aversive stimulus that does not immediately induce care-giving behaviors. This aversion, 

particularly to the neonate’s odor, is mediated by olfactory bulb projections to the amygdala 

and from there to the anterior hypothalamus and PAG. In fact, maternal care-giving 

behaviors are not commonly present until late-pregnancy hormones induce changes in the 

MBN, including downregulation of pup-aversion projections to the amygdala and 

upregulating reward processing of pup cues. Rising levels and receptor densities of 

estrogens, progesterone, prolactin and oxytocin activate the hypothalamic mPOA and the 

adjacent ventral bed nucleus of stria terminalis (vBNST), overriding aversive reactions to 

pups and their odor that is present during early gestation. With this activation, glutamatergic 

projection from the mPOA and vBNST start to stimulate dopaminergic neurons in the VTA, 

which in turn increases release of dopamine in the NAc such that pup-specific stimuli (their 

odor, suckling behavior and touch) become rewarding and thus promote maternal care 

behaviors during the postpartum.
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Among healthy human mothers, differential activation of the MBN has been shown to be a 

function of maternal sensitivity - the specific ability to perceive and respond to their infant’s 

behavioral signals (Elmadih et al., 2016). In this study, brain activation to infant cues was 

studied in 15 mothers with high sensitivity (HSMs) and 15 mothers with low sensitivity 

(LSMs). Mothers were selectively recruited from a pool based on mother–infant play 

interaction at 4–6 months postpartum. Brain responses to viewing silent videos of their 

“own” versus an “unknown” infant in 3 affective states (neutral, happy, and sad) were 

measured at 7–9 months postpartum. The participants' plasma oxytocin was measured 

immediately following free-play interactions with their infant. HSMs versus LSMs showed 

significantly greater brain activation in right superior temporal gyrus (STG) in response to 

own versus unknown neutral infant and to own-happy vs. own-neutral. Activation in the 

right STG in the latter contrast was negatively correlated with post-free-play oxytocin 

responses in HSMs mothers. By way of interpretation, the enhanced activation of STG for 

HSM mothers may indicate increased emotion regulation processing for HSM mothers – in 

accord with another report of STG activation to videos of own versus unknown infants 

among healthy mothers (Wan et al., 2014) and among synchronous vs. intrusive mothers 

(Atzil et al., 2011). Indeed, the STG has been widely implicated in the regulation of 

emotion, particularly facial emotion processing, and in empathizing with others “Theory of 

Mind” (Rizzolatti and Fabbri-Destro, 2008) – both facilities key for a mother to 

differentially express sensitivity to her infant’s needs over other demands on her resources 

(Strathearn et al., 2012). Other studies have also reported greater activation of STG in 

mothers who delivered vaginally compared with Caesarean section (Swain et al., 2008), for 

breastfeeding compared with bottle feeding mothers (Kim et al., 2011), and finally in accord 

with STG role in the intention to move and provide maternal care (Bornstein et al., 2017; 

Zebardast et al., 2013). The inversed correlation of post-free-play oxytocin and brain 

responses in HSMs mothers hints at the complex role for oxytocin – which may increase 

parent-child prosocial interaction under normal conditions, yet may also interfere through 

anxiety or erroneous recollection of maternal closeness and care during childhood with early 

life adversity (Szymanska et al., 2017; Bakermans-Kranenburg and Van, 2013). In sum, 

these data suggest that there are variations in MBN activation that correlate with hormone 

levels and different parenting phenotypes among healthy populations according to stress 

(Kim et al., 2016; Mayes et al., 2005; Leckman et al., 2004). We proceed with consideration 

of early life adversity and frank psychopathology in the parental brain.

1.2. Parental brain in psychopathology

Unsurprisingly, activation of the MBN in humans is highly sensitive to severe environmental 

stress, psychopathology, and early life adversity. For instance, the chronic stress of 

childhood poverty, well established to interfere with normal brain physiology for emotion 

response and executive function (Duval et al., 2017; Evans et al., 2016; Javanbakht et al., 

2016; Javanbakht et al., 2015; Liberzon et al., 2015; Sripada et al., 2014; Sripada et al., 

2014), has also been shown to impact parental MBN function – interestingly, in a sex-

specific way (Kim et al., 2015). Among females' activations to salient own infant cry (Swain 

et al., 2004) with childhood poverty was associated with increased neural in the posterior 

insula, striatum, calcarine sulcus, hippocampus and fusiform gyrus, but with decreased 

neural responses to own infant cry in the same regions in males. Furthermore, neural 
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activation in these regions was associated with higher levels of perceived annoyance elicited 

by infant cries and reduced motivation to approach crying infants regardless of the gender of 

the participants (Kim et al., 2015). These results are surprising given that the striatum is 

associated positively with motivation and reward (Lee and Reeve, 2017). It may be that 

chronic poverty has adverse effects yet also induces compensatory changes – essentially 

reprogramming some circuits – especially for these non-parent participants without the 

experience of becoming a parent. Indeed, in a related study on mothers (Kim et al., 2016), 

lower income was associated with reduced responses to infant cry only in cortical brain 

circuits, including those that evaluate emotional valence (medial prefrontal gyrus), regulate 

affect (middle prefrontal gyrus) and process sensory information (superior temporal gyrus). 

Furthermore, lower positive perceptions of parenting were associated with reductions in 

infant-cry response in the right middle frontal gyrus and superior temporal gyrus. Perhaps 

some poverty effects are themselves a function of the adaptation to becoming a parent.

Maternal depression is a serious mental disorder that affects approximately 12–20% of new 

mothers. From a recent review (Pawluski et al., 2017), brain activation patterns that are 

affected by depression and anxiety include cortical (dmPFC, dlPFC, IFG, SFG, OFC, STG), 

ACC, PCC) and subcortical regions (striatum, thalamus, hippocampus, SN, VTA, PAG) – 

highlighting the amygdala which is differentially active according to critically important 

experimental specifics. For example, it has been shown that depressed mother’s amygdala 

may be hypo-responsive to certain standard cognitive neuroimaging challenges (Moses-

Kolko et al., 2014) and that mothers with chronic unresolved attachment trauma exhibit 

dampened amygdala responses to viewing their own (but not unknown) infant’s crying faces 

(Kim et al., 2014). Amygdala responses have also been positively correlated with maternal 

attribution of intentionality to their infant in response to own versus other infant cry 

(Hipwell et al., 2015). On the other hand, depressed compared to healthy mothers displayed 

greater reactivity of the right amygdala using a child face empathy task (Lenzi et al., 2016) – 

perhaps indicating emotional dysregulation in this task. Amygdala reactivity was also 

increased in a self-focused baby-cry task designed to provoke brain responses in participants 

with a history of adverse early life experiences sometimes described as a malevolent 

background “shark music” (Ho and Swain, 2017). This study demonstrated depression 

effects on amygdala connectivity, which also seem to change with anxiety (Guo et al., 2018). 

Variance in the properties of infant stimuli and context of presentation, along with research 

using hormone challenges will be helpful to clarify the role of the amygdala in depression – 

especially given that often-used depression measures may not perfectly capture real-life 

parental dysfunction. For example, intranasal oxytocin effects on amygdala response to 

infant crying were moderated by attachment security of the mothers, with oxytocin 

decreasing emotional and amygdala reactivity only in mothers with insecure attachment 

representations (Riem et al., 2016). Thus, parents with insecure attachment – perhaps 

different from other attachment classifications, may have different brain mechanisms that 

render them amenable to oxytocin interventions. Such future interventions may apply to 

many stress-related syndromes. However, more work using both animal and human models 

is needed to confirm findings over the complete range of hormone physiology and 

neuroanatomy that relate to sensitive parenting behaviors and mentalizing for applications to 

better understand and safely treat parental psychopathology.
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2. Opioids use disorder and treatment during pregnancy

Opioid use disorder (OUD) has reached epidemic proportions in the United States recently 

and opioid dependence among pregnant women has more than doubled in the last 10 years. 

Approximately one-third of all women of reproductive age have filled a prescription for an 

opioid medication in the previous year, suggesting that affected women may be on opioid 

medication when they conceive. Indeed, the opioid epidemic in the U.S. affects millions of 

women – with about 20% of all pregnant women prescribed opioids and 2.5% chronically 

using (Krans and Patrick, 2016), and the number of pregnant women with OUD more than 

quadrupled from 1999 to 2014 (from 1.5 per 1000 delivery hospitalizations to 6.5) (Haight et 

al., 2018). In addition, many pregnant women with OUD are among those estimated to also 

use other drugs, licit drugs that are known to be harmful during pregnancy, alcohol and 

tobacco (Substance Abuse and Mental Health Services Administration, 2014; Hayes and 

Brown, 2012; Forray, 2016). Finally, neonatal abstinence syndrome (NAS), the signs and 

symptoms from the cessation of prenatal exposure (via placental transfer) to various 

substances – especially if untreated – can be associated with infant morbidity and unclear 

long-term consequences of opioid exposure – currently a subject of ongoing study (Coyle et 

al., 2018; Johnson and Jones, 2018; Kaltenbach et al., 2018).

Since the publication of the NIDA-funded Maternal Opioid Treatment: Human Experimental 

Research (MOTHER) study in 2010 (Jones et al., 2010) the use of Buprenorphine Treatment 

(BT) as a way of alleviating withdrawal symptoms has become the gold standard opioid 

maintenance therapy (OMT) (Jones et al., 2017; Nanda et al., 2015; Krans et al., 2016; 

Zedler et al., 2016) – partly due to reports of milder and more treatable withdrawal and NAS 

(Jones et al., 2010; Zedler et al., 2016; Cleary et al., 2011; Unger et al., 2011; Fischer et al., 

2006; Kayemba-Kay's and Laclyde, 2003; Schindler et al., 2003; Jones et al., 2005; Laslo et 

al., 2017). For minimizing fetal stress, there are clear advantages to BT compared with 

detoxification (Whitten, 2012; Kakko et al., 2008), and for BT compared with methadone 

treatment (Johnson and Martin, 2017; Meyer et al., 2015; Gaalema et al., 2012; Hall et al., 

2016; Mucke et al., 2017; Lemon et al., 2017; Brogly et al., 2014) although findings are 

controversial (Brogly et al., 2014; Lund et al., 2012; Jones et al., 2012) and BT is not 

without risks. For example, recent findings maintain that BT maternal buprenorphine dose is 

indeed associated with NAS symptoms (Velez et al., 2018) as well as lower birth weight and 

length over and above substance use severity (Jansson et al., 2017). Findings from our own 

research indicated that 89% of infants prenatally exposed to buprenorphine were diagnosed 

with NAS and 36% were admitted to the NICU.

Despite increased levels of stress due to parenthood-related psychosocial, physiological and 

economical demands (Barclay et al., 1997), parents typically find themselves highly 

motivated to take care of their offspring’s needs and find the interactions with their infants to 

be rewarding (Mercer, 1985; Goodman, 2002). Notably, the adaptation of brain stress 

systems is integral to such parenting behaviors. While the first few months postpartum are 

especially stressful for mothers affected by OUD, very little is known about the effects of 

BT on postpartum women with OUD. BT does help to break the repetitive cycle of quit 

attempts and hence, to some extent, desensitize core stress systems. Nevertheless, at least 

one in three mothers receiving BT still suffer relapse to illicit opioids and other harmful 
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substances (Jones et al., 2012). Further, aspects of buprenorphine exposure, including dosing 

parameters, withdrawal stress pertaining to induction as well as pre- and post-natal effects 

(Jones et al., 2008) are also not as well understood compared with methadone treatment 

(Kaltenbach et al., 2012). In addition, there are theoretical concerns regarding the unique 

pharmacokinetic and dynamic properties of buprenorphine that may predispose higher 

occurrence of NAS (Kennedy-Hendricks et al., 2016) due to elevated dosing needed to offset 

higher clearance rates (Kacinko et al., 2009) and accelerated maternal metabolism during 

pregnancy (Welsh and Valadez-Meltzer, 2005). Although BT should reduce the risks of 

exposing fetus to repeated cycles of acute withdrawal (World Health Organization, 2014), a 

systematic risk/benefit assessment of BT is still required in order to accurately inform 

optimal parameters of use in treating pregnant women with OUD. To date, a central 

challenge pertaining to risk/benefit assessment has arisen from the fact that buprenorphine 

maintenance exposure has been difficult to quantify, because variables commonly affecting 

intra-uterine stability and postnatal environment have been difficult to account for. These 

include, but are not limited to, severity and pattern of maternal licit, illicit and prescription 

drug use, as well as maternal socio-economic and environmental factors. These problems 

have made it challenging to fully determine the extent to which neurodevelopmental risk 

from greater NAS severity is offset by the more stable intrauterine environment.

There is also a dearth of knowledge about the optimal timing for switching to a maintenance 

opioid during pregnancy and whether the switch or opioid withdrawal during certain 

sensitive periods may have a negative impact for the mother and/or her offspring. Finally, the 

prevalence of relapse with BT may be even higher during the first few months postpartum 

when additional parenting stresses of childcare are salient, such as having an infant go 

through NAS. As such, it is essential to better understand how BT may mediate stress 

system adaptations and motivation for opioid use during early postpartum periods for 

mothers with OUD.

In the current paper we propose that the MBN provides an effective mechanistic model 

which is applicable to early postpartum parental adaptation and accounts for the common 

neural circuitry underlying maternal behavior, stress system dysregulation and relapse to 

illicit opioids in BT mothers. Given that the motivation for opioid use and relapse have been 

linked to dysregulated stress system neurocircuits (Koob and Volkow, 2016), which are also 

integral to parenting behavior, the utility of this model may help to identify overlapping 

mechanisms relating to the impact of BT upon parenting. The importance of addressing this 

knowledge gap is magnified by risks to the infants of BT mothers who relapse to illicit drug 

use.

Addressing this gap is challenging because of the common co-morbidities of depression 

(Conway et al., 2006; Davis et al., 2017) and polysubstance use (Substance Abuse and 

Mental Health Services Administration, 2009) that may mask the effects of BT in OUD 

discussed above. Postpartum depression has a prevalence of 15–20% in general population 

(Gavin et al., 2005; Gaynes et al., 2005; O'Hara and McCabe, 2013), adversely affecting 

infants – even for subthreshold symptoms (Murray and Cooper, 1997; Righetti-Veltema et 

al., 2003; McLearn et al., 2006) – with long-term adverse effects on emotion and behavior 

regulation (Hay et al., 2008; Grace et al., 2003; Halligan et al., 2007; Goodman et al., 2011). 
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Furthermore, maternal substance use places their infants at fourfold increased risk for abuse 

or neglect, contributing to as much as 80% of child maltreatment cases (Barth, 2009) and 

60% of infant out-of-home placements (Child Welfare Information Gateway, 2014). Indeed, 

even during intermittent periods of sobriety, mothers with addiction are observed to be less 

keenly attentive and contingently responsive, while more intrusive and hostile toward their 

infants (Strathearn and Mayes, 2010) and may find infant cues to be less gratifying and more 

stressful, as compared to non-addicted mothers (Rutherford et al., 2011; Rutherford and 

Mayes, 2017; Kim et al., 2017). Additionally, maternal behaviors can be adversely 

influenced by infantile NAS that can still occur with BT (Jones and Fielder, 2015).

Relapse in BT mothers to illicit drug use is another significant concern. For women through 

pregnancy and the postpartum with OUD, co-occurring anxiety, mood and other substance 

use disorders, guilt, poor nutrition, impaired health, homelessness, violence, confusion 

regarding available medical options, and a lack of social support are more prevalent 

(Johnson and Jones, 2018; Young and Martin, 2012; McCarthy et al., 2017; Bishop et al., 

2017; Jansson et al., 1996). From a neuroendocrine perspective, such chronic stressors 

alongside the cyclical use of short-term opioids and other drugs, reciprocally sensitize 

neurohormonal stress systems (Rutherford et al., 2011; Landi et al., 2011). This, in turn, may 

lead to further use of opioids and other drugs, worsening dysphoria, negative affect, anxiety 

and the relapse cycle (Koob, 2017a, 2017b; Hyman et al., 2007). Research on non-pregnant 

substance abusers has shown that stress system sensitivity is a key predictor of stress 

response dysregulation, elevated anxiety and depressive symptomatology as well as craving 

and relapse to various drugs of abuse during attempts at abstinence (Fox et al., 2008; Fox et 

al., 2007; Sinha et al., 2011; Sinha et al., 2006). Given a stress-sensitized and negatively 

reinforcing environment, the additional parenting stress (Suchman and Luthar, 2001) and the 

frequently rapid metabolism of opioids that characterize pregnancy (McCarthy et al., 2017), 

it is not surprising that OUD in peripartum women is characterized by numerous failed quit 

attempts (Guille et al., 2017). Indeed, In the MOTHER Study (Maternal Opioid Treatment: 

Human Experimental Research) (Jones et al., 2012), 33% of BT mothers relapsed to illicit 

opioids (Jones et al., 2012). This is likely driven by stress system pathophysiology and 

repeated cycles of opioid intoxication and acute withdrawal.

BT improves both maternal and fetal outcomes by limiting psychobiological changes 

associated with withdrawal (Klaman et al., 2017). The first few months postpartum for BT 

mothers are nevertheless fraught with depressive stress symptoms commonly comorbid with 

drug dependency (Oei et al., 2009). Indeed, pilot data from our study site suggest ~50% 

prevalence of significant depression in BT mothers (EPDS > 10). Finally, the children of 

affected mothers are vulnerable to long-term effects of early maternal depressive stress 

(Murray and Cooper, 1997; Righetti-Veltema et al., 2003; McLearn et al., 2006; Hay et al., 

2008; Grace et al., 2003; Halligan et al., 2007; Goodman et al., 2011). Thus, early 

postpartum comorbid maternal opioid use and stress disorders can exert transgenerational 

consequences – likely through maladaptive maternal parenting behaviors (Stanley et al., 

2004; Feldman et al., 2009; Field et al., 1988; Murray and Cooper, 1997; Weissman et al., 

2004). For mothers with OUD, adaptative parenting behaviors depend on their perceived 

parenting stress (Suchman and Luthar, 2001), which depends on how well they can 

emotional attune to the child’s psychological needs (Borelli et al., 2012).
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3. Animal research on the parental brain and opioids

3.1. Effects of opioids on the maternal brain and behavior

It is well known that gestational opioid exposure results in alterations in opioid receptor 

binding and functionality in dams during pregnancy and the early postpartum (Hou et al., 

2004; Darmani et al., 1992), however only a few comparative studies have investigated the 

effects of opioids on a parental brain compared to a virgin or non-postpartum brain. Though 

changes in pharmacokinetics and thus plasma and tissue distribution of opioids are well 

established during pregnancy (Shah et al., 1976), the effects of these changes on the 

maternal brain are not well documented. In one study, pregnant mice had 96% lower brain-to 

plasma ratios of methadone after a single dose compared to non-pregnant mice, but levels of 

buprenorphine in brain or plasma were no different between pregnant and non-pregnant 

animals (Coles et al., 2009). To further complicate our understanding of the effects of 

opioids on the maternal brain, many of the early toxicology studies were performed in male 

animals only and there is accumulating evidence of substantial sex difference in opioid 

pharmacology (Rasakham and Liu-Chen, 2011; Dahan et al., 2008).

Additionally, opioids are well established to be involved in the healthy regulation of 

maternal behavior and to play an essential role in mediating some of the processes involved 

in the initiation of maternal care through the activation of the MBN (Brunton and Russell, 

2008; Bridges and Grimm, 1982; Felicio et al., 1991; Grimm and Bridges, 1983; Moura et 

al., 2010). Endorphins exhibit an inhibitory effect on oxytocin and prolactin-releasing 

neurons in preparation for parturition, that allows an accumulation and then surge of these 

hormones during birth. This withdrawal of the inhibitory control of the opioid system is 

believed to be crucial for facilitating rapid initiation of maternal behaviors at birth (Byrnes et 

al., 2000). Further; this system is also involved in opioid-regulated switching from maternal 

to predatory behaviors for lactating rats (Klein et al., 2014). This regulation involves 

activation of different subtypes of opioid receptors in the PAG, as evidenced by the elegant 

demonstration that μ opioid receptor activation inhibits maternal behaviors, while blocking κ 
receptor increases predatory and hunting behaviors (Klein et al., 2014). Fast switching 

between caring and predation behaviors are essential for dams to increase the chances of 

survival for her pups and herself. The complex interaction of multiple opioid receptor 

systems in the regulation of these maternal behaviors suggests that endogenous opioids play 

crucial roles in this essential behavioral selection process.

Studies using the opioid antagonist naloxone have confirmed the importance of the opioid 

system in the activation of the maternal networks, as treatment with naloxone increases 

prolactin as well as oxytocin levels in the maternal brain (Brunton and Russell, 2008; 

Brunton, 2018; Brunton et al., 2005). Further, naloxone treatment after the birth of the first 

pup can increase oxytocin levels as well as adrenocorticotropic hormone and corticosterone, 

demonstrating that endogenous opioids usually inhibit the release of these hormones during 

parturition (Wigger et al., 1999). However, less is known as to whether exposure to opioid 

agonists (such as morphine, heroin or methadone), or partial agonists (such as 

buprenorphine) during gestation and throughout parturition can alter normal hormonal 

regulations during birth. Many animal models of gestational opioid exposure have focused 
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on the outcome of the offspring, and not on the effects on the maternal brain or processes 

during labor (Byrnes and Vassoler, 2018). In line with this, many animal models cross-

fostered pups after birth and have thus not monitored the initiation of maternal care 

behaviors. However, opioid-induced deficits in maternal behaviors have been documented in 

animal models (Bridges and Grimm, 1982; Slamberova et al., 2001) and there is evidence 

that the decrease in maternal care behaviors due to morphine and other μ-opioid receptor 

agonists is mediated through the activating of μ-opioid receptors in the mPOA, PAG and 

other brain areas (Mann et al., 1991; Rubin and Bridges, 1984; Stafisso-Sandoz et al., 1998). 

Additionally, more recent findings implicate the activation of select opioid receptor subtypes 

within the PAG in regulating select maternal behavior. Interestingly, μ-opioid receptor 

agonists infused into the PAG disrupts the balance of maternal care and aggression, while as 

mentioned above, κ-opioid receptor antagonism can shift maternal behaviors from caring to 

predatory behaviors in rodents (Klein et al., 2014). In accord with our central hypothesis, 

these findings are particularly relevant to the potential effects of buprenorphine given its 

antagonistic effects on κ receptors. Accordingly, preliminary data from the Brummelte lab 

(Wallin et al., 2018) has shown that low (0.3 mg/kg) but especially high (1 mg/kg) doses of 

buprenorphine given prior to and throughout gestation and continued in the postpartum in rat 

dams significantly impairs maternal care-giving behaviors. In fact, high dose buprenorphine 

resulted in complete neglect of the offspring in some dams. This supports the idea that 

exogenous opioids can interfere with the crucial role of endorphins in neural adaptation in 

the transition to motherhood. Opioid levels right at the time of parturition or during the very 

early postpartum period may be particularly important for determining the effect on maternal 

behaviors, given a report on buprenorphine exposure from 7 to 21 days of pregnancy (Hung 

et al., 2013). In this study, there were no significant neurobehavioral or physical (body/brain 

mass) alterations in dams that received buprenorphine (0.3 or 1 mg/kg) but there were 

depression-like neurobehaviors for pups at 1 mg/kg. It appears that these behaviors are 

regulated by protein phosphorylation and dephosphorylation mechanisms that are emerging 

in the regulation of animal neurotransmitter release that have consistently been shown to 

play roles in depression and addiction (Swain et al., 1991; Wu et al., 2017; Liu et al., 2016; 

Xu et al., 2006).

Endogenous opioids in offspring are released during social contact and low levels have been 

shown to induce behaviors to seek out contact from a caregiver (Nelson and Panksepp, 

1998). Indeed, it has long been known, that proper attachment and maternal care have a 

tremendous impact on infant development and the adult phenotype (Denenberg, 1999; 

Denenberg and Bell, 1960; Denenberg et al., 1962; Rosenberg et al., 1970; Bayart et al., 

1990; Hennessy et al., 1980; Joffe et al., 1972; Levine, 1967; Levine et al., 1988). However, 

we are far from fully understanding the underlying mechanisms of how responsive and 

sensitive parenting is initiated and how it can affect the offspring in the long-term (Kentner 

et al., 2018). Inhibitory effects of opioids on oxytocin secretion in postpartum females have 

been reported in numerous mammalian species (Tancin et al., 2000; Russell et al., 1991; 

Haldar and Sawyer, 1978; Haldar et al., 1982; Wright et al., 1983), including humans 

(Lindow et al., 1999). Furthermore, the role of endogenous opioids in attenuating the 

prosocial effects of oxytocin has been supported by data from both animals and humans (Dal 

Monte et al., 2017). While buprenorphine and other opioids clearly impinge upon the MBN, 
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the precise nature of these relationships and effects on parenting remain unclear given the 

complex effects of BT and opioids on receptor occupancy, buffering postpartum stress and 

depression, and ultimately breaking the relapse cycle. It is clear though, that maternal 

behaviors are crucial in mediating offspring outcome, suggesting that infants from mothers 

with OUD may be suffering from a ‘double-hit’ of early adversity with gestational drug 

exposure as well as altered maternal care due to maternal opioid use.

3.2. Gestational opioid animal models: Need for better translational value

Although numerous animal studies have investigated the effects of gestational opioid 

exposure on the offspring, there is considerable variation in reported outcomes probably due 

to several factors, including species used, type and dose of drug and time of exposure 

(preconceptional, start during pregnancy, continued through postpartum or not). For 

instance, endogenous opioids and prescription opioids have been associated with normal 

maturational processes and can upregulate brain-derived neurotrophic factor as well as 

oligodendrocyte maturation and myelination through activation of opioid receptors (Zhang 

et al., 2006; Vestal-Laborde et al., 2014). Therefore, it is conceivable that prenatal exposure 

to exogenous opioids may interfere with proper brain development. In fact, recent data 

suggests that early opioid exposure may lead to accelerated brain development that could 

disrupt the complex sequence of synchronized neurochemical events leading to normal 

connectivity in the developing brain (Vestal-Laborde et al., 2014).

It has also been suggested that some of the variability in offspring outcome after gestational 

opioid exposure could be explained by the distinctive role that endogenous opioids play in 

regulating hypothalamic and pituitary outflow during pregnancy and the postpartum period 

(Byrnes and Vassoler, 2018). In other words, the physiological reaction of the mother to the 

drug is a crucial factor in determining the effects on the offspring. Unfortunately, many 

previous animal models, which typically began opioid exposure during pregnancy, failed to 

account for the fact that most women will already be taking opioids by the time of 

conception (either abusing, prescription or maintenance opioids) rather than starting to use 

them during pregnancy. As a woman’s body develops tolerance to a set opioid level and goes 

through withdrawal once that opioid level drops, the effect on the fetus could be very 

different in an ‘established’ user compared to a ‘new’ user. This crucial aspect of drug use 

patterns has previously been mostly ignored in animal studies that commonly start exposure 

after gestational day 7 when the opioid system started to develop in the fetus (Zhu et al., 

1998; Khachaturian et al., 1983). Thus, there is a lack of research on the effects of pre-

conceptional drug use and drug withdrawal, in addition to relapse or switching opioids 

during pregnancy. Importantly, there is also a lack of data concerning the short and long-

term effects of opioids during these critical developmental periods on the dam’s brain, 

behavior and physiology – critical to determine the long-term consequences for the dam and 

her offspring.

Although perinatal exposure to buprenorphine has not been shown to produce severe 

maternal and fetal or neonatal mortality, it was associated with significant perinatal mortality 

and perturbations of pup development in the rat (Robinson and Wallace, 2001). These effects 

included increases in maternal and fetal mortality and morbidity, in addition to the 
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perturbations in the acquisition of several pup developmental milestones, weight gain, 

precipitated withdrawal, and the antinociceptive effect of morphine. Specifically, it was 

shown that 1 and 3 mg/kg/day of buprenorphine suppressed food intake over the first few 

days after minipump implantation on gestational day 7, but then the rats seemed to develop a 

tolerance for that effect. The resulting reduction in maternal weight gain during those first 

days again highlights the importance of considering the timing of exposure since a nutrition 

deficit during pregnancy has long been known to have its own detrimental effects on 

maternal behavior and offspring (Wiener et al., 1976; Connor et al., 2012). Similar concerns 

come from rat research showing that the relative amount of morphine in placental and fetal 

tissue was reduced significantly following continuous administration compared to a single 

administration (DeVane et al., 1999). Taken together, future animal and human research 

must address critical issues of exposure timing and duration in addition to amount, since 

opioids are associated with many adaptive responses and many co-morbidities, such as 

stress, that could contribute to offspring outcome.

4. Research on the parental brain and opioids

4.1. Opioid-mediated regulation of stress during pregnancy

Endogenous opioids are well known to have a robust effect on extended amygdala 

morphology, which contributes to Hypothalamic-Pituitary-Adrenal/Sympathetic-Adrenal-

Medullary (HPA/SAM) axis regulation. Interestingly, chronic opioid use seems to suppress 

HPA axis function in humans (Delitala et al., 1983), but rodents often show activation and 

increased cortisol levels after opioid treatment (Buckingham and Cooper, 1984). This 

paradox produces a challenge for translational studies of opioid effects, especially during 

stressful periods such as pregnancy and the postpartum. Despite this, experimental animal 

studies have been essential in determining how endogenous opioids suppress HPA axis 

function during gestation (Brunton and Russell, 2008). Briefly, increased inhibition of 

noradrenergic terminals in the hypothalamus by endogenous opioids prevents CRH neuron 

activation. In turn, decreased CRH neuron activity results in less CRH release which 

eventually translates into less corticosterone (rodents) or cortisol (humans) released from the 

adrenal glands and thus a reduced stress response to external stressors. This opioid-induced 

down-regulation of the HPA axis is believed to protect the fetus from maternal stress and 

negative effects of elevated glucocorticoid levels. Thus, in addition to regulating emotions 

and reward processes (Benarroch, 2012), opioids play a central role in regulating objective 

and subjective stress that women experience during pregnancy and lactation (Brunton, 

2018). This further highlights the importance of assessing the behavioral effects of long-term 

opioid-related HPA-axis suppression, which may result in response dysregulation of the 

stress response system. This is particularly germane in terms of parenting behavior as 

appropriate response to stress may be key in the face of prenatal maternal stressors including 

fears regarding impending labor and delivery, health and welfare of the fetus, inactivity, 

concerns pertaining to child rearing and elevated levels of anxiety, obsessions and depressive 

symptomatology (Lobel et al., 2008; Lobel et al., 2016; Lobel and Ibrahim, 2018; Mahaffey 

et al., 2018; Alderdice et al., 2012; Feygin et al., 2006). Interestingly, several research 

studies have indicated that pregnancy-specific stress is a more robust indicator of fetal 
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activity and adverse developmental outcome than general stress (Lobel et al., 2008; Dunkel 

Schetter, 2011; Huizink et al., 2004) potentially due to its lack of parenting specificity.

Finally, maternal stress and cortisol levels are associated with brain activation patterns in 

response to emotional stimuli in the mother. For example, dispositional personal distress was 

associated with greater cortisol reactivity to social evaluation stress in mothers, and mother's 

ventral ACC response to positive versus negative child feedback to their parenting decisions 

was inversely related to parenting-related cortisol reactivity (Ho et al., 2014). This suggests 

that opioids and BT may impact the mother-infant dyad and infant development beyond 

gestation, via their effects on external stressors, pregnancy specific stress and HPA-axis 

function.

4.2. Assessing maternal stress in the context of opioid maintenance therapy

The severity of stress as a behavioral teratogen (Dipietro, 2012) is compounded in women 

with addictive disorders, including OUD. For examples, OUD has co-occurring anxiety and 

mood related disorders, guilt, poor nutrition, impaired health, homelessness, violence, 

confusion regarding available medical options, and a lack of social support (McCarthy et al., 

2017; Bishop et al., 2017; Jansson et al., 1996). From a neuroendocrine perspective, such 

chronic stressors alongside the repeated use of short-term opioids reciprocally sensitize 

HPA/SAM system activity. This in turn contributes to further use of opioids and other drugs, 

which further worsens dysphoria, negative affect, anxiety and the “relapse cycle” (Koob, 

2017a, 2017b; Hyman et al., 2007). Indeed, research on non-pregnant substance abusers has 

indicated stress system sensitivity to be a key predictor of stress response dysregulation, 

elevated anxiety and depressive symptomatology as well as craving and relapse to various 

drugs of abuse during early abstinence (Fox et al., 2008; Fox et al., 2007; Sinha et al., 2011, 

2006). Given this sensitized and negatively reinforcing environment, and added to the fact 

that pregnancy is frequently characterized by a rapid metabolism of opioids (McCarthy et 

al., 2017), it is not surprising that OUD during pregnancy is characterized by numerous 

failed quit attempts (Guille et al., 2017) potentially driven by aberrations in stress system 

pathophysiology, exacerbating the repeating cycle of opioid intoxication and acute 

withdrawal.

OMT such as BT may attenuate prenatal maternal stress in several ways. First, extensive 

clinical and preclinical data have indicated that the analgesic effects of buprenorphine 

dampen stress and reduce central levels of cortisol and ACTH in laboratory animals, clinical 

populations and healthy humans (Bershad et al., 2016). In addition, buprenorphine 

demonstrates both anti-depressive and anxiolytic properties in patients with opioid 

dependence (Kosten et al., 1990), treatment-resistant depression disorders (Bodkin et al., 

1995; Kosten, 2016; Karp et al., 2014), and suicidal ideation (Yovell et al., 2016; Norelli et 

al., 2013). Healthy volunteers also show attenuation of cortisol and social stress with low 

buprenorphine which attenuates anxiety, rejection stress and response to fearful faces 

(Bershad et al., 2016; Bershad et al., 2015). Second, as BT provides a constant level of 

maternal μ receptor occupancy (McCarthy et al., 2017), it may effectively “break” cyclic 

withdrawal and relapse-related behaviors, decreasing bio-psychological aspects of the 

allostatic withdrawal state including anxiety, negative affect and sensitized HPA/SAM 
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function – all shown to underpin relapse factors as well as negatively impact health 

outcomes in the mother-child dyad (Lobel et al., 2008, 2016; Lobel and Ibrahim, 2018; 

LeWinn et al., 2009; Entringer et al., 2009).

4.3. Toward a unifying hypothesis of opioids as treatment with side effects

In humans, MBN regions respond to ethologically pertinent own-baby cry in correlation 

with adaptive caregiving thoughts and behaviors during early postpartum (Swain et al., 

2007; Barrett and Fleming, 2011; Swain, 2011). Many of these are same brain regions 

known to be regulated by endogenous opioids and dysregulated by stress and OUD. For 

example, in animal models, addiction affects reward processing in the OFC, VTA, and 

nucleus NAc (Rutherford et al., 2011). Furthermore, human neuroimaging has shown that 

amygdala, insula, ACC, and OFC are dysregulated in stress-related disorders like depression 

(Groenewold et al., 2012).

We previously presented preliminary data on the effects of BT on the response of human 

maternal brain systems to own baby-cry (Swain and Ho, 2017), which we update here: We 

studied 46 mothers in early postpartum who completed structural and functional magnetic 

resonance imaging (MRI) scans at two time-points: 1-month postpartum (T1) and 4-month 

postpartum (T2). The participants reported depressive symptoms using Beck Depression 

Inventory (BDI) (Beck et al., 1997) and parenting stress using Parenting Stress Index (PSI) 

(Abidin, 1995) T1 & T2. According to the BDI at T1 and prescription opioid usage, we 

divided the participants into three groups, including a group of 7 mothers who were on 

prescription buprenorphine treatment (BT) from the first trimester until the time of study (4–

20 mg), a group of 7 non-OUD mothers who had elevated depressive symptoms similar to 

BT mothers (Depressed Controls, DC), and a group of 32 non-OUD mothers who were not 

depressed nor receiving BT (Healthy Controls, HC). At T1 and T2, the participants 

underwent functional magnetic resonance imaging (fMRI) scans during a baby-cry task, 

wherein they listened to own and other's baby cry and respective control sounds in a block 

design (30 s per block, 5 blocks per condition), and an 8-minute resting state task. The fMRI 

images were processed and analyzed in SPM 8 to examine the differential neural responses 

to Own vs. Other’s Baby Cry, functional connectivity during own vs. other baby cry and 

resting state functional connectivity (rsFC).

This preliminary data on mothers during the early postpartum shows that adaptation of 

maternal brain physiology and behaviors are influenced by opioid exposure. First, BT 

mothers with OUD showed greater PAG and hypothalamus responses related to Own vs. 

Other’s Baby-Cry as compared to healthy mothers. Second, Own vs. Other’s Baby-Cry 

responses in the hypothalamus were associated with greater parenting stress (PSI). Lastly, 

both differential functional connectivity in Own vs. Other’s Baby-Cry and rsFC between the 

PAG and hypothalamus were associated with PSI, suggesting a role of PAG in driving 

hypothalamus as a function of parenting stress. Although preliminary, these findings suggest 

that neuroimaging may reveal both mechanisms for therapeutic benefit from BT, as well as 

potential risks of parenting stress according to dysregulation in the MBN.

Based on our preliminary data and MBN model, we propose a unifying hypothesis to 

explain how BT may be helpful in the treatment of OUD, although also posing side-effect 
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risks to maternal behavior, consistent with preclinical research. In OUD, BT increases 

activity in both care (hypothalamus) and defense (PAG) subsystems of MBN – both 

potentially supporting maternal care behaviors. However, we also reveal potential 

dysregulation of the normal reciprocal inhibition between these subsystems by exogenous 

opioids. The latter effect may result in excessive infant-oriented defensive/aggressive 

thoughts and behaviors that may manifest as anxiety or aggression during maternal behavior 

and responding to their baby-cry. This compelling yet simple idea could explain how 

exogenous opioids such as BT may be therapeutic role, yet also risk side-effect of 

diminished care with intrusive or insensitive parental behaviors in the case of OUD with 

exogenous opioid treatment, and as a function of stress (Bridges and Grimm, 1982; 

Slamberova et al., 2001). Evaluation of this hypothesis requires a currently lacking 

characterization of maternal phenomenology for BT mothers as to whether they are overly 

focused on defense of the infant, lacking in caregiving motivation, or more stress-sensitive 

during maternal behaviors.

5. Summary and future directions

Opioid use has reached epidemic proportions in the United States. Besides the health 

consequences for the using mother, there is also a significant concern following the use of 

opioids in pregnancy for adverse infant outcomes (Broussard et al., 2011; CSAT, 2006), as 

evidenced by a 5-fold increase in the prevalence of NAS in recent years. The use of OMT is 

the highly recommended “gold standard” for treatment despite its own risks. In addition to 

mitigating withdrawal, physicians are currently more likely to prescribe buprenorphine 

because emerging data suggest that neonatal withdrawal symptomology appears to be less 

frequent and less severe with buprenorphine than methadone (Kakko et al., 2008; Jones et 

al., 2005, 2010; Hall et al., 2018). OMT is designed to prevent relapse to illicit opioid drug 

use (i.e., heroin or morphine) and to avoid the cycling of intoxication and withdrawal 

resulting in inconsistent blood opioid levels and high fetal stress (Fischer et al., 2000). 

However, there is still a lack of data on the long-term consequences of OMT exposure for 

the fetus as well as a lack of consensus about appropriate dosing regimens especially around 

the time of parturition. Further, the impact of stress as a co-morbidity with opioid abuse is 

not well studied and deserves further attention. Animal models also raise concerns for 

adverse parenting behavior effects. Considering the role of endogenous opioids in regulating 

maternal behaviors and the stress response in pregnant women (Swain et al., 2005), 

exogenous opioids may have a unique effect on maternal physiology by impacting the HPA 

axis functioning and brain circuits involved in maternal caregiving behaviors. It is possible 

that opioids disrupt the normal regulation (reciprocal inhibition) of caring and defensive/

aggressive brain circuits in mothers suffering from OUDs and concurrent high levels of 

stress. More research is needed to better understand how we can administer opioids to help 

mothers reduce their withdrawal symptoms without affecting important MBN brain 

networks leading to negative consequences in maternal–infant interactions and parenting. 

Parental brain models of reward-stress dysregulation by addiction present opportunities to 

understand how caregiving may be compromised in addicted parents and assisted by opioids. 

Future studies should further investigate the impact of opioids on parenting behavior in 
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mothers and fathers (Swain et al., 2014) and test whether parenting interventions can 

alleviate some of the negative consequence for exposed children.

For example, the Mom Power (MP) parenting intervention, which aims to promote maternal 

empathy, reflective functioning, and stress reduction skills (Muzik et al., 2015, 2016) has 

been associated with decreased parenting stress and increased child-focused responses in 

social brain areas (Swain et al., 2017). This kind of parenting intervention may be optimized 

specifically to treat OUD or OUD-treatment related neurophysiological deficits for mothers 

affected.

Animal and human parental brain models may also lead to new and improved 

pharmacological and psychological interventions. For example, exogenous oxytocin may 

improve maternal caregiving motivation in OUD since opioids inhibit oxytocin – with due 

care for the timing and context of therapeutic administration of oxytocin to decrease 

maternal aggression (Szymanska et al., 2017; Bosch and Young, 2018). Although animal 

and human models can help disentangle the complex relationships between the direct and 

indirect effects of opioids on the maternal brain and behavior and the outcome of the 

offspring, we need better translational approaches that take these complexities into 

consideration and focus more on the dam and offspring. For example, it will be important to 

consider the fact that most women do not start abusing opioids during pregnancy but are 

rather already suffering from opioid abuse and likely related stress system dysregulation 

before conception. Given the opioid epidemic, there is also an urgent need to investigate the 

impact of switching during pregnancy – from drugs of abuse to therapeutic maintenance 

drugs such as buprenorphine. Indeed, the impact of experiencing recurring withdrawal 

during gestation and high levels of circulating opioids at the time of parturition is not well 

understood for maternal brain or behavior. Finally, brain-based models may help explore the 

underlying mechanisms of changes to maternal caregiving behaviors in women with OUD, 

as well as consequences of poly-drug use or frequent relapse for the mother and her 

offspring that may inform treatment.
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Fig. 1. 
The maternal behavior neurocircuit - a framework to consider the effects of exogenous 

opioids. Maternal behaviors may be activated by the amygdala (AMY). Insular cortex (IC), 

orbitofrontal cortex (OFC), medial preoptic area (mPOA) of the hypothalamus (HYP), 

ventral tegmental area (VTA), nucleus accumbens (NAc) and ventral pallidum (VP) activate 

caregiving. behaviors. Periaqueductal gray (PAG) activates defensive/aggressive behaviors. 

Sensitive maternal behavior requires that caregiving and defense processing reciprocally 

inhibit each other. Exogenous opioids, which affect multiple parts of the maternal brain, 

require further study in animals. We present preliminary data.on the effects of exogenous 

opioids on human mothers below in 4.3.
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