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A single–cell type transcriptomics map of  
human tissues
Max Karlsson1†, Cheng Zhang1†, Loren Méar2, Wen Zhong1, Andreas Digre2, Borbala Katona2, 
Evelina Sjöstedt3, Lynn Butler1,4,5,6, Jacob Odeberg1,6, Philip Dusart1,6, Fredrik Edfors1, 
Per Oksvold1, Kalle von Feilitzen1, Martin Zwahlen1, Muhammad Arif1, Ozlem Altay1, Xiangyu Li1, 
Mehmet Ozcan1, Adil Mardonoglu1, Linn Fagerberg1, Jan Mulder3, Yonglun Luo7,8, 
Fredrik Ponten2, Mathias Uhlén1,3*‡, Cecilia Lindskog2‡

Advances in molecular profiling have opened up the possibility to map the expression of genes in cells, tissues, 
and organs in the human body. Here, we combined single-cell transcriptomics analysis with spatial antibody- 
based protein profiling to create a high-resolution single–cell type map of human tissues. An open access atlas 
has been launched to allow researchers to explore the expression of human protein-coding genes in 192 indi-
vidual cell type clusters. An expression specificity classification was performed to determine the number of 
genes elevated in each cell type, allowing comparisons with bulk transcriptomics data. The analysis highlights 
distinct expression clusters corresponding to cell types sharing similar functions, both within the same organs 
and between organs.

INTRODUCTION
The marked improvements in massive parallel sequencing coupled 
with single-cell sample preparations and data deconvolution have 
allowed single-cell RNA sequencing (scRNA-seq) to become a power-
ful approach to characterize the gene expression profile in single cells 
(1, 2). The objective of the international collaborative effort Human 
Cell Atlas (www.humancellatlas.org) takes advantage of this new tech-
nology platform to study the distinctive gene expression profiles on 
RNA level across diverse cell and tissue types and connect this in-
formation with classical cellular descriptions, such as location and 
morphology (3). In parallel, the development of many millions of 
publicly available antibodies toward human proteins has enabled 
single-cell analysis of the corresponding proteins in tissues and 
organs using immunohistochemistry (4) and fluorescent-based bio-
imaging (1, 5–7), allowing single-cell spatial mapping in the context of 
neighboring cells. The objective of the Human Protein Atlas (HPA) 
(www.proteinatlas.org) effort is to take advantage of these bioimag-
ing approaches to map the expression of all human protein-coding 
genes across all major human cells, tissues, and organs. More than 
10 million bioimages from 37 tissues showing the native protein 
location in intact tissue samples are publicly available in the HPA, 
each annotated by a certified pathologist (4). Together, these two 
platforms thus have the potential to create comprehensive body-wide 
maps of gene expression at RNA and protein level with the ultimate 
goal to provide publicly available genome-wide knowledge of 

protein-coding genes in single cell types across tissues and organs in 
the human body.

Here, we describe an effort to combine the information from these 
two efforts to create a publicly available HPA Single Cell Type Atlas 
with genome-wide expression data from scRNA-seq experiments 
integrated with the spatial antibody-based bioimaging data. We use 
an approach outlined in Fig. 1A in which the single–cell type tran-
scriptomics from the scRNA-seq data from a particular cluster of cells 
is pooled and the average normalized protein-coding transcripts 
per million (pTPM) as well as a normalized expression are calculated 
across protein-coding genes. In this manner, the problem with tech-
nical noise involving genes having zero counts (so-called dropouts) 
can be minimized and even genes with very low expression levels 
can be detected (8). This approach allows the expression profiles for 
each gene in each cluster to be visualized on a genome-wide and 
single–cell type level taking advantage of the added information by 
cumulative counts from hundreds or thousands of cells.

RESULTS
The tissues included in the study
To make this possible, a survey of scRNA-seq data from nondiseased 
human tissues and organs was performed. We used three main criteria 
to include data into the pipeline: (i) publicly available raw data from 
human tissues with good technical quality with at least 4000 cells 
analyzed and at least 20 million read counts by the sequencing for 
each tissue; (ii) high correlation between pseudo-bulk transcriptomics 
profile from the scRNA-seq data and bulk RNA-seq generated as 
part of the HPA Tissue Atlas; and (iii) high correlation between the 
cluster-specific expression and the expected expression pattern of 
an extensive selection of marker genes representing well-known 
tissue- and cell type–specific markers, including both markers from 
the original publications and additional markers used in pathology 
diagnostics (data S2). Here, we present a dataset containing 13 dif-
ferent human tissues covering most major organs in the human body 
including ileum (9), colon (10), rectum (9), kidney (11), liver (12), 
pancreas (13), heart (14), lung (15), prostate (16), testis (17), placenta 

1Science for Life Laboratory, Department of Protein Science, KTH-Royal Institute of 
Technology, Stockholm, Sweden. 2Department of Immunology, Genetics and 
Pathology, Uppsala University, Uppsala, Sweden. 3Department of Neuroscience, 
Karolinska Institutet, Stockholm, Sweden. 4Department of Molecular Medicine and 
Surgery, Karolinska Institute, Stockholm, Sweden. 5Clinical Chemistry, Karolinska 
University Laboratory, Karolinska University Hospital, Stockholm, Sweden. 6Depart-
ment of Clinical Medicine, The Arctic University of Norway, Tromsø, Norway. 7Lars 
Bolund Institute of Regenerative Medicine and Qingdao-Europe Advanced Institute 
for Life Sciences, BGI-Qingdao, BGI-Shenzhen, Qingdao, China. 8Department of 
Biomedicine, Aarhus University, Aarhus, Denmark.
*Corresponding author. Email: mathias.uhlen@scilifelab.se
†These authors contributed equally to this work.
‡These authors contributed equally to this work.

Copyright © 2021 
The Authors, some 
rights reserved; 
exclusive licensee 
American Association 
for the Advancement 
of Science. No claim to 
original U.S. Government 
Works. Distributed 
under a Creative 
Commons Attribution 
NonCommercial 
License 4.0 (CC BY-NC).

http://www.humancellatlas.org
http://www.proteinatlas.org
mailto:mathias.uhlen@scilifelab.se


Karlsson et al., Sci. Adv. 2021; 7 : eabh2169     28 July 2021

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

2 of 9

Erythroid cells

Con
e p
hot
ore
cep
tor
cell
s

Hor
izon

tal c
ells

Early sp
ermatid

sLate sperm
atids

Spermatocytes
Spermatogonia

Sertoli cellsMull
er g

lia c
ells

Glandular cells

Melanocytes

Cardiomyocytes

Gr
an
ulo
cy
te
s

Bipo
lar ce

lls

Rod p
hotore

cepto
r cells

Basal glandular cellsUrothelial cellsBasal keratinocytes

Suprabasal keratinocytes

Intestinal endocrine
cells

C
holangiocytes

H
epatocytes

Extravillous
trophoblasts

C
ilia
te
d
ce
lls

Cl
ub
ce
lls

Al
ve
ol
ar
ce
lls
ty
pe
1

Al
ve
ola
r c
ell
s t
yp
e
2

Leydig cells

Peritubular cellsPaneth
cells

C
ytotrophoblasts

S
yncytiotrophoblasts
D
uctalcells

C
ol
le
ct
in
g
du
ct
ce
lls

B
ce
lls

T c
ell
s

Mo
no
cy
tes

Fibroblasts

Smooth muscle cells

Endothelial cells

Ito cellsEnterocytes

E
xo
cr
in
e
gl
an
du
la
r c
el
ls

Pa
nc
re
at
ic
en
do
cr
in
e
ce
lls

D
is
ta
l t
ub
ul
ar
ce
lls

Pr
ox
im
al
tu
bu
la
r c
el
ls

Ku
pff
er
ce
lls

M
ucus-secreting

cells

U
ndifferentiated

cells

Ho
fba
ue
r c
ells

Ma
cro
pha
ges

Intestinal cells

Male germ cells

PePP ritubular cells

Blood & immune cells

Ductal cells

Pancreatic
endocrine cellsl

Exocrine
glandular cells

Neuronal cells

Muller glia cells

Cardiomyocytes

Renal tubules

Hepatocytes

Cholangiocytes

Pulmonary cells

TrophoTT blasts

Urethral epithelia

–4

–2

0

2

4

6

–5.0 –2.5 0.0 2.5
UMAP1

U
M

A
P

2

Blood & immune cells
Endocrine cells
Epithelial cells
Germ cells
Glial cells
Mesenchymal cells

Muscle cells
Neuronal cells

Trophoblast cells
Undifferentiated cells
Vascular cells

Pigment cells

Eye

Small
intestine

Kidney

Placenta

Blood

Colon

Rectum

Heart

Lung

Liver

Prostate

Pancreas

Skin

Testis

KLK3

Glandular
epithelial cells

VIM

Mesenchymal
cells

CD34

Endothelial
cells

U
M
A
P

cl
us
te
rs

pT
P
M

Ti
ss
ue

lo
ca
tio
n

A

C

B

Fig. 1. Annotating 51 cell types from 13 tissues using single-cell transcriptomics data. (A) scRNA-seq data from 13 tissues and blood [peripheral blood mono-
nuclear cells (PBMCs)] were processed through a clustering algorithm, and each cluster was annotated using known markers. All cells from a cluster were pooled, and 
the average transcript per million was calculated for all protein-coding genes. (B) UMAP plot showing the relationship of all cell types from all analyzed tissues. The 
color-coding corresponds to 12 main cell type groups. (C) Cell type dendrogram showing the relationship between all 51 identified main single cell types based on 
genome-wide expression.
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(18), skin (19), and eye (20), as well as an analysis of human blood 
(21) (see data S1). No brain samples were included because only 
single-nuclei data were available, which showed lower correlation 
to bulk data in comparison to single-cell data (see fig. S1) (22, 23). 
All raw datasets were gathered into a common cluster analysis, re-
sulting in a total of 192 single–cell type clusters across the datasets 
(see data S1 for all cluster annotations). In total, the data correspond 
to 1.47 billion read counts and the average read count per single–
cell type cluster was approximately 7.7 million.

Correlation of expression profiles across the  
192 cell types
The correlations between bulk RNA-seq and pseudo-bulk single-cell 
transcriptomics profiles were high for all tissues, ranging from 0.76 
to 0.88 (fig. S2). All clusters were manually annotated on the basis of 
known tissue- and cell type–specific markers and their expected 
expression in the corresponding clusters (data S2 and fig. S3). As 
examples of the results, three genes are exemplified in Fig. 1A with 
cluster expression profiles in prostate. Kallikrein-related peptidase 3 
(KLK3), also known as prostate-specific antigen (PSA), was shown 
to be expressed in two neighboring clusters in prostate, both anno-
tated as glandular epithelial cells. Vimentin (VIM), a well-known 
marker for mesenchymal cells, was instead expressed in five different 
clusters, all annotated as mesenchymal-related cell types, including 
smooth muscle cells and immune cells. CD34, a well-known marker 
for endothelial cells, was localized to one of these clusters that has 
been annotated as endothelial cells. A UMAP (uniform manifold 
approximation and projection) of all clusters (Fig. 1B) revealed, as 
expected, that profiles of cell types responsible for unique tissue- 
specific functions have a close association, here shown as distinct 
tissue-specific groups, e.g., intestinal, hepatic, renal, placental, 
pulmonary, and neuronal cells. Some cell populations carry out 
similar cell type–specific functions, and as expected, these clusters 
from different tissues show high similarity in gene expression, e.g., 
immune cells (nine tissues), endothelial cells (nine tissues), and 
fibroblasts (five tissues). Altogether, the 192 single–cell type clusters 
could be summarized into 51 main cell types belonging to 12 different 
functional groups of cells (Fig. 1, B and C).

Creation of a Single Cell Type Atlas
On the basis of these new data, a Single Cell Type Atlas has been 
launched (www.proteinatlas.org/celltype) with data for all protein- 
coding genes. More than 250,000 interactive UMAP plots are pre-
sented in this open access resource showing the primary data for 
every analyzed cell for all protein-coding genes and all annotated 
cell types (defined as annotated clusters). Similarly, by pooling the 
data for every cell in a cluster, we have been able to generate more 
than 250,000 bar plots showing the calculated transcripts per million 
(TPM) for each gene and cell type across the entire protein-coding 
genome. The integration with tissue imaging (Fig. 2A) allows vali-
dation of the cell type–specific expression on the protein level by the 
in situ antibody-based profiling, as exemplified by the immunohisto-
chemical staining of phosphodiesterase 6A (PDE6A) shown by the 
scRNA-seq analysis to be localized to rod photoreceptor cells in eye 
(clusters 0, 2, 3, and 4). Similarly, the protein insulin (INS) was shown 
to be localized to endocrine cells in pancreas (cluster 6), surfactant 
protein C (SFTPC) was localized to alveolar cells type 2 (AT2) in lung 
(clusters 1 and 6), and uromodulin (UMOD) was localized to distal 
tubular cells in kidney (clusters 11 and 12).

Classification of protein-coding genes based 
on expression profiles
A classification to map the gene expression profile of all protein- 
coding genes across the different cell types was performed as described 
earlier (4) to determine the number of genes elevated in particular 
single cell types and thus showing high or low cell type specificity 
(table S1). In total, across all cell types, 2005 genes are cell type–
enriched, meaning that the expression of a particular gene defined 
as adjusted TPM (see Materials and Methods) is at least fourfold 
higher in one cell type as compared to all other cell types analyzed 
here (Fig. 2C). Similarly, 2893 genes are defined as group-enriched, 
thus enriched in a group of up to 10 cell types, and 9062 genes are 
defined as cell type–enhanced, where the expression is at least four-
fold higher in one cell type as compared to the mean of all other cell 
types. A group of genes are also classified as having low cell type 
specificity (n = 4257), suggesting that they are present at roughly 
similar levels across all the cell types. Only 11% of the genes were 
detected in all analyzed cell types, supporting previous estimation 
of the number of “housekeeping” genes needed in all cells (24, 25). 
In Fig. 2B, the number of elevated genes (cell type–enriched, group- 
enriched, or cell type–enhanced) is visualized for all the 51 different 
cell types. In agreement with previous observations based on bulk 
transcriptomics (4), testis constitutes the tissue with the highest num-
ber of cell type elevated genes, but many elevated genes were also 
found in the eye (photoreceptor cells, bipolar cells, and horizontal 
cells) as well as in ciliated cells in lung (see data S3 for a complete list 
of the classification results). As mentioned above, the integration of 
multiple analysis platforms allows the validation of the single-cell 
data with antibody-based image profiling in tissue. Immunohisto-
chemistry shows not only the localization at a single-cell level but 
also the exact spatial pattern, cell-to-cell variation, and subcellular 
localization. In Fig. 2D, some examples of this validation are shown, 
including proteins specifically expressed in rare structures, such as, 
e.g., renal collecting ducts, retinal photoreceptor cells, early spermatids, 
intercalated discs in cardiomyocytes, and hepatic Kupffer cells.

The cell type expression landscape
The cell type–specific expression landscape was summarized in a 
network plot (Fig. 3A), illustrating the number of cell type–enriched 
and group-enriched genes and their relationships. The analysis high-
lights distinct expression clusters corresponding to cell types sharing 
similar functions, both within the same organs and between organs. 
As expected, many genes are simultaneously enriched in various 
immune cell linages and the different stages of germ cells in testis. It 
is also evident that despite that many organs contain epithelial cells, 
these still have large numbers of genes enriched in only one partic-
ular tissue. Cell types of the same origin residing in different tissues, 
e.g., macrophages, defined as Kupffer cells in liver and Hofbauer cells 
in placenta, also have genes enriched in only one cell type. Figure 3B 
shows immunohistochemical examples of proteins that shared ele-
vated expression in cell types present in two different organs but with 
similar function, such as motility or immune-related functions.

Comparison of bulk and single-cell transcriptomics
The new single–cell type classification of protein-coding genes al-
lowed us to perform a genome-wide comparison between this classi-
fication and the previous classification based on bulk transcriptomics. 
In Fig. 4A, the relationship of classification of all 19,670 protein- 
coding genes is shown, with most genes overlapping in classification, 

http://www.proteinatlas.org/celltype
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including a vast majority of the 2005 cell type–enriched genes that 
are found to be either enriched, group-enriched, or enhanced based 
on the tissue classification. Relatively few genes have low cell type 
specificity (n = 4257), but almost all of these have low tissue speci-
ficity based on the bulk transcriptomics data. It is noteworthy that 
the number of elevated genes is higher for our single–cell type clas-
sification as compared to the tissue-level classification, supporting 
the view that many genes that are found across all tissues still have 
cell type–specific expression profiles. Note that relatively many genes 
are not detected in the cell type analysis, which is not unexpected, 
because many tissues were not analyzed due to lack of data for many 
important tissues, such as the brain.

An investigation of the overlap between the tissue “bulk” expres-
sion and the single–cell type expression is shown in Fig. 4B. The 
analysis showed that most genes with enriched expression in a certain 

tissue were enriched also based on the single-cell analysis. Tissue- 
specific expression can thus be attributed to individual cell types 
present in a particular tissue, exemplified by the many liver-enriched 
genes that were found to be hepatocyte-enriched. Likewise, all genes 
enriched in heart muscle by bulk transcriptomics analysis are en-
riched in cardiomyocytes in the single-cell analysis. The overlap of 
genes that are enriched at both single–cell type and tissue level is 
visualized in a network in fig. S4. This highlights the usefulness of 
scRNA-seq to disentangle the cell type variance across the different 
tissues in the human body.

Correlation to tissues and blood cells
A hypergeometric test was conducted to show the statistical signifi-
cance of the overlap between genes that are enriched in the single 
cell types and genes enriched in tissues, flow-sorted blood cells, and 
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Fig. 2. An open access single–cell type transcriptomics atlas of human tissues. (A) Some examples of data visualization in the HPA Single Cell Type Atlas with UMAP 
plots from the single-cell analysis in each cluster, the resulting bar plot showing the RNA level gene expression in each cell type, and the corresponding tissue images 
based on immunohistochemistry. (B) Number of cell type–enriched, group-enriched, and cell type–enhanced genes for each of the 51 cell types based on the single–cell 
type data. (C) Number of genes classified for single–cell type specificity. (D) Some examples of immunohistochemical tissue images for genes identified as elevated in 
single cell types: FXYD4, an ion transport regulator localized to renal collecting ducts; ARR3, a protein suggested to play a role in retina-specific signal transduction, localized 
to the cone photoreceptor cells in eye; INSL5, a protein with essentially unknown function but suggested to play a role as a gut hormone (27), localized to intestinal neuro-
endocrine cells; FAM71B, an uncharacterized protein, here specifically localized to early spermatids; CYP19A, a member of the cytochrome P450 superfamily of enzymes, 
here localized to placental syncytiotrophoblasts; LGALS1, a lectin acting as an autocrine negative growth factor regulating cell proliferation, here present in fibroblasts; 
XIRP2, an actin-binding protein localized to the intercalated discs in cardiomyocytes; LIMS2, a focal adhesion protein modulating cell spreading and migration, here 
localized to endothelial cells; and finally FCN1, an extracellular lectin involved in innate immunity, localized to hepatic Kupffer cells/macrophages.
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cell types that share functions related to motility.



Karlsson et al., Sci. Adv. 2021; 7 : eabh2169     28 July 2021

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

6 of 9

216 8385 6587 1637 2845

1453 4257 9062 2893 2005

Not
detected

Low cell type
specificity

Cell type
enhanced

Group
enriched

Cell type
enriched

Tissue

Single cell

A

B

C

T
issues

B
lood

cells
C

elllines

A
lveolar

cells
type

1
A

lveolar
cells

type
2

C
iliated

cells
C

lub
cells

C
ollecting

ductcells
D

istaltubular
cells

P
roxim

altubular
cells

S
ertolicells

U
rothelialcells

B
asalglandular

cells
G

landular
cells

S
uprabasalkeratinocytes

B
asalkeratinocytes

M
elanocytes

C
holangiocytes

H
epatocytes

E
xocrine

glandular
cells

D
uctalcells

E
nterocytes

M
ucus-secreting

cells
P

aneth
cells

U
ndifferentiated

cells
Intestinalendocrine

cells
P

ancreatic
endocrine

cells
Leydig

cells
M

uller
glia

cells
R

od
photoreceptor

cells
B

ipolar
cells

H
orizontalcells

C
one

photoreceptor
cells

S
m

ooth
m

uscle
cells

C
ardiom

yocytes
S

yncytiotrophoblasts
E

xtravillous
trophoblasts

C
ytotrophoblasts

F
ibroblasts

Ito
cells

Peritubular
cells

E
ndothelialcells

E
arly

sperm
atids

Late
sperm

atids
S

perm
atocytes

S
perm

atogonia
B

 cells
T

 cells
G

ranulocytes
M

onocytes
M

acrophages
H

ofbauer
cells

K
upffer

cells
E

rythroid
cells

Blood
Testis
Placenta
Heart muscle
Retina
Intestine
Pancreas
Liver
Skin
Prostate
Kidney
Lung

Monocytes
Granulocytes
Dendritic cells
T cells
NK cells
B cells

K-562
U-937
MOLT-4
U-698
TIME
BEWO
RH-30
SH-SY5Y
CACO-2
Hep G2

–Log10(P value) 1050

Cardiomyocytes
Early spermatids EnterocytesMucus-secreting cells Intestinal endocrine cells

Collecting duct cells Distal tubular cells Proximal tubular cells
Hepatocytes

Alveolar cells type 1 Alveolar cells type 2Neuroendocrine cells
Exocrine glandular cellsPancreatic

endocrine cells

Extravillous trophoblasts Syncytiotrophoblasts
Glandular cells

Bipolar cells Cone photoreceptor cellsMelanocytes Muller glia cells Rod photoreceptor cells
Suprabasal keratinocytes

Early spermatidsLate spermatids SpermatocytesSpermatogonia

Heart muscle
Intestine
Kidney
Liver
Lung
Pancreas
Placenta
Prostate
Retina
Skin
Testis

0.00 0.25 0.50 0.75 1.00

Fraction of genes

Blood & immune cells
Endocrine cells

Epithelial cells
Germ cells

Glial cells
Mesenchymal cells

Muscle cells
Neuronal cells

Pigment cells
Trophoblast cells

Fig. 4. A comparison of gene specificity between single cell type and tissue. (A) Alluvial diagram showing the number of genes of respective specificity category for 
single cell (top) and tissue (bottom). (B) Bar plot showing the fraction of single–cell type–enriched genes among the tissue-enriched genes. The color code indicates the 
cell type groups. The cells with most shared enriched genes with tissues are labeled. (C) Bubble heatmap showing the significance (indicated by dot size and color) of 
shared enriched genes between single cell types (x axis) and tissues (top), blood lineage (middle), and human cell lines (bottom). Notably, if the overlap of enriched genes 
is not statistically significant (hypergeometric test, P > 0.05), the corresponding dot is removed.



Karlsson et al., Sci. Adv. 2021; 7 : eabh2169     28 July 2021

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

7 of 9

cell lines (Fig. 4C). As noted above, it is reassuring that the cell 
type–enriched genes generally show a high degree of overlap with 
the enriched genes defined by bulk transcriptomics from their cor-
responding tissues. For example, the enriched genes from the liver 
bulk transcriptomics show overlap with genes elevated in hepato-
cytes and cholangiocytes based on scRNA-seq. Similarly, the alveolar 
cells, ciliated cells, and club cells from the single-cell analysis share 
enriched genes with lung tissue. The scRNA-seq data for the im-
mune cell clusters were also compared with transcriptomics data of 
flow-sorted single blood cells (Fig. 4C) (26). The macrophages, not 
present in the HPA Blood Atlas data (26), show as expected overlap 
with the flow-sorted monocytes. It is also reassuring that the 
scRNA-seq identified T cells show overlap with the flow-sorted T cells 
and natural killer (NK) cells published in the HPA Blood Atlas (25), 
and similarly, enriched genes in scRNA-seq B lymphocytes show 
overlap with the flow-sorted B cells.

Correlation with human cell lines
Last, we analyzed the overlap of the scRNA-seq analysis with tran-
scriptomics data of in vitro cultivated human cell lines. In Fig. 4C, 
some examples are shown, with additional 60 cell lines visualized 
in fig. S5. Overall, there is a high degree of overlap of cell line–
enriched genes with the corresponding cell type of origin from 
the scRNA-seq analysis. For example, the cell line HepG2 shows, 
as expected, highest degree of overlap with hepatocyte-enriched 
genes. Similarly, the B cell–derived U-698 cell line mostly over-
laps with single-cell clusters annotated to be B cells, but some 
overlap with T cells. These examples suggest that these in vitro cul-
tivated cell lines may serve as representative models for the corre-
sponding in vivo cell types, while many other cell lines (fig. S5) show 
less overlap with the expected in vivo cell types, suggesting that cau-
tion should be taken when using these cell lines as models for the 
corresponding cell type.

DISCUSSION
In conclusion, we here present a single–cell type transcriptomics map 
of human tissues and blood complemented with antibody-based 
profiling and with comparisons to bulk transcriptomics. An open 
access HPA Single Cell Type Atlas (www.proteinatlas.org/celltype) 
has been launched with more than 250,000 interactive UMAP plots 
and expression bar plots to allow researchers to explore the individual 
single–cell type data for all protein-coding genes in these tissues. 
We plan to update the Single Cell Type Atlas in the future as part of 
the annual update of the HPA taking into account new genome 
assemblies and addition of new data. Future inclusion of more tissues 
and datasets with more cells analyzed and sequencing at higher depths 
will allow this effort to be extended into more specialized tissues and 
organs helped by international efforts such as the Human Cell Atlas 
(3) and other efforts to analyze human single cells in tissues (6, 10, 11 23). 
The analysis may also be extended to include single-nuclei data from 
tissues that are difficult to obtain using the single-cell approach. 
Integration of these datasets on both the transcriptomic and pro-
teomic level gives a unique opportunity to validate the exact tissue 
localization in situ. Thus, the approach described here to com-
bine single-cell data with antibody-based profiling will facilitate ef-
forts to provide a holistic cell-, tissue-, and organ-wide map of the 
proteins across the human body to act as a basis for research in 
human biology and disease.

MATERIALS AND METHODS
scRNA-seq dataset selection
The scRNA-seq dataset was retrieved from published studies based 
on healthy human tissues. We performed meta-analysis of literatures 
on scRNA-seq and search single-cell databases, including the Single 
Cell Expression Atlas (https://ebi.ac.uk/gxa/sc/home), the Human 
Cell Atlas (https://humancellatlas.org), the Gene Expression Omnibus 
(https://ncbi.nlm.nih.gov/geo/), and the European Genome-phenome 
Archive (https://ebi.ac.uk/ega/). To avoid technical bias and to ensure 
that the single-cell dataset can best represent the corresponding tissue, 
we applied the following criteria for data selection: (i) We limited 
the single-cell transcriptomic dataset to those based on the Chromium 
single-cell gene expression platform from 10X Genomics (version 2 
or 3); (ii) scRNA-seq was performed on single-cell suspension from 
tissues without pre-enrichment of cell types; (iii) only studies 
with >4000 cells and 20 million read counts were included; and (iv) 
only dataset whose pseudo-bulk gene expression profile is highly 
correlated with the expression profile of the corresponding HPA 
tissue bulk sample is included. Note that, for the tissue eye, we do 
not have the corresponding bulk transcriptome. In addition, the 
dataset for lung had fewer reads (~7.3 million), while the dataset for 
pancreas (3719 cells) and rectum (3898 cells) had less than 4000 cells 
analyzed. However, these datasets were still included because the 
data provided important insights into cell type–enriched genes in 
these tissues. In total, we included datasets for 13 tissues plus 
peripheral blood mononuclear cells (PBMCs) (data S1).

Quantifying transcriptomic expression of clusters 
and pseudo-bulk
Quantified raw sequencing data were downloaded from the corre-
sponding depository database based on the accession number pro-
vided by the study (data S1) in the available format (total cells, read, 
and feature counts, or count tables). Unfiltered data were used as 
input for downstream analysis with in-house pipeline using Single- 
Cell Analysis in Python (Scanpy, version 1.4.4.post1) in Python 
(version 3.7.3). In the pipeline, the data were filtered using two 
criteria: A cell is considered as valid if it has at least 200 genes, and 
a gene is considered as valid if it is expressed in at least 10% of the cells. 
Subsequently, the cell counts were normalized to have total count per 
cell of 10,000. Afterward, the valid cells were then clustered using Louvain 
clustering function within Scanpy and then gene rankings for each 
cluster were calculated with “rank_genes_group” function. The total 
read counts for all genes in each cluster were calculated by adding up 
the read counts of each gene in all cells belonging to the correspond-
ing cluster. Last, the read counts were normalized to pTPM for each 
of the single-cell clusters. In the case of calculating the expression 
profile for pseudo-bulk samples based on single-cell transcriptom-
ics, we added the read counts for all genes from all cells of the sample 
and normalized it to pTPM in the same way as for the cluster ones.

Defining cell types
Each of the 192 different cell type clusters was manually annotated 
based on an extensive survey of >500 well-known tissue- and cell type–
specific markers, including both markers from the original publications 
and additional markers used in pathology diagnostics. For most cell 
types, three marker genes were used, and for each cluster, one main 
cell type was chosen based on the overall expression pattern of all the 
marker genes. For four clusters, no main cell type could be selected, 
and these clusters were not used for classification. The most relevant 

http://www.proteinatlas.org/celltype
https://ebi.ac.uk/gxa/sc/home
https://humancellatlas.org
https://ncbi.nlm.nih.gov/geo/
https://ebi.ac.uk/ega/
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markers (data S2) are presented in a heatmap on the Cell Type Atlas 
on each organ- and gene-specific page to clarify cluster annotation 
to visitors.

Bulk RNA-seq analysis and antibody-based protein profiling
Human tissue samples for analysis of bulk RNA-seq and gene ex-
pression at protein level in the HPA datasets were collected and 
handled in accordance with Swedish laws and regulation. Tissues 
were obtained from the Clinical Pathology Department, Uppsala 
University Hospital, Sweden and collected within the Uppsala 
Biobank organization. All samples were anonymized for personal 
identity by following the approval and advisory report from the 
Uppsala Ethical Review Board (reference nos. 2002-577, 2005-388, 
2007-159, and 2011-473). The RNA extraction and RNA-seq 
procedure have been described previously (28). For immuno-
histochemistry, formalin- fixed, paraffin-embedded (FFPE) tissue 
blocks were collected from the pathology archives based on normal 
histology using a hematoxylin and eosin–stained tissue section 
evaluated by a pathologist. For generation of tissue microarrays 
(TMAs), representative 1-mm-diameter cores were sampled from 
FFPE blocks and assembled into TMAs. TMA blocks were cut into 
4-m-thick sections using waterfall microtomes (Microm HM 
355S, Thermo Fisher Scientific, Freemont, CA, USA), placed on 
SuperFrost Plus slides (Thermo Fisher Scientific), dried at room 
temperature overnight, and baked at 50°C for 12 to 24 hours before 
immunohistochemical staining. Automated immunohistochemistry 
was performed using the Autostainer 480S Module (Thermo Fisher 
Scientific).

Immunohistochemical staining and high-resolution digitization 
of stained TMA slides were performed essentially as previously de-
scribed (29). Primary antibodies were diluted and optimized based on 
IWGAV (International Working Group for Antibody Validation) 
criteria for antibody validation (30). Antibodies used for the immuno-
histochemical example images are listed in data S4. Protocol optimi-
zation was performed on a test TMA containing 20 different normal tissues. 
The stained slides were digitized with Scanscope AT2 (Leica Aperio, 
Vista, CA, USA). All images were manually evaluated by two independent 
observers, comprising a total of 576 images per antibody, covering 15,320 
different human genes and publicly available on v20.proteinatlas.org.

Gene classification
Clusters were normalized using trimmed means of M (TMM) using 
the tmm function from NOISeq (31) with a median column as refer-
ence, with the parameters doWeighting = T and logratioTrim = 0.3. 
Clusters were aggregated per cell type by using the median expres-
sion of each gene. Genes were then classified as per standard HPA 
procedure as described in table S1.

Generation of network plot
The network plot was generated in Cytoscape 3.6.1 (32), and nodes 
were filtered to remove complexity such that nodes were displayed 
if they (i) contained cell type–enriched genes, (ii) contained at least 
five genes, or (iii) ranked top two largest nodes for any connected 
cell type and contained at least three genes.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/7/31/eabh2169/DC1

REFERENCES AND NOTES
 1. N. Crosetto, M. Bienko, A. van Oudenaarden, Spatially resolved transcriptomics 

and beyond. Nat. Rev. Genet. 16, 57–66 (2015).
 2. M. D. Luecken, F. J. Theis, Current best practices in single-cell RNA-seq analysis: A tutorial. 

Mol. Syst. Biol. 15, e8746 (2019).
 3. A. Regev, S. A. Teichmann, E. S. Lander, I. Amit, C. Benoist, E. Birney, B. Bodenmiller, 

P. Campbell, P. Carninci, M. Clatworthy, H. Clevers, B. Deplancke, I. Dunham, J. Eberwine, 
R. Eils, W. Enard, A. Farmer, L. Fugger, B. Göttgens, N. Hacohen, M. Haniffa, M. Hemberg, 
S. Kim, P. Klenerman, A. Kriegstein, E. Lein, S. Linnarsson, E. Lundberg, J. Lundeberg, 
P. Majumder, J. C. Marioni, M. Merad, M. Mhlanga, M. Nawijn, M. Netea, G. Nolan, D. Pe'er, 
A. Phillipakis, C. P. Ponting, S. Quake, W. Reik, O. Rozenblatt-Rosen, J. Sanes, R. Satija, 
T. N. Schumacher, A. Shalek, E. Shapiro, P. Sharma, J. W. Shin, O. Stegle, M. Stratton, 
M. J. T. Stubbington, F. J. Theis, M. Uhlen, A. van Oudenaarden, A. Wagner, F. Watt, 
J. Weissman, B. Wold, R. Xavier, N. Yosef; Human Cell Atlas Meeting Participants, The 
Human Cell Atlas. eLife 6, (2017).

 4. M. Uhlen, L. Fagerberg, B. M. Hallstrom, C. Lindskog, P. Oksvold, A. Mardinoglu, 
A. Sivertsson, C. Kampf, E. Sjostedt, A. Asplund, I. Olsson, K. Edlund, E. Lundberg, 
S. Navani, C. A. K. Szigyarto, J. Odeberg, D. Djureinovic, J. O. Takanen, S. Hober, T. Alm, 
P. H. Edqvist, H. Berling, H. Tegel, J. Mulder, J. Rockberg, P. Nilsson, J. M. Schwenk, 
M. Hamsten, K. von Feilitzen, M. Forsberg, L. Persson, F. Johansson, M. Zwahlen, 
G. von Heijne, J. Nielsen, F. Ponten, Tissue-based map of the human proteome. Science 
347, 1260419 (2015).

 5. E. Sjostedt, W. Zhong, L. Fagerberg, M. Karlsson, N. Mitsios, C. Adori, P. Oksvold, F. Edfors, 
A. Limiszewska, F. Hikmet, J. Huang, Y. Du, L. Lin, Z. Dong, L. Yang, X. Liu, H. Jiang, X. Xu, 
J. Wang, H. Yang, L. Bolund, A. Mardinoglu, C. Zhang, K. von Feilitzen, C. Lindskog, 
F. Pontén, Y. Luo, T. Hökfelt, M. Uhlén, J. Mulder, An atlas of the protein-coding genes 
in the human, pig, and mouse brain. Science 367, eaay5947 (2020).

 6. P. L. Stahl, F. Salmén, S. Vickovic, A. Lundmark, J. F. Navarro, J. Magnusson, S. Giacomello, 
M. Asp, J. O. Westholm, M. Huss, A. Mollbrink, S. Linnarsson, S. Codeluppi, Å. Borg, 
F. Pontén, P. I. Costea, P. Sahlén, J. Mulder, O. Bergmann, J. Lundeberg, J. Frisén, 
Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. 
Science 353, 78–82 (2016).

 7. N. Renier, Z. Wu, D. J. Simon, J. Yang, P. Ariel, M. Tessier-Lavigne, iDISCO: A simple, rapid 
method to immunolabel large tissue samples for volume imaging. Cell 159, 896–910 
(2014).

 8. A. T. Lun, K. Bach, J. C. Marioni, Pooling across cells to normalize single-cell RNA 
sequencing data with many zero counts. Genome Biol. 17, 75 (2016).

 9. Y. Wang, W. Song, J. Wang, T. Wang, X. Xiong, Z. Qi, W. Fu, X. Yang, Y. G. Chen, Single-cell 
transcriptome analysis reveals differential nutrient absorption functions in human 
intestine. J. Exp. Med. 217, (2020).

 10. K. Parikh, A. Antanaviciute, D. Fawkner-Corbett, M. Jagielowicz, A. Aulicino, C. Lagerholm, 
S. Davis, J. Kinchen, H. H. Chen, N. K. Alham, N. Ashley, E. Johnson, P. Hublitz, L. Bao, 
J. Lukomska, R. S. Andev, E. Björklund, B. M. Kessler, R. Fischer, R. Goldin, H. Koohy, 
A. Simmons, Colonic epithelial cell diversity in health and inflammatory bowel disease. 
Nature 567, 49–55 (2019).

 11. J. Liao, Z. Yu, Y. Chen, M. Bao, C. Zou, H. Zhang, D. Liu, T. Li, Q. Zhang, J. Li, J. Cheng, Z. Mo, 
Single-cell RNA sequencing of human kidney. Sci. Data 7, 4 (2020).

 12. S. A. MacParland, J. C. Liu, X. Z. Ma, B. T. Innes, A. M. Bartczak, B. K. Gage, J. Manuel, 
N. Khuu, J. Echeverri, I. Linares, R. Gupta, M. L. Cheng, L. Y. Liu, D. Camat, S. W. Chung, 
R. K. Seliga, Z. Shao, E. Lee, S. Ogawa, M. Ogawa, M. D. Wilson, J. E. Fish, M. Selzner, 
A. Ghanekar, D. Grant, P. Greig, G. Sapisochin, N. Selzner, N. Winegarden, O. Adeyi, 
G. Keller, G. D. Bader, I. D. McGilvray, Single cell RNA sequencing of human liver reveals 
distinct intrahepatic macrophage populations. Nat. Commun. 9, 4383 (2018).

 13. M. M. F. Qadir, S. Álvarez-Cubela, D. Klein, J. van Dijk, R. Muñiz-Anquela, Y. B. Moreno-Hernández, 
G. Lanzoni, S. Sadiq, B. Navarro-Rubio, M. T. García, Á. Díaz, K. Johnson, D. Sant, C. Ricordi, 
A. Griswold, R. L. Pastori, J. Domínguez-Bendala, Single-cell resolution analysis 
of the human pancreatic ductal progenitor cell niche. Proc. Natl. Acad. Sci. U.S.A. 117, 
10876–10887 (2020).

 14. L. Wang, P. Yu, B. Zhou, J. Song, Z. Li, M. Zhang, G. Guo, Y. Wang, X. Chen, L. Han, S. Hu, 
Single-cell reconstruction of the adult human heart during heart failure and recovery 
reveals the cellular landscape underlying cardiac function. Nat. Cell Biol. 22, 108–119 
(2020).

 15. F. A. Vieira Braga, G. Kar, M. Berg, O. A. Carpaij, K. Polanski, L. M. Simon, S. Brouwer, 
T. Gomes, L. Hesse, J. Jiang, E. S. Fasouli, M. Efremova, R. Vento-Tormo, C. Talavera-López, 
M. R. Jonker, K. Affleck, S. Palit, P. M. Strzelecka, H. V. Firth, K. T. Mahbubani, A. Cvejic, 
K. B. Meyer, K. Saeb-Parsy, M. Luinge, C. A. Brandsma, W. Timens, I. Angelidis, M. Strunz, 
G. H. Koppelman, A. J. van Oosterhout, H. B. Schiller, F. J. Theis, M. van den Berge, 
M. C. Nawijn, S. A. Teichmann, A cellular census of human lungs identifies novel cell 
states in health and in asthma. Nat. Med. 25, 1153–1163 (2019).

 16. G. H. Henry, A. Malewska, D. B. Joseph, V. S. Malladi, J. Lee, J. Torrealba, R. J. Mauck, 
J. C. Gahan, G. V. Raj, C. G. Roehrborn, G. C. Hon, M. P. MacConmara, J. C. Reese, 

http://v20.proteinatlas.org
http://advances.sciencemag.org/cgi/content/full/7/31/eabh2169/DC1
http://advances.sciencemag.org/cgi/content/full/7/31/eabh2169/DC1


Karlsson et al., Sci. Adv. 2021; 7 : eabh2169     28 July 2021

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

9 of 9

R. C. Hutchinson, C. M. Vezina, D. W. Strand, A cellular anatomy of the normal adult 
human prostate and prostatic urethra. Cell Rep. 25, 3530–3542.e5 (2018).

 17. J. Guo, E. J. Grow, H. Mlcochova, G. J. Maher, C. Lindskog, X. Nie, Y. Guo, Y. Takei, J. Yun, 
L. Cai, R. Kim, D. T. Carrell, A. Goriely, J. M. Hotaling, B. R. Cairns, The adult human testis 
transcriptional cell atlas. Cell Res. 28, 1141–1157 (2018).

 18. R. Vento-Tormo, M. Efremova, R. A. Botting, M. Y. Turco, M. Vento-Tormo, K. B. Meyer, 
J. E. Park, E. Stephenson, K. Polański, A. Goncalves, L. Gardner, S. Holmqvist, 
J. Henriksson, A. Zou, A. M. Sharkey, B. Millar, B. Innes, L. Wood, A. Wilbrey-Clark, 
R. P. Payne, M. A. Ivarsson, S. Lisgo, A. Filby, D. H. Rowitch, J. N. Bulmer, G. J. Wright, 
M. J. T. Stubbington, M. Haniffa, A. Moffett, S. A. Teichmann, Single-cell reconstruction 
of the early maternal-fetal interface in humans. Nature 563, 347–353 (2018).

 19. L. Sole-Boldo, G. Raddatz, S. Schütz, J.-P. Mallm, K. Rippe, A. S. Lonsdorf, M. Rodríguez-Paredes, 
F. Lyko, Single-cell transcriptomes of the human skin reveal age-related loss of fibroblast 
priming. Commun. Biol. 3, 188 (2020).

 20. M. Menon, S. Mohammadi, J. Davila-Velderrain, B. A. Goods, T. D. Cadwell, Y. Xing, 
A. Stemmer-Rachamimov, A. K. Shalek, J. C. Love, M. Kellis, B. P. Hafler, Single-cell 
transcriptomic atlas of the human retina identifies cell types associated with age-related 
macular degeneration. Nat. Commun. 10, 4902 (2019).

 21. J. Chen, F. Cheung, R. Shi, H. Zhou, W. Lu; CHI Consortium, PBMC fixation and processing 
for chromium single-cell RNA sequencing. J. Transl. Med. 16, 198 (2018).

 22. R. D. Hodge, T. E. Bakken, J. A. Miller, K. A. Smith, E. R. Barkan, L. T. Graybuck, J. L. Close, 
B. Long, N. Johansen, O. Penn, Z. Yao, J. Eggermont, T. Höllt, B. P. Levi, S. I. Shehata, 
B. Aevermann, A. Beller, D. Bertagnolli, K. Brouner, T. Casper, C. Cobbs, R. Dalley, N. Dee, 
S. L. Ding, R. G. Ellenbogen, O. Fong, E. Garren, J. Goldy, R. P. Gwinn, D. Hirschstein, 
C. D. Keene, M. Keshk, A. L. Ko, K. Lathia, A. Mahfouz, Z. Maltzer, M. McGraw, 
T. N. Nguyen, J. Nyhus, J. G. Ojemann, A. Oldre, S. Parry, S. Reynolds, C. Rimorin, 
N. V. Shapovalova, S. Somasundaram, A. Szafer, E. R. Thomsen, M. Tieu, G. Quon, 
R. H. Scheuermann, R. Yuste, S. M. Sunkin, B. Lelieveldt, D. Feng, L. Ng, A. Bernard, 
M. Hawrylycz, J. W. Phillips, B. Tasic, H. Zeng, A. R. Jones, C. Koch, E. S. Lein, Conserved 
cell types with divergent features in human versus mouse cortex. Nature 573, 61–68 (2019).

 23. M. J. Hawrylycz, E. S. Lein, A. L. Guillozet-Bongaarts, E. H. Shen, L. Ng, J. A. Miller, 
L. N. van de Lagemaat, K. A. Smith, A. Ebbert, Z. L. Riley, C. Abajian, C. F. Beckmann, 
A. Bernard, D. Bertagnolli, A. F. Boe, P. M. Cartagena, M. M. Chakravarty, M. Chapin, 
J. Chong, R. A. Dalley, B. D. Daly, C. Dang, S. Datta, N. Dee, T. A. Dolbeare, V. Faber, 
D. Feng, D. R. Fowler, J. Goldy, B. W. Gregor, Z. Haradon, D. R. Haynor, J. G. Hohmann, 
S. Horvath, R. E. Howard, A. Jeromin, J. M. Jochim, M. Kinnunen, C. Lau, E. T. Lazarz, C. Lee, 
T. A. Lemon, L. Li, Y. Li, J. A. Morris, C. C. Overly, P. D. Parker, S. E. Parry, M. Reding, 
J. J. Royall, J. Schulkin, P. A. Sequeira, C. R. Slaughterbeck, S. C. Smith, A. J. Sodt, 
S. M. Sunkin, B. E. Swanson, M. P. Vawter, D. Williams, P. Wohnoutka, H. R. Zielke, 
D. H. Geschwind, P. R. Hof, S. M. Smith, C. Koch, S. G. N. Grant, A. R. Jones, An anatomically 
comprehensive atlas of the adult human brain transcriptome. Nature 489, 391–399 
(2012).

 24. T. Hart, M. Chandrashekhar, M. Aregger, Z. Steinhart, K. R. Brown, G. MacLeod, M. Mis, 
M. Zimmermann, A. Fradet-Turcotte, S. Sun, P. Mero, P. Dirks, S. Sidhu, F. P. Roth, 
O. S. Rissland, D. Durocher, S. Angers, J. Moffat, High-resolution CRISPR screens reveal 
fitness genes and genotype-specific cancer liabilities. Cell 163, 1515–1526 (2015).

 25. T. Wang, K. Birsoy, N. W. Hughes, K. M. Krupczak, Y. Post, J. J. Wei, E. S. Lander, 
D. M. Sabatini, Identification and characterization of essential genes in the human 
genome. Science 350, 1096–1101 (2015).

 26. M. Uhlen, M. J. Karlsson, W. Zhong, A. Tebani, C. Pou, J. Mikes, T. Lakshmikanth, 
B. Forsström, F. Edfors, J. Odeberg, A. Mardinoglu, C. Zhang, K. von Feilitzen, J. Mulder, 

E. Sjöstedt, A. Hober, P. Oksvold, M. Zwahlen, F. Ponten, C. Lindskog, Å. Sivertsson, 
L. Fagerberg, P. Brodin, A genome-wide transcriptomic analysis of protein-coding genes 
in human blood cells. Science 366, eaax9198 (2019).

 27. S. Y. Ang, B. A. Evans, D. P. Poole, R. Bron, J. DiCello, R. A. D. Bathgate, M. Kocan, 
D. S. Hutchinson, R. J. Summers, INSL5 activates multiple signalling pathways 
and regulates GLP-1 secretion in NCI-H716 cells. J. Mol. Endocrinol. 60, 213–224 (2018).

 28. M. Uhlén, L. Fagerberg, B. M. Hallström, C. Lindskog, P. Oksvold, A. Mardinoglu, Å. Sivertsson, 
C. Kampf, E. Sjöstedt, A. Asplund, I. M. Olsson, K. Edlund, E. Lundberg, S. Navani,  
C. Al-Khalili Szigyarto, J. Odeberg, D. Djureinovic, J. O. Takanen, S. Hober, T. Alm, P.-H. Edqvist, 
H. Berling, H. Tegel, J. Mulder, J. Rockberg, P. Nilsson, J. M. Schwenk, M. Hamsten,  
K. von Feilitzen, M. Forsberg, L. Persson, F. Johansson, M. Zwahlen, G. von Heijne, J. Nielsen, 
F. Pontén, Tissue-based map of the human proteome. Science 347, 1260419 (2015).

 29. C. Kampf, I. Olsson, U. Ryberg, E. Sjöstedt, F. Pontén, Production of tissue microarrays, 
immunohistochemistry staining and digitalization within the human protein atlas. J. Vis. Exp. 
2012, 3620 (2012).

 30. M. Uhlen, A. Bandrowski, S. Carr, A. Edwards, J. Ellenberg, E. Lundberg, D. L. Rimm,  
H. Rodriguez, T. Hiltke, M. Snyder, T. Yamamoto, A proposal for validation of antibodies. 
Nat. Methods 13, 823–827 (2016).

 31. S. Tarazona, P. Furió-Tarí, D. Turrà, A. D. Pietro, M. J. Nueda, A. Ferrer, A. Conesa, Data 
quality aware analysis of differential expression in RNA-seq with NOISeq R/Bioc package. 
Nucleic Acids Res. 43, e140 (2015).

 32. P. Shannon, A. Markiel, O. Ozier, N. S. Baliga, J. T. Wang, D. Ramage, N. Amin, B. Schwikowski, 
T. Ideker, Cytoscape: A software environment for integrated models of biomolecular 
interaction networks. Genome Res. 13, 2498–2504 (2003).

Acknowledgments: We thank the entire staff of the Human Protein Atlas program and the 
Science for Life Laboratory (SciLifeLab) for their valuable contributions. Funding: Main 
funding was provided from the Knut and Alice Wallenberg Foundation (WCPR) and the Erling 
Persson Foundation (KCAP). The computations and data handling were enabled by resources 
provided by the Swedish National Infrastructure for Computing (SNIC) at UPPMAX partially 
funded by the Swedish Research Council through grant agreement no. 2018-05973. Author 
contributions: M.U. and C.L. conceived and designed the analysis. M.K., C.Z., W.Z., L.M., E.S., 
F.E., M.A., O.A., X.L., M.O., A.M., L.F., J.M., Y.L., F.P., and C.L. collected and contributed data to the 
study. M.K., C.Z., W.Z., C.L., L.M., F.P., and M.U. performed the data analysis. K.v.F., M.Z., and P.O. 
created the database portal. M.U., M.K., C.Z., and C.L. drafted the manuscript. All authors read 
and approved the final manuscript. Competing interests: The authors declare that they have 
no competing interests. Data and materials availability: All data needed to evaluate the 
conclusions in the paper are present in the paper and/or the Supplementary Materials. 
Single–cell type gene expression data are available to download on the Human Protein Atlas 
resource download page (https://proteinatlas.org/about/download). Scripts for data analysis 
can be found at GitHub (https://github.com/maxkarlsson/HPA-SingleCellType).

Submitted 23 February 2021
Accepted 11 June 2021
Published 28 July 2021
10.1126/sciadv.abh2169

Citation: M. Karlsson, C. Zhang, L. Méar, W. Zhong, A. Digre, B. Katona, E. Sjöstedt, L. Butler, 
J. Odeberg, P. Dusart, F. Edfors, P. Oksvold, K. von Feilitzen, M. Zwahlen, M. Arif, O. Altay, X. Li, 
M. Ozcan, A. Mardonoglu, L. Fagerberg, J. Mulder, Y. Luo, F. Ponten, M. Uhlén, C. Lindskog, A 
single–cell type transcriptomics map of human tissues. Sci. Adv. 7, eabh2169 (2021).

https://proteinatlas.org/about/download
https://github.com/maxkarlsson/HPA-SingleCellType

