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A B S T R A C T   

Though electrophysiological measures (EEG and ERP) offer complementary information to MRI and a variety of 
advantages for studying infants and young children, these measures have not yet been included in large cohort 
studies of neurodevelopment. This review summarizes the types of EEG and ERP measures that could be used in 
the HEALthy Brain and Cognitive Development (HBCD) study, and the promises and challenges in doing so. First, 
we provide brief overview of the use of EEG/ERP for studying the developing brain and discuss exemplar 
findings, using resting or baseline EEG measures as well as the ERP mismatch negativity (MMN) as exemplars. 
We then discuss the promises of EEG/ERP such as feasibility, while balancing challenges such as ensuring good 
signal quality in diverse children with different hair types. We then describe an ongoing multi-site EEG data 
harmonization from our groups. We discuss the process of alignment and provide preliminary usability data for 
both resting state EEG data and auditory ERP MMN in diverse samples including over 300 infants and toddlers. 
Finally, we provide recommendations and considerations for the HBCD study and other studies of 
neurodevelopment.   

1. EEG and ERP methods and their contribution to 
neurodevelopmental research 

There is a longstanding precedent for using electroencephalography 
(EEG) as an indicator of brain function in developmental science, but its 
potential has not been fully realized as big data approaches have become 
drivers of neurodevelopmental research. EEG is a unique indicator of 
neural activity, is developmentally sensitive for use with infants from 
birth, and is more pragmatic (e.g., less expensive and portable) than MRI 
methods. In this paper, we provide a brief primer about EEG methods, 
their utility for large scale consortia, and challenges and opportunities 
for this next generation of neurodevelopmental research. 

1.1. What are EEG/ERPs? 

EEG is a noninvasive measurement tool designed to assess electrical 
activity in the brain (Pizzagalli, 2007). Neural activity and oscillations 
are recorded as EEG signals from electrodes that are placed on the scalp. 
Event-related potentials (ERPs) are EEG signals that are time-locked to a 
stimulus, such as the presentation of a sound or an image of a face. EEG 
and ERP measures can reflect several key types of neural activity that 
underlie cognitive and emotional processes that occur rapidly and 
transiently, within milliseconds (whereas temporal resolution for fMRI 
is several seconds). Because EEG is a direct measure of neuronal activity, 
provides millisecond time precision, is cost effective and feasible, and 
because it is well-suited to studying infants and children (as we describe 
in detail in Section 4.1, below), it is a powerful tool for developmental 
science. 
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Both EEG and ERPs offer crucial insights into the functioning of the 
typical and atypical developing brain. For over 70 years, clinicians and 
researchers have examined the utility of EEG measures for improving 
understanding of neurodevelopment and disorders (Jasper et al., 1938; 
Jasper, 1949). Multiple researchers have previously suggested that EEG 
may be of particular interest and applicability to assessing traits related 
to cognitive and emotional development and psychopathology in chil
dren, as well as biomarkers of relevant disorders (Banaschewski and 
Brandeis, 2007; Brooker et al., 2020; Loo et al., 2016). Studies exam
ining risk for autism spectrum disorder have indicated that EEG markers 
early in life can provide good sensitivity and specificity for later diag
nosis (Bosl et al., 2018). 

1.2. Salience for the HEALthy Brain and Child Development (HBCD) 
study and other neurodevelopmental consortia 

Because EEG/ERP measures can presage later cognitive and lan
guage skills (Bishop, 2007; Norton et al., 2019) and can be measured 
early in life, these are ideal for studying large samples of infants and 
children. However, traditional large national neurodevelopmental con
sortia focusing on broad brain development have had a sole focus on 
magnetic resonance imaging (MRI) and have not included EEG modal
ities. While MRI offers unique and important information that cannot be 
obtained from EEG/ERP, the higher cost and lower feasibility make it 
more challenging. Fortunately, the planned HEALthy Brain and Child 
Development (HBCD) Study requires EEG as a neuroimaging method. 
HBCD will be a longitudinal, nation-wide study, funded by the National 
Institutes of Health (NIH; Volkow et al., 2020). 

Beginning prenatally, HBCD will characterize normative infant brain 
and behavioral development, as well as early life risk and resilience 
factors that influence typical and atypical development from birth to 
middle childhood (Morris et al., 2020). The study will include a repre
sentative cohort to examine normative brain development, over
sampling for exposure to opioids and other substances, and adverse 
perinatal exposures that capture the developmental origins of health 
disparities. This multi-site study will include ̃ 7,500 pregnant women 
with planned follow-up of children for a decade. Importantly, HBCD will 
be the first and largest longitudinal consortium explicitly designed to 
prospectively examine the effects of early exposures on development 
and the first large-scale study of broad neurodevelopment to implement 
EEG and ERP measures. 

1.3. Types of EEG measures and illustrative scientific utility 

1.3.1. Baseline EEG procedure 
EEG can be measured during developmentally appropriate tasks as 

well as during a neutral baseline or “rest” state. Baseline EEG features 
may reflect potentially meaningful differences in affective and cognitive 
tendencies that underlie behavioral response patterns and are widely 
studied on their own. Baseline EEG data collection protocols typically 
include a short period of quiet wakefulness, usually lasting less than 5 
min. Infants and young children may watch a video of abstract images 
moving on a screen, a minimally arousing video clip, colorful balls 
spinning in a bingo wheel, or a person blowing bubbles, as just some 
examples. Researchers may mimic the “eyes-open” and “eyes-closed” 
segments of the standard adult and older children protocols by alter
nating turning lights on and off throughout the session. A baseline 
recording can also serve as an important point of comparison for EEG 
measured during a task. In infancy and toddlerhood, baseline EEG 
assessment is perhaps an ideal measure of neural activity because it is 
task-free; directing or engaging young children in specific tasks (e.g., 
attending to repetitive stimuli on a screen or pressing a button to indi
cate recognition given stimulus, etc.) is difficult (Bell and Cuevas, 2012). 
There are various ways to quantify EEG data; some widely used ap
proaches are described below. 

1.3.2. Baseline EEG power 
Power is conceptualized as the signal produced from a neuronal 

population at the same time, and therefore represents an index of neural 
activity in a particular location (Klimesch, 1999). Power values are 
typically calculated for specific frequency bands, which are associated 
with different emotional and cognitive processes in children and adults. 
These values are derived by taking EEG data that have been pre
processed to remove artifacts and applying a Fourier transform that 
produces spectral power at the different frequencies, expressed in mean 
square microvolts. Measuring power within certain frequency bands 
that correspond to different established cognitive processes can provide 
important information about child development (Saby and Marshall, 
2012). 

The 6–9 Hz alpha band is the dominant frequency band in infancy 
and early childhood; this corresponds to the characteristics of the 8–13 
Hz alpha band that is most prominent in awake children and adults 
(Cuevas and Bell, 2012; Marshall et al., 2002; Stroganova et al., 1999; 
Stroganova and Orekhova, 2007). Changes in power in this frequency 
band have been associated with several domains of development such as 
cognition (e.g., working memory) and emotional regulation (Bell, 2002; 
Fox et al., 2001). Other oscillations that have been studied in young 
children include high-frequency oscillations that typically increase 
across development, such as beta, and low-frequency oscillations that 
are shown to decrease, such as theta and delta (Matoušek and Petersen, 
1973). Beta (approximately 10–18 Hz in infants, 13− 30 Hz in adults) 
has been associated with cognitive processing, including attentional 
control and regulation (Bell, 1998; Ray and Cole, 1985). Activity in the 
theta band (3–6 Hz in infants and 4–7 Hz in older children and adults) 
has been related to social stimulation and affective state (Orekhova 
et al., 2006), as well as attention and readiness to learn (Begus and 
Bonawitz, 2020). Greater relative power in the low-frequency delta 
band (typically <2 Hz in infants/toddlers, up to 3 Hz in adults) as 
compared with higher bands such as alpha and beta, has been linked to a 
variety of mood, mental health, and learning disorders in children 
(Chabot et al., 2005). 

1.3.3. Frontal EEG asymmetry 
Frontal EEG asymmetry is the relative response or power in frontal 

electrodes in one hemisphere compared to the other. Asymmetry scores 
are typically calculated as a subtraction or ratio of power between 
electrodes in the two hemispheres. Alpha asymmetry is a widely-studied 
such metric, typically comparing power from a left frontal electrode (e. 
g., F3) with one on the right (e.g., F4). Frontal asymmetry measured at 
rest has been conceptualized as a trait-like biological marker of 
approach/avoidance tendencies, biasing how an individual processes 
affective information in their environment that may be a marker of risk 
for maladjustment (Coan et al., 2006; Davidson, 2000; Gatzke-Kopp 
et al., 2014). Individual differences in resting frontal EEG asymmetry 
emerge within the child’s first year and remain relatively stable over 
development (Henderson et al., 2001). Researchers can also measure 
changes in EEG asymmetry from baseline to task to examine how an 
individual currently responds to an emotion-eliciting situation (e.g., 
Atzaba-Poria et al., 2017; Bell and Diaz, 2012; Diaz and Bell, 2012). How 
well an individual is able to regulate their emotional distress may be 
related to these differences in the activation of the left and right frontal 
cortices (Fox, 1994). 

1.3.4. Baseline EEG coherence 
Coherence is a metric of similarity between electrode sites, typically 

calculated as the squared correlation coefficient of signals between a 
pair of electrodes in a specific frequency band. Coherence values range 
from 0 to 1, such that a value closer to 1, or a high coherence between 
sites, is thought to indicate a stronger level of synchronization or con
nectivity between the two sites (Nunez, 1981; Thatcher, 1992; Thatcher 
et al., 1986). Measured across age, increases and decreases in coherence 
depend on the relative distance between electrodes and may indicate 
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brain maturation (Thatcher, 1994). Changes in coherence from baseline 
to task may index crosstalk of regions during specific cognitive processes 
elicited by the task. For instance, increases in coherence from baseline to 
task have been associated with executive function ability in preschoolers 
(Swingler et al., 2011). 

1.3.5. Cross-frequency coupling 
Correlations of oscillations during continuous recordings of EEG may 

provide new insights into trait-level relations between an individual’s 
cortical and subcortical circuitry. Most notable is delta-beta coupling, 
which is thought to reflect connections between the subcortical limbic 
system and the cortical regulatory system, both of which are implicated 
in emotional behaviors (Knyazev, 2007). Emerging research with infants 
and young children finds associations between delta-beta coupling and 
fearful or reactive behaviors. In a study of 6-month-old infants, re
searchers found key differences in delta-beta coupling based on levels of 
cortisol reactivity. Compared to those infants who were low 
cortisol-reactive, infants who were high cortisol-reactive showed greater 
delta-beta coupling in frontal, central, and parietal regions at baseline 
(Brooker et al., 2016). The temperamental profile of behavioral inhibi
tion was also associated with higher delta-beta coupling in central and 
parietal regions for early school-age children (Pool et al., 2018). 

1.4. Types of event-related EEG oscillations and spectral perturbations 
and illustrative scientific utility 

Following some input or event, changes in EEG oscillations can be 
recorded from different frequency bands, which are termed event- 
related oscillations (EROs) or event-related spectral perturbations 
(ERSPs). In contrast to ERPs which measure event-related voltage 
changes, EROs reflect changes in oscillatory activity, typically within a 
given frequency band (Basar et al., 1998); such differences may reflect 
individual differences in how the brain responds to stimuli, such as 
sensory, emotional, or cognitive stimulation. In development, 
event-related differences in ranges studies with continuous EEG, such as 
theta, alpha, and mu oscillations, have been studied widely (Begus and 
Bonawitz, 2020; Marshall and Meltzoff, 2011; Yordanova and Kolev, 
2009). 

Studies indicate that EROs/ERSPs reflect crucial processes of early 
neural tuning for language. Three-month-old infants display heightened 
gamma power when listening to utterances in their native language and 
rhythmically similar languages (Pena et al., 2010). By 6 months of age, 
that preference appears to be honed, as gamma power increases exclu
sively when listening to sentences in their native language only 
(Ortiz-Mantilla et al., 2013). Similarly, event-related alpha power 
changes in response to both human speech and lemur calls (but not 
backward human speech) at 3–4 months of age; however, at 6 months, 
only human speech elicits the alpha oscillatory changes (Woodruff Carr 
et al., 2021). 

Atypical oscillatory modulations may be biomarkers for psychopa
thology; for example, children with ADHD have demonstrated differ
ential theta oscillations during a visual attention task compared to 
typically developing peers (Guo et al., 2020). Altered patterns of theta 
and gamma oscillations were observed when children on the Autism 
spectrum who were minimally verbal were visually processing seman
tically relevant information (Ortiz-Mantilla et al., 2019). Alterations in 
evoked theta power have been linked to attention and emotion as early 
as infancy, as well as processes such as error or change detection (Begus 
and Bonawitz, 2020), which are impaired in multiple mental health 
disorders. 

1.5. Types of ERP measures and illustrative scientific utility 

ERPs are time-locked segments of electrical activity when processing 
a particular stimulus, averaged across trials (Luck, 2005). ERPs offer a 
method to address an extremely wide variety of sensory, perceptual, 

cognitive, and affective processes, from pre-attentive processing within 
milliseconds of stimulus onset to conscious stimulus processing, to 
post-stimulus emotional appraisal. For a review of components related 
to child psychopathology, see Banaschewski and Brandeis (2007) and 
related to child language, see McWeeny and Norton (2020). ERPs are 
typically measured in terms of the amplitude or latency of a given 
component within a certain time window. Each component is typically 
defined by a spatial topography on the scalp, though spatial location of 
the peak or asymmetry of the amplitude are also sometimes measured 
(Norton et al., 2021). The goal of these measurements is typically to then 
compare across groups, ages, or to relate to behavioral measures. 

ERPs are useful for capturing how the brain responds to, and dif
ferentiates between, discrete stimuli. For instance, infants at 7 months of 
age have demonstrated amplitude differences in the Nc component, 
associated with attention allocation to visual information, when shown 
happy versus threatening faces (de Haan et al., 2004). Depending on the 
stimulus, multiple ERP components can be measured that reflect 
different cognitive processes that occur on the order of milliseconds and 
would otherwise be challenging to capture via a behavioral response. An 
example of this is attention processes that unfold over the presentation 
of emotional faces. Researchers measure attention processes in multiple 
ways, but behavioral measures that require button presses are prevalent 
in the literature (e.g., the dot-probe task; Bradley et al., 1999; Mogg 
et al., 1997). However, multiple emotional, perceptual, and cognitive 
processes can occur between the stimulus presentation and one’s motor 
response, suggesting behavioral attention paradigms may not be reliable 
indicators of attention when shifts can occur under 100 milliseconds 
(Kappenman et al., 2014; Muller & Rabbitt, 1989). Further, rapid re
sponses via button responses cannot be reliably assessed with young 
children. 

ERPs can capture both bottom-up and top-down attention processes 
that occur at the millisecond-level without requiring overt attention or 
behavioral responses, making it an ideal measure to employ with young 
children. For instance, N2 and P2 ERP components, indexing different 
levels of attention at approximately 200 milliseconds after presentation 
of an emotional face, may help disentangle the links between threat 
avoidance and threat vigilance in anxious children (Thai et al., 2016). In 
infants as young as 7 months old, researchers have found differences in 
informational processing of emotional expressions as indexed by ERPs 
(Leppanen et al., 2007). 

2. EEG/ERPs as an index of brain maturation 

One interest of the HBCD study is indexing brain maturation, as 
maturation may vary based on the variety of exposures and environ
mental factors that will be studied. Charting intra-individual change or 
development for a given construct can be challenging in early devel
opment, given that a measure that is developmentally appropriate at one 
age may not be appropriate even mere months earlier or later. In order 
to truly track the same constructs over time, the way that EEG/ERPs are 
measured may need to change with the age of the child, including factors 
like the task length, task demand or need for child compliance, hardware 
factors like tolerance for electrodes placed on the face, or factors related 
to processing pipelines such as how eye blinks are detected and cor
rected or rejected). However, some EEG tasks are scalable across early 
development to capture individual differences in behavior while 
indexing brain maturation. These tasks are often relatively passive (do 
not require overt behavioral responses), such as EEG measured at 
baseline. ERPs such as the mismatch negativity (MMN) may also be a 
useful tool, as they are elicited via passive auditory paradigms. Here, we 
discuss these two paradigms as exemplars, given their widespread use 
and potential for inclusion in HBCD and other longitudinal studies. 

2.1. Baseline EEG as an index of brain maturation 

Repeated measures of baseline EEG across early development can 
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provide multiple indexes of brain maturation. Developmental cognitive 
neuroscientists consider higher EEG power in certain bands to be 
indicative of broad brain development, as previous work has found 
linear increases in power across infancy and that higher power values 
are related to increased cognitive performance (Bell and Fox, 1992; 
Cuevas and Bell, 2011). Baseline power in the 6- to 9-Hz frequency band 
(the child alpha and mu frequency range) increases linearly from 6 to 12 
months of age across frontal, parietal, and occipital sites (Bell and Fox, 
1994; MacNeill et al., 2018). This band shows age-related developments 
through age 4 (Marshall et al., 2002). Such increases in baseline EEG 
power in particular regions over time are thought to index neuronal 
maturation and excitability in those groups of neurons (Nunez, 1981). 
Particularly in infancy, the brain undergoes rapid maturation that un
derlies the “bursts” in behavioral change that are evident in the devel
oping infant (Fischer and Van Geert, 2014). The month-to-month 
changes in EEG power across the first year provide evidence to suggest 
whole brain maturation, further supported by research finding that 
power over time is linked to gains in cognitive performance, such as the 
A-not-B task (Bell and Fox, 1992; MacNeill et al., 2018). EEG power 
changes in various frequency bands continue in a protracted fashion 
through childhood and into early adulthood (e.g., Tierney et al., 2013.) 

EEG coherence between electrode pairs over time may be markers of 
integrating neural networks that underlie maturation of the central 
nervous system (Thatcher, 1994). From birth to age 3, Thatcher and 
colleagues (Thatcher et al., 1987) found that some electrode pairs 
showed decreases in coherence while others showed increases over time. 
However, patterns of coherence were relatively phase-locked and stable 
beyond three years of age. These developmental shifts in coherence 
stability were posited to parallel bursts of cognitive change across 
childhood. Increases and decreases in coherence as indexes of matura
tion may also depend on electrode proximity and the hemisphere in 
question. In the left hemisphere, coherence that decreases across age for 
short-distance sites, but increases across age for long-distance sites, may 
indicate greater maturation. The right hemisphere follows an opposite 
pattern indicative of maturation. Such differential patterns of coherence 
across early development have been linked to critical skill gains in do
mains such as language and motor development (Bell and Fox, 1996; 
Mundy et al., 2003). 

2.2. ERP MMN as an index of brain maturation 

The mismatch negativity (MMN) ERP component is an indicator of 
auditory processing and reflects automatic discrimination of auditory 
input (Naatanen, 2001; Naatanen et al., 2012). It is elicited by an 
oddball paradigm, in which a repeated standard sound is occasionally 
replaced by a deviant sound (often a different syllable or tone of a 
different frequency than the standard sound). The MMN component is 
the difference between the response to the standards and deviants (see 

Fig. 1), as the brain discriminates the sound that is different from the one 
that the individual had stored in memory. 

The auditory oddball MMN paradigm is a passive task and thus 
feasible in infancy, making the MMN a prime candidate for character
izing brain maturation across early development (Chen et al., 2017; 
Guttorm et al., 2010). This paradigm is also ideal for studying longitu
dinal, within-person change because task demands do not change. 
Further, passive auditory tasks have prominently lower attrition rates 
than visual ERP studies (Stets et al., 2012) because the child doesn’t 
have to attend to stimuli on a screen, allowing researchers to retain more 
quality ERP data, increasing signal-to-noise ratio and decreasing subject 
attrition. 

The MMN changes markedly with age. Infants typically show a 
positive voltage wave for the MMN, sometimes called a mismatch 
response (MMR). Infants born preterm or with very low birthweight 
show atypical MMRs (Bisiacchi et al., 2009; Fellman et al., 2004). Earlier 
studies examining the MMN in developmental populations indicated 
that an adult-like MMN (to approx. 1000 vs. 1200 Hz tones) was present 
by about 4 years of age (Morr et al., 2002; Shafer et al., 2000), and that 
the peak latency decreased at a rate of approximately 1 ms per month 
(Morr et al., 2002). However, later studies indicate that these findings 
may be due to the use of peak measurements that are influenced by 
noise, and that the MMN to tones and syllables continues to mature 
through adolescence (Bishop et al., 2011). Other studies indicate that 
children with language impairment show immature or delayed MMN 
responses, similar to those seen earlier in development among typically 
developing children (Bishop and McArthur, 2004). 

3. Exemplar early EEG/ERP predictors of later abilities and 
outcomes 

In this section, we describe three areas of research in which EEG/ERP 
measures have been shown across multiple studies to be relevant in
dicators of important constructs known to predict developmental psy
chopathology (e.g., early life adversity) or predictors of later functioning 
such as language ability and mental health. Importantly, the results 
regarding these indicators are robust, seen across labs and ages. Of 
course, these are merely exemplars, as there are myriad ways to employ 
EEG/ERP to characterize neurodevelopmental mechanisms. Impor
tantly, the ERP mismatch negativity (MMN) and baseline EEG tech
niques that form the basis of these studies are ideal for large consortia 
because they are highly feasible and cost effective for work with infants 
and children across ages. 

3.1. ERP MMN and later language and psychopathology outcomes 

The MMN is an ERP that represents the difference in response be
tween a standard stimulus that is presented frequently versus a deviant 

Fig. 1. Example of MMN group grand average waveform. Measurements of the MMN typically examine the amplitude or peak of the difference wave (in red, the 
difference between the response to standard vs. deviant stimuli). (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article). 
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or oddball stimulus that is presented intermittently among the stan
dards. In neurodevelopmental research, the stimuli are almost always 
auditory, such as tones that differ in pitch or different speech syllables or 
phonemes. In studies of infants and children, the MMN often has two 
peaks, often called the early MMN and late MMN (or late discriminative 
negativity, LDN). It is not yet clear whether the MMN is an index of the 
brain’s ability to build a memory trace/template, detect deviation from 
that trace, or some combination (Garrido et al., 2009). 

The MMN is one of the most widely studied ERPs in infancy and 
childhood because it can be completed passively, even during sleep. The 
bulk of studies in this area relate the MMN to language impairment, 
reading ability/dyslexia (Norton et al., 2019), and autism spectrum 
disorder (Schwartz et al., 2018). Though there are substantial differ
ences in the results across studies, the general findings are that children 
who are at risk for or who have poor language or reading abilities have 
reduced amplitude of the MMN. Meta-analyses reveal that children and 
adults with dyslexia have reduced amplitude MMN to speech stimuli (Gu 
and Bi, 2020), but that groups with autism spectrum disorder (ASD) do 
not show significant MMN differences (Schwartz et al., 2018) relative to 
peers. Importantly, various aspects of the MMN also relate to key 
pre-literacy abilities including rapid automatized naming and phono
logical awareness (Norton et al., 2021). 

Multiple studies suggest that the MMN measured very early in life 
(even within days after birth) relates to risk for or later diagnosis of 
language and reading disorders. Reading disorders such as dyslexia are 
among the most common learning disabilities, affecting approximately 
7% of the population, and they are difficult to identify early in reading 
development, the timepoint when intervention is most effective 
(Peterson and Pennington, 2012). Numerous studies find that infants 
with family history of dyslexia (FHD) which indicates genetic risk (as 
dyslexia is approximately 50 % heritable) show altered or absent 
mismatch responses as compared to peers (e.g., Leppanen et al., 2002; 
Pihko et al., 1999; van Leeuwen et al., 2006). MMN responses in infancy 
also relate to later reading ability. Studies indicate that 2-month-old 
Dutch infants who were later diagnosed with dyslexia had absent 
MMN responses, whereas peers showed MMNs (van Zuijen et al., 2013). 
Another study of Finnish infants found that those with FHD had atypical 
MMNs in the first week of life, regardless of whether they later became 
typical readers or poor readers (Leppanen et al., 2010). One study in 
English-speaking infants observed that ERP responses to syllables, 
though not in a typical MMN oddball paradigm, combined in a 
discriminant function could classify 81 % of children as typical, dyslexic, 
or poor readers (defined as low reading ability and lower IQ) 8 years 
later (Molfese, 2000). These longitudinal studies from infancy to reading 
age have had relatively small groups (typically 24 or fewer children per 
group) and so more work is needed in large samples to assess how the 
MMN relates to later reading ability. 

Studies have also linked the MMN to numerous factors related to 
psychopathology and altered auditory or conscious processing (Naata
nen et al., 2012), though fewer longitudinal studies exist in these areas. 
In specific diagnoses, as heterogeneous as ADHD and schizophrenia, 
many studies have been conducted and meta-analyses show significant 
overall effects of reduced MMN for those with the disorder (for ADHD, 
Cheng et al., 2016; schizophrenia, Umbricht and Krljes, 2005). In 
addition, the MMN has been linked with underlying dimensional risk 
phenotypes, including social withdrawal (Bar-Haim et al., 2003) and 
impulsivity (Franken et al., 2005); in the case of young adults with high 
impulsivity, the MMN amplitude was greater than for controls. A similar 
auditory change detection paradigm also showed differences in children 
at 9 months with high levels of behavioral inhibition (Marshall et al., 
2009), which is a risk factor for later anxiety disorder. To our knowl
edge, no studies have examined these mechanistic pathways to mental 
health in the early phase of the clinical sequence in young children. 

3.2. Resting frontal alpha asymmetry and later psychopathology and 
socio-emotional outcomes 

An individual’s relative frontal alpha asymmetry during a baseline 
session can reveal important insight into their approach-withdrawal 
motivational tendencies and their risk for developing internalizing and 
externalizing problems. Relative right frontal alpha asymmetry, a 
biomarker of avoidance, has typically been linked to higher levels of 
negative affect, difficulties regulating emotions, and internalizing 
problems. Relative left frontal alpha asymmetry, a biomarker of 
approach, has been related to positive affect and exploratory behaviors, 
but in some cases, difficulty controlling approach behaviors and greater 
externalizing problems (Davidson, 1994, 1998; Davidson, 2004; 
Davidson and Fox, 1989; Smith and Bell, 2010). Relative frontal alpha 
asymmetry has also been extensively studied as a risk or protective 
factor for developing internalizing and externalizing problems as a 
function of child temperament. Infants with higher negative reactivity 
show more social wariness only when they have right frontal alpha 
asymmetry (Henderson et al., 2001). Probability of belonging to an 
exuberant profile (defined as positivity, approach, and sociability) over 
time was related to higher levels of externalizing problems at age 5 only 
for children who exhibited left frontal alpha asymmetry at age 3 
(Degnan et al., 2011). 

Although relative frontal asymmetry has been conceptualized as an 
individual-level trait, there is evidence to suggest that salient aspects of 
the environment can impact frontal asymmetry development. Young 
children of depressed mothers have shown decreases in left frontal 
asymmetry from ages 3–6 years, and children of non-depressed mothers 
have shown stability in asymmetry at these ages (Goldstein et al., 2016). 
Positive associations have been found between frontal alpha asymmetry 
in parents and their 12-month-old infants, and that mothers’ depression 
predicts their infants’ frontal asymmetry. These findings suggest inter
generational transmission of frontal asymmetry, with potential conse
quences for offspring depression risk (Hill et al., 2019). 

3.3. Early adverse experiences assessed via EEG/ERP and later broad 
outcomes 

A key focus of HBCD is charting pathways from early life adverse 
exposures and brain and behavioral development. Children who expe
rience early life stress, such as socioeconomic disadvantage, institu
tionalization, and maltreatment, are at greater risk for maladaptive 
socioemotional and cognitive outcomes. Disruptions in typical brain 
development likely underlie such trajectories, particularly during the 
first few years of life when brain plasticity is heightened (Blair and 
Raver, 2016). Children growing up in families with lower SES have 
shown different patterns of brain activity than children from higher SES 
backgrounds. For example, ERPs in selective attention tasks have been 
found to differ for young children from low and high SES groups 
(D’Angiulli et al., 2008, 2012). Young children from low SES back
grounds show disparities in EEG power, with differences in frontal theta 
and occipital/left temporal alpha band continuing through early school 
age (Otero et al., 2003). However, other work finds no association be
tween SES and brain activity measured at birth (Brito et al., 2016). The 
complexity of the concept of SES and the variety of ways it is measured 
may explain some of these differences across studies. 

Normative development may also be disrupted when a child lacks a 
responsive caregiver to scaffold self-regulation and underlying physi
ology, which is often the case with children growing up in institutional 
care. Children with a history of institutional care are more likely to have 
mental health problems than children without this history. ERP studies 
have demonstrated that institutionalized children and previously insti
tutionalized children in foster care show reduced P300 magnitude 
during an inhibitory control task than control children, potentially 
reflecting diminished attention processing in children with a history of 
institutionalization (McDermott et al., 2012). However, some studies 
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have found that placement into foster care at early ages may dampen the 
effects of institutionalization on psychophysiology and behavioral out
comes, potentially indicating a recovery process. Indeed, early institu
tionalized children who were randomized to more nurturing foster care 
settings were less likely to have an internalizing disorder than children 
who remained institutionalized (Zeanah et al., 2009). Age of foster care 
placement is related to both alpha power and short-distanced EEG 
coherence, providing further support for the importance of early in
terventions in optimizing healthy brain development (Marshall et al., 
2008). 

ERPs have also been a particularly useful tool for revealing under
lying neural differences in emotion processing for maltreated children. 
Physically abused children have been shown to respond more quickly to 
targets following angry faces than happy faces compared to control 
children and have shown an increased P3b, an ERP component involved 
in attention allocation, to angry emotion faces (Pollak and Tolley-Schell, 
2003). This group also showed larger P1s, an ERP component involved 
in early perceptual processing, in occipital regions for angry faces, 
compared to controls. However, no ERP differences for happy faces were 
found. Other work has demonstrated that maltreated children show 
greater P260 and Nc amplitudes compared to non-maltreated children 
when viewing angry faces. However, there were no differences between 
groups in the N150, an early perceptual processing component (Cic
chetti and Curtis, 2005). These findings suggest that maltreated children 
do not show global deficits in emotion processing, and using ERPs is a 
highly informative way of disentangling specific attention processes that 
may be more susceptible to extreme forms of early adversity such as 
childhood maltreatment. 

These findings from the early adversity literature speak to the com
plex associations between adversity and brain activity, and they un
derscore the need for more research on the specific mechanisms that 
shape these associations over time. In their model of early deprivation 
and threat, Sheridan and McLaughlin (2014) posit that early stressful 
experiences (e.g., poverty, institutionalization, maltreatment) influence 
neurodevelopment via the absence of important social and cognitive 
input and increased exposure to threat. However, many of the above 
studies represent early extreme adversity, making it unclear at which 
thresholds of adversity do we see differences in psychophysiological 
activity. Further, there is little understanding in the EEG/ERP literature 
regarding when EEG/ERP becomes a biomarker of clinically concerning 
behavior. For example, although some survey measures have clinical 
cutoff scores, no such score exists for right asymmetry or P300 ampli
tude. Large neurodevelopmental studies, such as HBCD, with compre
hensive characterization of early life exposures spanning more 
commonly occurring adversities and stressful rearing environments, are 
essential for ameliorating the identification of biomarkers and atypical 
brain-behavior trajectories in development. 

4. Promises and challenges of using EEG/ERPs in HBCD and 
studies of neurodevelopment 

Major large-scale studies of children’s neurodevelopment such as the 
Pediatric Imaging, Neurocognition, and Genetics study (PING, e.g., Fjell 
et al., 2012; LeWinn et al., 2017), the Adolescent Brain and Cognitive 
Development study (ABCD, e.g., Casey et al., 2018; Jernigan et al., 2018; 
Volkow et al., 2018), and the Baby Connectome Project (BCP, Howell 
et al., 2019) have focused on MRI as their shared neuroscience modality. 
One large study consortium has specifically focused on EEG, the Autism 
Biomarkers Consortium for Clinical Trials, suggesting that it is feasible 
to align across sites and collect data that can be pooled for larger ana
lyses (McPartland et al., 2020). 

In addition to the specific advantages of EEG/ERP measures dis
cussed below, there are reasons for collecting and analyzing different 
types of information in parallel. (Assessing which levels or types of 
neural data add incremental utility to clinical prediction is a goal of our 
multi-site MHESC study, see Section 5, below.) As an example, one 

recent study found a small but significant advantage for adding genetic 
information to behavioral data in terms of predicting language and lit
eracy outcomes (Dale et al., 2020). Multiple modalities of measurement 
from MRI, including structural anatomical characteristics and 
diffusion-weighted measures, provided complementary (that is, 
non-redundant) information in accounting for cognitive control abilities 
that are central to mental health and academic success (Fjell et al., 
2012). Here, we discuss the advantages of including EEG/ERP measures 
in the HBCD study, as well some challenges that are specific to engaging 
the diverse sample that will need to be considered. 

4.1. Advantages for assessing brain activity with EEG/ERPs 

As noted, MRI has been the primary method for large longitudinal 
and cross-sectional studies in the past. EEG/ERP has several scientific 
and practical advantages in a large cohort study of infants and young 
children such as HBCD. 

4.1.1. Complementary information to other assessment types 
EEG provides complementary information about neurodevelopment 

both to behavioral indicators (Coch, 2021) and other brain measures 
such as structural and functional MRI. MRI provides key information 
that EEG cannot, including about the structure of the brain (e.g., cortical 
thickness, structural connectivity) and provides much more precise in
formation about the location of functional processes and functional 
connectivity. Thus, EEG/ERP and MRI are ideal to use in tandem. In 
some cases, structural neuroanatomical changes may relate to functional 
changes observed in EEG (Whitford et al., 2007). Thus, the combination 
of EEG, MRI, and behavioral assessment should provide a level of detail 
about how functional, structural, and phenotypic changes interact and 
unfold over time. 

4.1.2. Functional information with temporal precision 
Psychophysiological measures such as EEG (as well as magnetoen

cephalography, MEG) surpass all other neuroimaging methods in their 
temporal resolution, such that researchers can capture shifts in brain 
functioning that may parallel the rapid emotional and cognitive pro
cesses that unfold at the level of milliseconds, both at rest and in real- 
world paradigms (Bell, 1998; Bell and Cuevas, 2012). Multiple re
searchers make the case that this level of information can be particularly 
useful for understanding development and its disorders (Banaschewski 
and Brandeis, 2007; Cavanagh, 2019). 

4.1.3. Feasibility and practicality 
EEG hardware is relatively low cost to purchase and to use per ses

sion compared to other neuroscience methods, which makes it an 
accessible tool for capturing neural signals in large samples (McLoughlin 
et al., 2014). EEG/ERP activity may be a particularly useful measure
ment of early-emerging individual differences in brain activity and 
maturation, given its relative ease of application with awake infants. 
Baseline EEG and auditory MMN ERP paradigms are also highly feasible 
because the demand on the child is quite low, and relatively informative 
data can be collected in as little as two minutes of baseline and 
approximately 10 min of MMN. 

EEG is also often portable and can be brought to participants’ homes 
or schools, which eases participant burden and allows researchers to 
reach families who are typically underrepresented in neuroscience 
research (See Section 4.2, below for discussion of using EEG in diverse 
groups). It is also more inclusive in that individuals with metal in their 
body can participate safely, which is typically a contraindication for 
MRI. Functional near-infrared spectroscopy (fNIRS) shares some of these 
advantages of cost and potential portability, but EEG has been so widely 
used and established as a developmental science tool that it far outpaces 
fNIRS in terms of existing literature with which to compare and avail
ability of toolboxes and software for data processing. 
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4.1.4. Naturalistic assessment during wake states in early life 
Increasingly there is a call to action for examining brain activity in 

more naturalistic settings to increase the ecological validity of our 
measurements (Melnik et al., 2017). Unlike other non-invasive neuro
science measures, such as MRI and MEG, EEG can tolerate constrained 
participant movements and can be employed in relatively naturalistic 
settings. MRI and functional near-infrared spectroscopy (fNIRS) afford 
better spatial resolution, and like EEG, fNIRS allows the participant to be 
mobile. Although EEG is sensitive to motion, it can be used for a myriad 
of relatively stationary behavioral tasks, which capture changes in 
power, coherence, or asymmetry from baseline to task. EEG also offers 
the opportunity for face-to-face interaction with another person; child 
EEG features and parent-child EEG synchrony have been examined 
during shared eye gaze and structured tasks (e.g., Leong et al., 2017). 
Our lab is pursuing these measures during baseline and naturalistic 
parent-child interaction (Norton et al., under review). 

4.2. Engaging diverse children and families in EEG/ERP research 

EEG may provide both advantages and challenges in addressing the 
lack of diversity in large-scale developmental studies’ samples, which is 
well documented (Rowley and Camacho, 2015; Sugden and Moulson, 
2015). Because the developing brain is shaped by early experiences 
rooted in culture and other features of the environment (Greenough 
et al., 2002), it is unlikely that basic neural processes are truly invariant 
across sociodemographic and sociocultural groups. The field, therefore, 
can make little claim that our developmental cognitive neuroscience 
findings are generalizable when failing to collect data from underrep
resented groups. 

The field of developmental cognitive neuroscience needs models that 
(a) draw from economically and ethno-racially diverse samples, and (b) 
assess brain maturation early in development, to more comprehensively 
understand how experiences shape brain development. Further, large 
studies have the responsibility to thoughtfully examine how race, 
ethnicity, education, and poverty can foster unique experiences and 
physiological changes that shape brain development, rather than simply 
inputting these variables as controls. Thus, tailored approaches critical 
to effectively engaging diverse populations are essential to character
ization of normative and atypical brain:behavior patterns and their links 
to developmental outcomes in a manner broadly representative of the 
varied contexts in which children learn and grow (Dotson and Duarte, 
2019; Gross et al., 2001). 

The benefits of EEG discussed here – that it is portable, inexpensive, 
and noninvasive – make it one of the best tools for collection of neural 
data from large and typically underrepresented samples. Thus far, 
research has examined relations among EEG/ERP, socioeconomic status 
(SES), and cognition in infancy and early childhood, finding some sup
port for differences in brain depending on SES (e.g., Neville et al., 2013; 
Stevens et al., 2009; Tomalski et al., 2013), while other studies find no 
differences (e.g., Brito et al., 2016). These studies, while informative for 
understanding brain activity in the context of SES, have relied on largely 
White and/or well-educated samples. Creating a pooled cohort from 
independent, diverse samples, such as in the MHESC study that we 
currently have underway, may be an ideal solution for examining 
cross-cultural differences in brain activity. Collaborative studies can 
pool resources and share costs often associated with increasing diversity 
in samples (Dotson and Duarte, 2019). 

This lack of diversity in large-scale developmental studies’ samples 
raises a particular consideration for EEG/ERP studies. EEG research 
often both overtly and implicitly excludes participants with thick, curly, 
and/or coarse hair, a feature that makes collection of EEG/ERP data 
more difficult. As a consequence, many research datasets tend to under- 
represent non-white participants. In some cases, regardless of the 
amount of gel used or the fit of the EEG cap or net, impedances often 
remain too high and a good cap-scalp connection cannot be established. 
While there is a nascent literature about this challenge (Etienne et al., 

2020), social media and other platforms have helped to amplify this 
concern and begin to raise awareness. A similar issue is present for 
children who wear their hair in braids or dreadlocks (most often, chil
dren of color), as they would not be easily able to wash out the EEG gel 
or saline. In the past, our groups have worked with participants to 
schedule an EEG visit at a time just before they are about to have their 
hair re-braided so that the gel can easily be rinsed out, or to have a staff 
member or outside person with braiding expertise on site to help 
re-braid their hair. 

4.3. Challenges and best practices for data acquisition in young children 

Although young children tolerate EEG well relative to other non- 
invasive neuroscience measures, data loss is common due to gross 
participant motion, large muscle and eye movement, cap refusal, and 
fussing out during data collection. Successful electrode application is 
therefore necessary for acquiring a high-quality EEG signal and can be 
accomplished through comprehensive training and practice (Bell and 
Cuevas, 2012). Further, newer processing pipelines have been designed 
specifically for child EEG data in order to retain the most usable data 
possible (Debnath et al., 2020; Gabard-Durnam et al., 2018). 

Perhaps the largest consideration for quality of EEG data is motion- 
related artifacts. Researchers can ask adults and older children to keep 
still, but younger populations are not amenable to such instructions, 
which often results in high levels of artifactual data, and missing data 
across time points. Because a data attrition rate of ̃50 % has been sug
gested as typical in infancy, recruiting twice the numbers of infants 
needed to detect meaningful developmental changes may be needed 
(Noreika et al., 2020). However, studies pointing to stability in data loss 
over time importantly advise that removing children from the analysis 
due to data attrition, even if enough power is achieved, can bias the 
results. In a study examining the impacts of child-related, measur
ement-related, and longitudinal-related factors on EEG data attrition, 
infants who had high data loss at one session were more likely to have 
high data loss at the second (van der Velde and Judge, 2020). The au
thors posited that stability in data loss over time may be in part due to 
infants’ temperament, and therefore data loss is not considered missing 
completely at random, posing challenges for data analysis and gener
alizability of the findings. This is problematic for pinpointing the early 
phase of the clinical sequence, as those infants most at risk may be 
excluded. For example, irritability is a highly robust transdiagnostic 
indicator of mental health risk (Beauchaine and Tackett, 2020; Damme 
et al., 2021; Wakschlag et al., 2015; Wakschlag et al., 2018), which is 
measurable from the first year of life, but attrition may be more likely in 
irritable children. Capturing neural mechanisms of dysregulation is 
essential, and these children cannot simply be dropped from the study of 
brain-behavior relations. 

There are a number of published reviews of best practices for 
engaging children in neuroimaging studies mostly focusing on MRI 
(Nordahl et al., 2008; Perlman, 2012; Raschle et al., 2012), but more 
recently expanding into EEG/ERP (Brooker et al., 2019). Some of these 
principles apply across imaging modalities. For example, communi
cating with parents/caregivers before each visit to find the best time to 
schedule the visit (e.g., after the child has napped and been fed) is 
necessary to increase the likelihood of collecting high-quality EEG data 
across timepoints. Not only is a less fussy visit important for quality data, 
it is also key for retaining families over time. For parents whose infants 
fussed out during an EEG session, they may be more hesitant to return 
for follow-up appointments in the longitudinal study. The experimenters 
must assure parents that their child did well, as fussing during the EEG is 
a normal occurrence. Letting parents know that the time spent in the lab 
was valuable will help to retain them in the study. 
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4.4. Multi-site alignment: training, ongoing monitoring, data processing 
and analysis 

All multi-site studies face challenges related to alignment at different 
levels. The specific procedures for data collection including creating a 
welcoming environment and setting up the child participant vary sub
stantially even among labs that focus on pediatric EEG. Further, EEG 
recordings can be sensitive to the environment in the lab, such as the 
presence of electrical noise, and different types of system hardware can 
lead to different results. Small differences or variability in stimulus 
presentation and time-locking stimuli to the EEG recording can also 
have major effects on final results. Thus, alignment of sites for EEG work 
can be challenging. Webb and colleagues in the Autism Biomarkers 
Consortium for Clinical Trials (Webb et al., 2020) provide helpful rec
ommendations about setup and ongoing, active quality control mea
sures. Large-scale studies of adults indicate that data from across sites 
can be combined when basic data curation and processing steps are 
aligned (Bigdely-Shamlo et al., 2020). 

Once data are collected, harmonization of multiple, diverse samples 
with neuroimaging data has the potential to enhance generalizability 
and risk enrichment. Data harmonization is a systematic strategy of 
combining study-specific variables in a pooled dataset for analysis. 
Along with this greater representativeness comes the population het
erogeneity introduced via combining samples with different de
mographic, sampling, regional, and site characteristics. Accounting for 
these in risk prediction models is possible with a synthetic cohort 
approach, in which observed and imputed behavioral data at all time
points are combined to reduce the loss of information (Allen et al., 2017; 
Siddique et al., 2015). The synthetic approach does not ignore sampling 
differences, but rather explicitly adjusts for this heterogeneity and tests 
its empirical salience. Thus, rather than reduce generalizability, the use 
of diverse pooled samples with methods that rigorously account for 
these differences enhances generalizability. The ability to harmonize 
and leverage multiple diverse samples enhances generalizability and 
enables risk enrichment. 

5. MHESC study collaboration as an exemplar 

The Mental Health Earlier Synthetic Cohort study (MHESC), an 
NIMH-funded collaboration between researchers at Northwestern Uni
versity (NU) and researchers at Washington University in St. Louis 
School of Medicine (WUSM), provides an example of an aligned multi- 
site, longitudinal study using multiple cognitive neuroscience mea
sures: both MRI (structural, resting state, and diffusion-weighted scans 
during natural sleep) and EEG/ERP. This overarching study combines 
and harmonizes data from multiple ongoing behavioral and cognitive 
neuroscience studies with children from infancy through preschool at 
both sites, with the overall goals of generating and validating an infant 
mental health risk calculator that specifies those brain, behavioral and 
environmental risk and resilience factors that determine an individual 
child’s probabilistic risk of developing preschool psychopathology. This 
study is explicitly designed to employ cutting-edge synthetic cohort 
harmonization methods and epidemiologic risk modeling methods to 
specify which types of brain and behavioral indicators (and what timing 
of their assessment) have clinically significant added value for predic
tion above and beyond less burdensome and costly measures (Luby 
et al., 2019; Wakschlag et al., under review). 

One important question for studies like HBCD is whether adding 
additional modalities of neural assessment such as EEG, meaningfully 
improves detection of early life exposure effects, and prediction of later 
abilities or outcomes. This is a central question of the MHESC study, 
which examines multiple potential indicators that vary in their feasi
bility, cost, and potential burden for participants and uses rigorous 
epidemiologic risk methods to generate the most parsimonious, least 
burdensome and most precise risk prediction algorithm, a method 
highly consistent with state-of-the-science pragmatic methods 

(Glasgow, 2013). The study is designed to directly test whether 
less-intensive measures can meaningfully provide accurate prediction of 
later mental health risk. For example, we are testing sequential models, 
such that a parent survey measure may be the least burdensome, fol
lowed by a direct lab-based observation, followed by EEG, and then MRI. 
The study will also test hypotheses that neural markers enable earlier 
risk detection, and whether inclusion of repeated measures enhances 
predictive precision, as has been shown in detection of cardiovascular 
risk 

As participant samples in imaging consortia are typically at low risk, 
the MHESC’s clinically enriched cohort with deep phenotyping is a 
unique strength. The increased prevalence of low base rate phenomena 
when samples are pooled is of particularly high significance to under
stand dimensionally defined psychopathology. Creating a synthetic 
cohort is necessary to provide power, methods, timepoints and growth 
patterns for generation of the risk calculator not feasible within a single 
study. 

The studies involved have different patterns of enrollment. The team 
at NU is conducting the When to Worry (W2W) studies enrolling 12 
month-olds enriched for irritable behavior and 24 month-olds with 
language delay, followed longitudinally through age 54 months. The 
Promoting Healthy Brains Project (PHBP) enrolls families during preg
nancy and follows children through 24 months (data collection has just 
begun, thus no data are yet reported). The team at WUSM is conducting 
the Early Life Adversity, Biological Embedding, and Risk for Develop
mental Precursors of Mental Disorders (ELABE) study, which enrolls 
children with early adversity beginning at about 12 months. 

5.1. Process of alignment between sites 

Although data collection and processing span two sites, protocols 
and procedures are aligned to allow for analyses across sites. The process 
of aligning data collection and analysis procedures has been multi- 
tiered. First, the EEG investigator from NU (Norton) traveled to the 
WUSM site to give an overview of procedures for EEG and provide 
advice on lab setup. Then, once WUSM’s EEG equipment, with identical 
hardware to NU, was installed and calibrated by the vendor, initial pilot 
data (that were de-identified) were reviewed by Norton. 

To ensure alignment of data collection procedures, two researchers 
from WUSM spent two days at NU in Chicago observing and learning 
about the NU study team’s best practices for ERP data collection and 
processing. The first day focused on ERP data collection; guided by the 
NU study team, they were given a tour and explanation of the EEG/ERP 
data collection facilities and equipment and watched a recording of an 
actual participant family’s visit (with consent from the family and in 
alignment with IRB protocols). The two teams discussed and compared 
best practices for equipment maintenance, participant capping, and 
general data collection. The second day focused on ERP data processing. 
The NU study team showed the WUSM team examples of usable and 
unusable data collected as part of the W2W study, and outlined the basic 
ERP processing pipeline steps in relation to those data. The WUSM study 
team also showed the NU team their data, and the NU study team offered 
suggestions for data collection improvement based on the presented 
data. To continually ensure fidelity and reliability since October 2019, 
the WUSM team have met with Dr. Norton, and used scripts and training 
procedures developed at NU for data processing. This ongoing process of 
alignment will enable analyses of the data together from both sites. 

5.2. Rates of ERP MMN and baseline EEG data usability for MHESC 
studies 

Here, we provide data on rates of usable data across sites as exem
plars. Note that at both sites, EEG is acquired at the end of a visit lasting 
multiple hours. Both sites use a BioSemi ActiveTwo EEG system that 
requires gelling each of 32 electrode sites on the cap. 

The WUSM sample at age 1 (n = 193) includes 123 Black/African- 
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American participants (63.7 %), 66 white participants (34.2 %) and 4 
participants who indicated “other” or more than one race (2.1 %). The 
mean age and ranges in the WUSM sample are 12.5 months (range 
11.0–19.4 months) at Year 1, 25.6 months (range 23.1–31.7 months) at 
Year 2, and 38.1 months (range 36.4–39.2 months) at Year 3. The NU 
sample in Year 2 (n = 190) includes 29 Black/African-American par
ticipants (15.3 %), 120 white participants (63.2 %) and 31 participants 
who indicated “other” or more than one race (16.3 %). 10 participants 
did not report their race/ethnicity (5.3 %). The average ages in the NU 
sample are 27.0 months (range 24.2–32.2 months) at Year 2 and 40.4 
months (range 35.8–45.6 months) at Year 3. 

Table 1 lists the number of ERP MMN sessions that were attempted 
(researchers tried to cap the child), and then each session is categorized 
as either successful (completed and session notes indicate data are clean 
enough to be analyzed), partial (some good data was collected and can 
be analyzed, but session was not complete), unsuccessful (not able to be 
analyzed, data were too artifactual, child removed the cap, or other 
reason), or were not usable because of a technology issue. RAs judged if 
approximately 50 % or more of the ERP MMN data were clean (no large 
artifacts) and whether approx. 1 min of clean data was collected during 
baseline. 

Later waves provided more usable data, 100 % to date for the most 
recent longitudinal wave at both sites, though the sample sizes were 
smaller because the studies are in progress. The lowest rate was at 
WUSM in Year 1, with 72.0 % of sessions providing usable data. This is 
both when the researchers were newest to EEG data collection and when 
the children were youngest, yielding the most challenging conditions. 
Greater RA experience running EEG sessions has previously been shown 
to relate to reduced data loss (van der Velde and Junge, 2020). Even still, 
this rate of 28 % attrition is perhaps better than expected, as previous 
studies have suggested planning on at least 50 % attrition and a previous 
meta-analysis of infant EEG/ERP data found an overall average attrition 
of 49.2 % in infants through age 12 months (Stets et al., 2012). Table 2 
gives the rates of usable data at the NU site for baseline EEG, conducted 
while the child watched a neutral movie. These rates are quite high, 
suggesting that baseline EEG may be one of the measures that is least 
prone to attrition. 

6. Conclusion: considerations and directions for HBCD 

Though collecting EEG data in infants and toddlers, especially data 
that is highly aligned across multiple sites, is a challenge, it presents 
unique opportunities for HBCD to achieve its goals of understanding the 
myriad factors that shape early neural development and its implications 
for development and health. Importantly, the potential to track longi
tudinal change and assess not just static timepoints but trajectories of 
brain maturation and development will provide important insights. 

Some opportunities that future studies may consider include col
lecting data from a child during more naturalistic tasks/interactions or 

from a child and parent together (“dual brain” or “hyperscanning” ap
proaches, e.g., Norton et al., under review). These may provide a new 
level of information about how the child interacts with their caregiver 
and without constraints such as needing to attend to repetitive stimuli. 
Another possibility is to use a portable EEG approach where data 
collection could happen in families’ homes, community centers, pedia
tricians’ offices, or childcare centers. This and other more approaches 
that are community-engaged will enhance reach and engagement of 
diverse populations who may be reluctant to travel to research labora
tories due to history of institutional racism and/or mistrust. Similarly, 
ensuring that EEG/ERP studies are able to collect data from people with 
various hair types will be crucial to engaging and representing diverse 
populations (Choy et al., 2021). 

We recognize that it will not only take large and diverse samples to 
elucidate the complex relations from brain structure and function to 
neurodevelopment. Emerging evidence suggests that children who share 
many similarities in local brain structure and function can present with 
highly varied neurodevelopmental profiles, and that factors such as 
network organization within and between hubs may be important for 
distinguishing which profiles are associated with risk or disorder 
(Siugzdaite et al., 2020). Nevertheless, the HBCD study will be a key first 
step in understanding the normative and varied profiles of 
neurodevelopment. 
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Table 1 
Usability of MMN Data Across Sites and Waves (for data collected to date).  

Site Year/ Age Attempted Successful Partial Unsuccessful Tech Issue % with successful or partial 

WUSM Age 1 193 115 24 46 8 72.0 % 
WUSM Age 2 59 45 3 11 0 81.4 % 
WUSM Age 3 6 6 0 0 0 100 % 
NU Age 2 120 101 6 11 3 89.2 % 
NU Age 3 30 30 0 0 0 100 %  

Table 2 
Rates of usable baseline EEG data for the NU cohort across waves (for data collected to date).  

Year/ Age Attempted Successful Partial Unsuccessful Tech Issue % with successful or partial 

Age 2 182 153 6 21 2 87.4 % 
Age 3 31 31 0 0 0 100 %  
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