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Abstract

Purpose: The neuropsychological complications of temporal lobe epilepsy are characterized by a
spectrum of reproducible cognitive phenotypes that vary in the presence, type and degree of
impairment. The nature of the disruptions to the neuropsychological networks that underlie these
phenotypes remain to be characterized and represent the subject of this investigation.

Methods: Participants included 30 healthy controls and 104 patients with temporal lobe epilepsy
who fell into three cognitive phenotypes (intact, focal impairment, generalized impairment).
Eighteen neuropsychological measures representing multiple cognitive domains (language,
memory, executive function, visuoperception, motor speed) were examined by graph theory
techniques within the control and each epilepsy cognitive phenotype group to characterize their
global and local network properties.

Results: Across the control and epilepsy cognitive phenotype groups (intact to focal to
generalized impairment), there was: 1) an orderly breakdown in the positive manifold reflected by
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a stepwise reduction of positive associations among the neuropsychological tests, 2) stepwise
abnormal increases in global measures including the normalized clustering coefficient and
modularity index, 3) stepwise abnormal decreases in normalized global efficiency, 4) a community
structure demonstrating well organized modules within the control group while each epilepsy
group showed deviations from controls, and 5) lower strength, compared to controls, across 8
nodes in the focal and generalized impairment groups compared to only 3 nodes in the no-
impairment epilepsy group, pointing to the superior integration of local connections in controls.

Discussion: The cognitive phenotypes of temporal lobe epilepsy are characterized by orderly
abnormalities in their underlying neuropsychological networks. These findings inform the network
perturbations that underlie the taxonomy of cognitive abnormality in temporal lobe epilepsy and
provide a model for examination of similar issues in other focal and generalized epilepsies.
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Introduction

Temporal lobe epilepsy is not associated with an invariant impairment in anterograde
memory as classically proposed, but is instead associated with a heterogeneous
neuropsychological profile reflected in reproducible cognitive phenotypes. These range from
a phenotype expected for the disorder including abnormal anterograde memory (that may be
accompanied by concomitant language and/or executive dysfunction), to less expected
phenotypes that include grossly intact performance as well as a generally impaired cognitive
profile (Hermann et al., 2007; Baxendale and Thompson, 2020; Rodriguez-Cruces et al.,
2018, 2020; Reyes et al., 2019, 2020). One group found two focal phenotypes (learning/
memory and executive function/speed) in addition to the intact and generalized impaired
groups (Elverman et al., 2019). Neuroimaging research has revealed concomitant stepwise
abnormalities consistent with the presence and degree of impairment across the cognitive
phenotypes, these relationships reflected in brain structure, connectivity (diffusion and
resting state fMRI), and large scale covariance analyses of cortical/subcortical gray and
white matter (Dabbs et al., 2009; Reyes et al., 2019; Rodriguez-Cruces et al., 2020;
Hermann et al., 2020)—findings that support the hypothesis that disrupted networks rather
than focal pathology underlie the heterogeneous cognitive presentations of temporal lobe

epilepsy.

Unexplored, however, is how the underlying cognitive networks themselves are impacted
across the various phenotypes, that is, what is the pattern of altered associations among the
neuropsychological tests themselves and how are these altered associations reflected across
the cognitive phenotypes of temporal lobe epilepsy compared to controls? This question can
be addressed by the application of graph theory analytics to the administered
neuropsychological measures. Cognitive networks in epilepsy have been examined
infrequently in this fashion. Three previous studies examined baseline and prospective
neuropsychological networks in children with new onset idiopathic epilepsies (Garcia-
Ramos et al., 2015, 2016) and adults with chronic temporal lobe epilepsy compared to
controls (Kellermann et al., 2016). The results revealed that children with epilepsy exhibited
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a less structured global development of their cognitive network, as shown by both lower
global integration and segregation compared to healthy controls, and an altered regional
organization reflected by the different nature of employed hubs among groups. Regarding
chronic temporal lobe epilepsy, the modular structure of their cognitive graph was found to
be poorly structured compared to controls, with the domains of memory and executive
function more separated in the epilepsy network compared to controls.

The purpose of this investigation is to examine the neuropsychological networks underlying
the three epilepsy cognitive phenotypes identified in the Epilepsy Connectome Project
(ECP) using graph theory analytics. In that previous analysis, unsupervised machine
learning was applied to summary metrics (deviation from controls z-scores) representing
five cognitive domains (language, visuospatial, memory, executive function/processing
speed, motor speed). Cluster analysis showed the taxonomy of cognitive impairment to
include three latent groups: 1) Generalized-cognitive impairment (Gen-Cl) characterized by
impairment across all cognitive domains, Focal-cognitive impairment (Focal-Cl)
characterized by impairment in language, memory and executive function domains, and No-
cognitive impairment (No-Cl) characterized by unimpaired and generally commensurate
performance compared to controls across all cognitive domains (Hermann et al., 2020).

While informative, the presence, nature, and quantitative features of disruptions to the
neuropsychological networks themselves within each cognitive phenotype remain to be
examined. That is, what is the relationship among the 18 specific test measures in the
controls and how are those relationships altered within and across the intact, focal impaired,
and generalized impaired cognitive phenotypes? What are the underlying
neuropsychological modules and how are they altered across groups, what are the cognitive
hubs of those modules, and how efficiently are the modules organized and segregated? It is
cognitive network typology, defined using the neuropsychological tests themselves,
informed by the application of graph theory, that is the focus here.

We hypothesize that, similar to prior examinations of morphological networks (i.e., cortical
and subcortical volumes) associated with cognitive phenotypes that have revealed a stepwise
increase in both global clustering and global efficiency linked to increasing cognitive
impairment, similar relationships would characterize the neuropsychological networks.

2. Methods

We report how we determined our sample size, all data exclusions, all inclusion/exclusion
criteria, whether inclusion/exclusion criteria were established prior to data analysis, all
manipulations and all measures in the study.

2.1. Participants

Participants included 104 temporal lobe epilepsy patients and 30 healthy control volunteers

prospectively enrolled in the Epilepsy Connectome Project (ECP) (See Table 1) (Cook et al.,
2019; Hwang et al., 2019). ECP is a two-site research project involving the Medical College
of Wisconsin and the University of Wisconsin—-Madison, reviewed and approved by the IRB
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(Institutional Review Board) at the Medical College of Wisconsin. All participants provided
written informed consent, with all procedures consistent with the Declaration of Helsinki.

Eligible patients were between the ages of 18 and 60, had estimated full-scale 1Q
(Intelligence Quotient) at or above 70, spoke English fluently, with no medical
contraindications to MRI. The diagnosis of temporal lobe epilepsy was supported by two or
more of the following: 1) described or observed clinical semiology consistent with seizures
of temporal lobe origin, 2) EEG evidence of either Temporal Intermittent Rhythmic Delta
Activity or temporal lobe epileptiform discharges, 3) temporal lobe onset of seizures
captured on video EEG monitoring, or 4) MRI evidence of mesial temporal sclerosis or
hippocampal atrophy. Patients with any of the following were excluded: 1) lesions other than
mesial temporal sclerosis causative for seizures, and 2) an active infectious/autoimmune/
inflammatory etiology of seizures. The temporal lobe epilepsy cohort composing the
Epilepsy Connectome Project is not a pure presurgical cohort. A modest proportion (34%) of
participants underwent ictal monitoring. This in turn has limitations, primarily in regard to
unequivocal seizure lateralization. However, the proportion of patients who underwent ictal
monitoring is quite similar to the prevalence of medication refractory epilepsy (Kwan &
Brodie, 2000). In this regard the cohort is less biased toward medication-refractory/surgical
temporal lobe epilepsy and, therefore, more representative of temporal lobe epilepsy in
general.

Adjusted (age, ICV) hippocampal volumes were derived and at a conservative threshold (z <
-1.5), 23% of the temporal lobe epilepsy group exhibited unilateral (12.4%) or bilateral
(10.3%) hippocampal atrophy. Using a more liberal threshold (z < —1.0), 43% of the
temporal lobe epilepsy sample exhibited hippocampal atrophy pointing to the presence but
less severe nature of hippocampal atrophy in this temporal lobe epilepsy group. As expected,
the rate of hippocampal atrophy (z < —1.5) in the temporal lobe epilepsy group compared to
controls was significantly elevated (p = .037). Of those temporal lobe epilepsy patients with
hippocampal atrophy, 55% were unilateral and 45% were bilateral (using z<-1.5
threshold).

Control participants were healthy adults between the ages of 18 and 60. Exclusion criteria
included: Edinburgh Laterality (Handedness) Quotient less than +50; primary language other
than English; history of any learning disability, brain injury or illness, substance abuse, or
major psychiatric illness (major depression, bipolar disorder, or schizophrenia); current use
of vasoactive medications; and medical contraindications to MRI. The controls were
volunteers recruited through IRB-approved publicly posted announcements. All participants
were compensated for participation in the study. There were 104 temporal lobe epilepsy
patients and, per protocol, 30 controls with complete neuropsychological datasets. The
specific data from ECP used in this investigation (cognition) (https://osf.io/4z5bd/).

2.2. Neuropsychological assessment

The healthy control and epilepsy participants underwent comprehensive neuropsychological
evaluation. A total of 18 cognitive tests were administered (Table 2) and participants with
complete datasets were included. The battery comprised measures of intelligence (Wechsler
Abbreviated Scale of Intelligence-2 Vocabulary and Block Design subtests) (Wechsler,
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2011), verbal learning and memory (Rey Auditory Verbal Learning Test) including total
words learned across trials and delayed recall (Rey, 1964), object naming (Boston Naming
Test) (Kaplan et al., 1983), letter fluency (Controlled Oral Word Association Test) (Heaton
et al., 2004), semantic fluency (Animal Naming) (Heaton et al., 2004; Strauss et al., 2006),
spatial orientation (Judgement of Line Orientation) (Benton et al., 1983), face recognition
(Facial Recognition Test) (Benton et al., 1983), speeded fine motor dexterity (Grooved
Pegboard, dominant and non-dominant hands) (Klove, 1963), and selected subtests from the
National Institutes of Health Toolbox-Cognitive Battery including the Pattern Comparison
Processing Speed (Carlozzi et al., 2014, 2015), Dimensional Change Card Sort, List Sorting
Working Memory, Flanker Inhibitory Control and Attention, Picture Vocabulary, Oral
Reading Recognition, and Picture Sequence Memory tests. Legal copyright restrictions
prevent public archiving of the various neuropsychological tests used in the study. These can
be obtained from the copyright holders in the cited references accompanying each test.

Each raw test score was regressed on age for the control data. Gender and education were
not adjusted, as those and other sociodemographic variables were of interest as predictors of
phenotype membership. Scores were normalized to z-scores with the regression parameters
and standard error of the estimate from the control group used to compute z-scores for the
patients. Regression assumptions were checked using both plots and statistical tests. No
obvious patterning or deviations from linearity were seen in a residual versus fitted value
plot using the control data. Residual normality was investigated both visually using a
quantile—quantile comparison plot as well as statistically using Shapiro—Wilks test.

2.3. Graph theory (GT) measures

Symmetric matrices of 18 tests (nodes) were calculated for the healthy controls and each
temporal lobe epilepsy cluster group based on the z-scores from the cognitive tests (Table 2)
controlling for gender. Weighted-symmetric adjacency matrices were created for each group
based on the partial correlation coefficient between each pair of nodes. Subsequently, the
diagonal elements and the negative correlations were removed from graphs, and both global
and local measures were calculated. Given that graphs only have 18 nodes, we decided to be
conservative and preserve all positive correlations for the analyses. The MATLAB-based
Brain Connectivity Toolbox (http://www.brain-connectivity-toolbox.net/) was used to
calculate GT measures.

To statistically investigate group differences, each group matrix was resampled by
replacement (i.e., bootstrapped) a total of 250 times for each group. Since results from GT
measures can occur by chance, each graph measure was also calculated on 250 random
matrices with the same number of nodes and degree distribution as the pertinent graphs. In
this way, the null hypothesis could be tested. ~-values were corrected for multiple
comparisons for each of the measures. Specifically, Bonferroni correction for the global
analyses was based on the standard alpha level of .05 divided by the number of tests (three in
total) multiplied by the permuted matrices of all four groups (2504). Graph theory measures
were obtained from each resampled matrix, and averages of the GT measures were used for
evaluations.
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The global measures investigated included normalized average clustering coefficient (CC),
normalized global efficiency, and modularity index (Q), using the modularity Louvain
algorithm. These measures have been thoroughly described in previous work (Garcia-Ramos
et al., 2016). In short, global efficiency examines network integration (Wang et al., 2010);
having a high global efficiency means that nodes are interconnected efficiently since there
are many paths that connect different pairs of nodes. The average CC characterizes the level
of segregation of the network, since it quantifies the number of connections that exist
between the nearest neighbors of a node as a proportion of the maximum number of possible
connections (Sporns et al., 2004). Since the investigated networks have a small number of
nodes, we decided to be conservative and calculate normalized values for the average CC
and global efficiency in order to avoid the influence of other network characteristics. This
was done by dividing the given measure to the same measure calculated in 250 random
graphs, for each group.

The community structure of a network indexes the sub-division of such a network into
segregated communities or modules that contribute to the same processes while also
allowing for a visual inspection of the network, while Q speaks to how easi/y the
communities are identified by the algorithm. Given that the modularity algorithm provides a
statistical estimate for each output (Blondel et al., 2008), we calculated modularity 1,000
times for each group, and the highest proportion was chosen as the number of modules in
that group. Furthermore, in order to be certain regarding the module assignment for each
node, we created a script that calculated the proportion of module assignment for each node
in order to have each node assigned to the module with the highest probability. The Force
Atlas 2 algorithm of the open source software Gephi 9.2 (https://gephi.org) was used for the
2D visualization of modularity and community structures (scaling = 100).

To investigate the network hubs, which are the most fundamental regions for the
configuration of a network (Sporns et al., 2007), the node degree was the centrality measure
used. The degree of a node is the sum of the edges or connections that a given node has.
Nodes with high degree (>average + SD) are considered hubs of the network. The strength
of a node denotes the strength of the correlation between a node and the rest of the nodes in
the graph. The node strength was also investigated for each cognitive phenotype group with
respect to controls by calculating Z-scores.

3. Results

Examining demographic and clinical characteristics of the groups (Table 1), the epilepsy and
controls groups were comparable in age (o= .54) and gender (p = .28), but differed
significantly in FSIQ (p < .001); and the groups with temporal lobe epilepsy were not
significantly different in age of first seizure (p=.097) and number of antiepileptic drugs
(AED) (p = .052) but differed significantly in age of onset of recurrent seizures (p = .009).

3.1. Phenotype groups

Figure 1 represents the three identified cognitive phenotype groups from the ECP (Hermann
et al., 2020). As noted, 18 neuropsychological test metrics were examined in all participants,
and the test metrics were assigned to 5 cognitive domains that were then subjected to cluster
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analysis. Three cognitive phenotypes were identified that ranged from performance
comparable to controls (No-Cl), performance impaired across all cognitive domains
(Generalized-Cl), and performance characterized by leading impairment in language,
memory and executive function (Focal-Cl). The network typology of the 18
neuropsychological metrics within and across the control and epilepsy cognitive phenotype
groups follows below.

Details regarding construction of the overarching cognitive phenotypes and their correlates
are provided in Hermann et al. (2020) including the association of hippocampal atrophy
(none, unilateral, bilateral) with cognitive phenotype distribution which was significant (Chi
Square = 20.7, df =9, p<.014) indicating that bilateral hippocampal atrophy was associated
with the generalized cognitive impairment cluster (No-ClI, Focal-Cl, Generalized-Cl = 10%,
10%, 26%). There was no significant association between cognitive phenotype and laterality
defined by interictal EEG (left, right, bilateral) (p = .55) or ictal monitoring (p = .23). That
said, only a subset of temporal lobe epilepsy participants (34%) underwent ictal monitoring,
another indication of the less severe nature of the epilepsy of this cohort. The presence
versus absence of ictal monitoring (a potential indication of medication resistant seizures)
was not associated with cognitive phenotype membership (o= .24).

3.2. Adjacency matrices

Figure 2 shows the adjacency matrices of each group without the diagonal elements. It can
be observed that negative correlations increase with increasing cognitive impairment.
Specifically, controls show 8 negative correlations, No-CI show 33, Focal-Cl show 52, and
Generalized-Cl show 60. These deviations from positive associations infer a breakdown of
the so-called positive manifold (positive correlations among the test measures). Since this
investigation removed negative links from the matrices, such a reduction of positive
associations resulted in a reduction in the number of edges with increased cognitive
impairment. To be exact, controls preserved 95% of their edges, No-CI preserved 68%,
Focal-Cl 60%, and Generalized-Cl preserved 57%.

3.3. Modularity and network hubs

The community structure of the controls appeared highly integrated compared to the
temporal lobe epilepsy groups (Fig. 3), reflected in the node separation, which was more
pronounced in all three temporal lobe epilepsy groups. Although the No-ClI group did not
show the same level of integration as controls, its network appeared highly segregated with
well-defined modules, followed by the Focal-Cl group. In the Generalized-Cl phenotype the
modules were less organized as reflected in the mixture of same-color nodes. Although
controls have a highly integrated network and modules are separated, they are not as
segregated as in the temporal lobe epilepsy groups. This can be observed in the closeness of
different modules (same-color nodes) in controls. The three modules of the controls
reflected well organized systems characterized predominantly but not exclusively by verbal
and visual memory metrics (red), executive function/processing speed (green), and language
and visuospatial and motor dexterity measures (yellow). Deviations from this network
organization were clearly evident across the epilepsy cognitive phenotype groups.
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ANOVA testing revealed the groups were significantly different in Q (inset within Fig. 3),
and post-hoc analyses revealed that each group was significantly different from each other
(F1,3=1086, p<.001). The lack of segregation that is observed in the community structure
of controls was confirmed with their low Q. Starting with controls at the bottom, the
cognitive phenotype groups exhibited a stepwise increase in @, with the No-Cl phenotype
higher than controls, the Focal-Cl phenotype higher than No-CI phenotype, and the
Generalized-Cl higher than all phenotype groups. Lower Q appears to reflect benefit in
terms of the integrity of the cognitive networks.

Regarding the hubs of the networks, the controls showed only one, the No-Cl and
Generalized-Cl phenotype groups showed 2, and Focal-Cl phenotype group revealed 3 hubs;
based on node degree. However, most of the nodes in controls showed high degree: the node
with the lowest degree had a degree of 11, while in the other groups the comparable figure
was 9.7 (No-Cl), 6 (Focal-Cl), and 5 (Generalized-Cl). In order to know which nodes serve
as a hub, we calculated the average + one SD of the degree for each group. The threshold in
controls was higher compared to the other groups (HC = 16.5, No-Cl = 13.6, Focal-Cl =
11.5, and Generalized-Cl = 10.7), and 17/18 nodes in controls had a degree higher than 13.6
(the threshold for No-Cl). The hub in controls was a verbal learning metric [total words
recalled over learning trials (RAVLT_TOTAL)], while the hubs in No-CI were tests of
visuospatial-construction ability (WASI_BLCK) and speeded fine motor dexterity
(GROVPEGND). Focal-CI exhibited two hubs involving executive/processing speed (DCCS,
FLANK) and one language/executive metric (SEMNTFL); and Generalized-ClI exhibited
two hubs reflected by metrics of language/executive function (COWA) and language
(ORAL).

3.4. Global measures

In terms of normalized average CC, the Generalized-Cl group exhibited the highest values,
followed by Focal-Cl, then No-Cl, and lastly healthy controls (Fig. 4). Normalized global
efficiency showed the healthy controls to have the highest value, followed by No-Cl, then
Focal-Cl and lastly Generalized-Cl. Both global measures seem to be sensitive to increasing
impairment when examining the neuropsychological networks across cognitive phenotypes;
normalized CC increased with increasing cognitive impairment while normalized Global
efficiency decreased with increasing cognitive impairment. ANOVA revealed that groups
differed significantly in global efficiency (/3 = 2260, p < .001) but not average CC (£ 3
=.152, p>.9).

The higher Q associated with Generalized-Cl seemed to be due to high CC and low global
efficiency. Since both controls and No-CI were those with the highest cognitive integrity,
and both showed higher normalized global efficiency, lower normalized CC, and lower Q,
the combination of high normalized global efficiency with low normalized CC and Q infers
a more intact cognitive network.

3.5. Node strength

The node strength was calculated for each group, and z-scores were calculated based on the
average and standard deviation of the node strength in controls. Fig. 5 shows the No-ClI
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group presented only three nodes with a strength lower than controls, based on one SD
below controls, while both Focal-Cl and Generalized-Cl showed 8 nodes with lower strength
than controls. None of the groups showed a node with significantly higher strength than
controls.

4. Discussion

While the neuropsychological presentations of temporal lobe epilepsy are heterogeneous
across individual patients, this heterogeneity has been captured by unsupervised machine
learning and other analytic approaches that have demonstrated the existence of a core set of
distinct cognitive phenotypes that are reproducible across centers and robust to the methods
used to identify them. These phenotypes range from surprisingly cognitively unaffected, to
predominantly memory impaired with/without language and executive dysfunction, to
unexpected pervasive cognitive impairment in this focal epilepsy (Hermann et al., 2007;
Elverman et al., 2019; Baxendale and Thompson, 2020; Rodriguez-Cruces et al., 2018,
2020; Reyes et al., 2019, 2020).

Fundamental to this approach, and rarely considered, is the fact that a large set of individual
neuropsychological tests and metrics form the basic building blocks for these phenotypic
approaches. Typically, a substantial number of tests and metrics are grouped into a much
smaller number of widely appreciated cognitive domains (e.g., language, visuospatial
function, memory, executive function, motor speed) where-upon latent profiles of these
cognitive domains, or phenotypes, are identified. While there is regularity in the identified
phenotypic profiles of temporal lobe epilepsy, the nature of the “neuropsychological
networks” that underlie them, defined by the patterns of association, integration and
organization of the neuropsychological tests themselves across the cognitive phenotypes, has
remained an open question and one that was addressed here using a graph theory approach.

In this investigation the “neuropsychological networks” of controls and three temporal lobe
epilepsy cognitive phenotype groups were investigated using the 18 basic
neuropsychological tests/metrics. Three main findings emerged. First, across increasingly
impaired cognitive phenotype groups there was an increasing breakdown in the positive
manifold of the neuropsychological network reflected in a reduction of the number of
positive associations. Second, global measures including normalized CC and the modularity
index showed a stepwise increase across the increasingly abnormal temporal lobe epilepsy
phenotype groups, while normalized global efficiency showed the opposite stepwise
behavior. Third, regarding community structure, controls exhibited well organized modules
while each epilepsy group showed substantial deviations from controls. Finally, node
strength calculations again showed a superior integration in controls now in terms of local
connections. These findings will be discussed below.

4.1. Adjacency matrices

Regarding the correlation or adjacency matrices, it was evident that the underlying
neuropsychological networks increasingly “lost” positive correlations between the tests and
an associated reduced number of edges as a function of membership in increasingly
impaired cognitive phenotype groups (Controls > No-Cl > Focal-Cl > Gen-Cl). These
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findings infer a stepwise breakdown in the positive manifold across increasingly abnormal
cognitive phenotype groups, pointing to a unique and uncommonly documented correlate of
cognitive impairment.

measures and community structure

Across increasingly abnormal epilepsy cognitive phenotype groups, global measures of the
underlying neuropsychological networks demonstrated a stepwise increase in Q and
normalized CC; with a concomitant stepwise reduction in normalized global efficiency.
Therefore, with worsening cognitive phenotypes, network segregation (global CC) was
higher and network integration (global efficiency) was lower, pointing to more segregated
and less integrated neuropsychological networks in a stepwise and orderly pattern of
abnormality across groups (Controls to No-Cl to Focal Cl to Generalized Cl).

Controls also demonstrated a highly integrated network with low segregation which was
evident in the closeness of nodes regardless of their module association. Controls showed
one module composed predominantly of verbal and visual memory metrics, a second
comprised primarily of executive function/speed-related tests, and a third module
characterized predominantly but not exclusively by a mix of language, visuospatial, and
motor dexterity measures. Controls appeared to demonstrate good integration within and
between modules, a configuration not unexpected for a healthy cognitive network. The
epilepsy phenotype groups deviated considerably from this network configuration.

The No-CI phenotype exhibited one module containing only language-based tests, with the
second module containing a mixture of verbal memory, language/executive, language, and
visuospatial skills. The rest of the nodes were together in a module. Like controls, nodes
within modules were highly integrated, however, but showing high segregation from the
other modules.

In the Focal-Cl phenotype most tests from both the visuospatial and verbal domains were
together in the same module (yellow) with the addition of a metric of working memory. A
second module, containing only memory tests, appeared as a peripheral module, almost not
connected to the rest of the graph. Similar to the No-CI phenotype, nodes within a module
were well-integrated with the exception of the yellow module, which had working memory
almost disconnected from the network as a peripheral node (i.e., almost not connected to its
module and the network in general); therefore, barely contributing to the network topology.

In the Generalized-Cl phenotype, node configuration seemed completely opposite to
controls. This group demonstrated poorly integrated nodes within modules, which were also
weakly integrated to the rest of the network. Specifically, there was a module comprised of
tests from the processing speed domain, speeded fine motor dexterity, and one memory
measure. Furthermore, two of the three visuospatial tests were together with one executive/
processing speed measure in another module where nodes were not well-integrated together
(yellow module). Another module contained the two language/executive tests along with
working memory that also showed a lack of within-module integration. Finally, a fourth
module contained the measures of language and verbal learning and memory, as well as the
one remaining visuospatial measure.
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In summary, the cognitive networks of all three temporal lobe epilepsy phenotypes
demonstrated an overall and within-module reduction in integration with increasing
cognitive impairment, which ultimately was substantially different from controls.

4.3. Network hubs and node strength

There were differences across groups in both the number and type of hubs represented, with
all epilepsy groups exhibiting more hubs than controls, and also differing from controls in
the neuropsychological abilities represented by those hubs. These findings suggest that
controls do not require multiple central regions to demonstrate typical cognitive ability,
while temporal lobe epilepsy phenotypes appear to actively rely on a greater number of
hubs. Furthermore, since most of the nodes in controls showed high degree (>11), it appears
that nodes in controls contribute equally to the configuration of the network, appearing
greatly integrated to each other and resulting in almost no node overshadowing another.

When investigating node strength using Z-scores, none of the epilepsy groups showed a
node with a significantly higher strength than the control group. The No-CI group showed 3
nodes with lower strength than controls, and both Focal-Cl and Generalized-Cl groups
presented 8 nodes with lower strength than controls, suggesting that the strength of
associations between neuropsychological tests might be playing a role in the
neuropsychological networks undergirding the epilepsy phenotypes.

4.4. The broader utility and potential implications of a network analysis of
neuropsychological data

Clearly a major finding is that the positive correlative manifold for cognitive tests breaks
down in temporal lobe epilepsy. The comparison of the adjacency matrices (Fig. 2) provides
a clear visual representation of this finding. Conceiving of these relationships between tests
as a network of cognitive abilities it then follows that the use of graph theory may be a
natural analytical tool to quantify and visualize network features. The modularity results
(Fig. 3) serve as a useful example of how graph theory can quantify a general finding into a
single metric (Q) that allows for statistical comparison and was able to highlight the
monotonic relationship between increasing Q from controls through the generalized
cognitive impairment phenotype. Similar results follow from examination of the clustering
coefficient and global efficiency metrics (Fig. 4). These results expand upon the adjacency
matrix gestalt by providing specific established graph theory metrics with explanatory
power. Increased modularity, increased clustering coefficient and decreased normalized
global efficiency associated with increasingly abnormal cognitive phenotypes of temporal
lobe epilepsy suggest that the cognitive domains are increasing less integrated—inferring
that that the primary abnormality in temporal lobe epilepsy may not be domain specific but
rather related to disrupted interactions (networks) of cognitive abilities and domains and that
these graph theory metrics provide an established and arguably useful method for
quantifying this result.

Might these results have implications for interventions such as cognitive therapy? The
decrease in the positive manifold across cognitive phenotype groups clearly indicates that
treatment of one ability or one test deficit may have less generalized benefit across cognitive
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abilities. The implication is that cognitive rehabilitation may be more challenging in the
more impaired cognitive phenotypes. From a speculative perspective, neurostimulatory
techniques may be better suited to attempt to re-establish normal cognitive network
architecture than typical epilepsy treatments such as anti-seizure medications or resection.
This could be a testable hypothesis through examining surgical cohorts with similar baseline
cognitive dysfunction and comparing outcomes for those treated with responsive
neurostimulation (RNS) (Skarpaas et al., 2019) adjusting for response to treatment (seizure
freedom).

Could particularly salient nodes/hubs be a useful consideration for therapies for cognitive
impairment? It would be interesting if specific cognitive domains could be targeted in each
subgroup that could result in focal or generalized improvement. Unfortunately, we do not
believe these data would support such a strategy. Shown in the results (Fig. 3) is that the
cognitive domains become more isolated in temporal lobe epilepsy and the hubs are in
general the areas that are better preserved within particular subgroups. In general, we would
advocate for therapies related to the patient specific deficits, though as above we are
interested in the possibility that neurostimulation might have broader network effects,
though this remains to be studied.

One evident value of the approach presented here is that differences between groups or
within individuals over time can be visualized in a way that reveals patterns that would
otherwise be very difficult to discern from tables or simple bar graphs. Relationships
between nodes are obvious and colorization can be used to bring into view proposed
modules. Whether the visualization of the patterns that emerge can have practical
significance remains to be seen, but of course it is possible especially in the case of
longitudinal research.

4.5. Conclusion and future directions

Heterogeneity inherent in the breakdown of cognitive function in temporal lobe epilepsy has
been demonstrated through investigation of individual tests, broader cognitive domains, and
recently identified cognitive phenotypes. The latter is a useful approach to capturing the
neuropsychological heterogeneity inherent in the epilepsies and ultimately the similarities
and differences across epilepsy syndromes. To date, the identified cognitive phenotypes have
not been tethered to the perturbations that may be occurring in the interrelationships among
the individual tests themselves which, as shown here through application of graph theory, are
informative in and of themselves. It is uncommon to apply graph theory to
neuropsychological tests themselves (Garcia-Ramos et al., 2016; Tosi et al., 2020; van der
Maas et al., 2017), but this may merit more consideration in the future. Specifically, future
studies could focus on how or whether cognitive cluster classification can provide evidence
about the trajectory or prognosis of epilepsy, drug resistance, and prognosis for psychiatric
co-morbidity.

Acknowledgements

This study was supported by grant number U01INS093650 (Epilepsy Connectome Project) from the National
Institutes of Health. Cole J Cook was supported in part by grant number T32CA009206 from the National Cancer
Institute of the National Institutes of Health. The authors would like to thank all the participants and their families.

Cortex. Author manuscript; available in PMC 2022 August 01.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Garcia-Ramos et al.

Page 13

Additionally, the authors would like to thank Dace Almane, Megan Rozman, Taylor McMillan, Elizabeth Awe,
Courtney Forseth, Peter Kraegel, Anna Freiberg, Neelima Tellapragada for project oversight, recruitment and data
collection.

No part of the study procedures and/or analyses were pre-registered prior to the research being conducted.

List of Abbreviations

GT graph theory
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No-ClI No-cognitive impairment = characterized by unimpaired and
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Fig. 1—.

ngnitive phenotype groups from the Epilepsy Connectome Project. Controls (green, V=
30), No Cognitive Impairment (No-Cl) being the most intact (blue, /= 57), Focal Cognitive
Impairment (Focal-Cl) (yellow, /= 34) with leading impairments in language, executive
function and memory; and Generalized Cognitive Impairment (Gen-Cl) (red, /= 20) being
the most impaired overall. Plotted are mean domain scores for each phenotype. Reprinted
from Hermann et al. (2020).
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Adjacency matrices. Adjacency matrices of (from left to right): healthy controls, temporal
lobe epilepsy with No-Cl, temporal lobe epilepsy with Focal-Cl, and temporal lobe epilepsy
with Generalized-ClI. Diagonal elements were set to zero.
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Fig. 3—.

Cgmmunity Structure and Modularity Index. (top) Community structure of healthy controls
and the modularity index graph, with healthy controls (gray), No-ClI (blue), Focal-Cl
(yellow), and Generalized-Cl (orange). Error bars represent the standard deviation. (Bottom)
Community structure in No-ClI, Focal-Cl, and Generalized-CI.
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Normalized Global Measures. (left) Normalized average clustering coefficient, and (right)
normalized global efficiency in controls (gray), patients with No-Cl (blue), patients with
Focal-ClI (yellow), and patients with Generalized-CI (orange).
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Node Strength Z-scores. Z-scores regarding the node strength in No-Cl (left), Focal-Cl
(middle), and Generalized-ClI (right).
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