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Abstract

Purpose: The neuropsychological complications of temporal lobe epilepsy are characterized by a 

spectrum of reproducible cognitive phenotypes that vary in the presence, type and degree of 

impairment. The nature of the disruptions to the neuropsychological networks that underlie these 

phenotypes remain to be characterized and represent the subject of this investigation.

Methods: Participants included 30 healthy controls and 104 patients with temporal lobe epilepsy 

who fell into three cognitive phenotypes (intact, focal impairment, generalized impairment). 

Eighteen neuropsychological measures representing multiple cognitive domains (language, 

memory, executive function, visuoperception, motor speed) were examined by graph theory 

techniques within the control and each epilepsy cognitive phenotype group to characterize their 

global and local network properties.

Results: Across the control and epilepsy cognitive phenotype groups (intact to focal to 

generalized impairment), there was: 1) an orderly breakdown in the positive manifold reflected by 
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a stepwise reduction of positive associations among the neuropsychological tests, 2) stepwise 

abnormal increases in global measures including the normalized clustering coefficient and 

modularity index, 3) stepwise abnormal decreases in normalized global efficiency, 4) a community 

structure demonstrating well organized modules within the control group while each epilepsy 

group showed deviations from controls, and 5) lower strength, compared to controls, across 8 

nodes in the focal and generalized impairment groups compared to only 3 nodes in the no-

impairment epilepsy group, pointing to the superior integration of local connections in controls.

Discussion: The cognitive phenotypes of temporal lobe epilepsy are characterized by orderly 

abnormalities in their underlying neuropsychological networks. These findings inform the network 

perturbations that underlie the taxonomy of cognitive abnormality in temporal lobe epilepsy and 

provide a model for examination of similar issues in other focal and generalized epilepsies.
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1. Introduction

Temporal lobe epilepsy is not associated with an invariant impairment in anterograde 

memory as classically proposed, but is instead associated with a heterogeneous 

neuropsychological profile reflected in reproducible cognitive phenotypes. These range from 

a phenotype expected for the disorder including abnormal anterograde memory (that may be 

accompanied by concomitant language and/or executive dysfunction), to less expected 

phenotypes that include grossly intact performance as well as a generally impaired cognitive 

profile (Hermann et al., 2007; Baxendale and Thompson, 2020; Rodriguez-Cruces et al., 

2018, 2020; Reyes et al., 2019, 2020). One group found two focal phenotypes (learning/

memory and executive function/speed) in addition to the intact and generalized impaired 

groups (Elverman et al., 2019). Neuroimaging research has revealed concomitant stepwise 

abnormalities consistent with the presence and degree of impairment across the cognitive 

phenotypes, these relationships reflected in brain structure, connectivity (diffusion and 

resting state fMRI), and large scale covariance analyses of cortical/subcortical gray and 

white matter (Dabbs et al., 2009; Reyes et al., 2019; Rodríguez-Cruces et al., 2020; 

Hermann et al., 2020)—findings that support the hypothesis that disrupted networks rather 

than focal pathology underlie the heterogeneous cognitive presentations of temporal lobe 

epilepsy.

Unexplored, however, is how the underlying cognitive networks themselves are impacted 

across the various phenotypes, that is, what is the pattern of altered associations among the 

neuropsychological tests themselves and how are these altered associations reflected across 

the cognitive phenotypes of temporal lobe epilepsy compared to controls? This question can 

be addressed by the application of graph theory analytics to the administered 

neuropsychological measures. Cognitive networks in epilepsy have been examined 

infrequently in this fashion. Three previous studies examined baseline and prospective 

neuropsychological networks in children with new onset idiopathic epilepsies (Garcia-

Ramos et al., 2015, 2016) and adults with chronic temporal lobe epilepsy compared to 

controls (Kellermann et al., 2016). The results revealed that children with epilepsy exhibited 
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a less structured global development of their cognitive network, as shown by both lower 

global integration and segregation compared to healthy controls, and an altered regional 

organization reflected by the different nature of employed hubs among groups. Regarding 

chronic temporal lobe epilepsy, the modular structure of their cognitive graph was found to 

be poorly structured compared to controls, with the domains of memory and executive 

function more separated in the epilepsy network compared to controls.

The purpose of this investigation is to examine the neuropsychological networks underlying 

the three epilepsy cognitive phenotypes identified in the Epilepsy Connectome Project 

(ECP) using graph theory analytics. In that previous analysis, unsupervised machine 

learning was applied to summary metrics (deviation from controls z-scores) representing 

five cognitive domains (language, visuospatial, memory, executive function/processing 

speed, motor speed). Cluster analysis showed the taxonomy of cognitive impairment to 

include three latent groups: 1) Generalized-cognitive impairment (Gen-CI) characterized by 

impairment across all cognitive domains, Focal-cognitive impairment (Focal-CI) 
characterized by impairment in language, memory and executive function domains, and No-
cognitive impairment (No-CI) characterized by unimpaired and generally commensurate 

performance compared to controls across all cognitive domains (Hermann et al., 2020).

While informative, the presence, nature, and quantitative features of disruptions to the 

neuropsychological networks themselves within each cognitive phenotype remain to be 

examined. That is, what is the relationship among the 18 specific test measures in the 

controls and how are those relationships altered within and across the intact, focal impaired, 

and generalized impaired cognitive phenotypes? What are the underlying 

neuropsychological modules and how are they altered across groups, what are the cognitive 

hubs of those modules, and how efficiently are the modules organized and segregated? It is 

cognitive network typology, defined using the neuropsychological tests themselves, 

informed by the application of graph theory, that is the focus here.

We hypothesize that, similar to prior examinations of morphological networks (i.e., cortical 

and subcortical volumes) associated with cognitive phenotypes that have revealed a stepwise 

increase in both global clustering and global efficiency linked to increasing cognitive 

impairment, similar relationships would characterize the neuropsychological networks.

2. Methods

We report how we determined our sample size, all data exclusions, all inclusion/exclusion 

criteria, whether inclusion/exclusion criteria were established prior to data analysis, all 

manipulations and all measures in the study.

2.1. Participants

Participants included 104 temporal lobe epilepsy patients and 30 healthy control volunteers 

prospectively enrolled in the Epilepsy Connectome Project (ECP) (See Table 1) (Cook et al., 

2019; Hwang et al., 2019). ECP is a two-site research project involving the Medical College 

of Wisconsin and the University of Wisconsin–Madison, reviewed and approved by the IRB 
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(Institutional Review Board) at the Medical College of Wisconsin. All participants provided 

written informed consent, with all procedures consistent with the Declaration of Helsinki.

Eligible patients were between the ages of 18 and 60, had estimated full-scale IQ 

(Intelligence Quotient) at or above 70, spoke English fluently, with no medical 

contraindications to MRI. The diagnosis of temporal lobe epilepsy was supported by two or 

more of the following: 1) described or observed clinical semiology consistent with seizures 

of temporal lobe origin, 2) EEG evidence of either Temporal Intermittent Rhythmic Delta 

Activity or temporal lobe epileptiform discharges, 3) temporal lobe onset of seizures 

captured on video EEG monitoring, or 4) MRI evidence of mesial temporal sclerosis or 

hippocampal atrophy. Patients with any of the following were excluded: 1) lesions other than 

mesial temporal sclerosis causative for seizures, and 2) an active infectious/autoimmune/

inflammatory etiology of seizures. The temporal lobe epilepsy cohort composing the 

Epilepsy Connectome Project is not a pure presurgical cohort. A modest proportion (34%) of 

participants underwent ictal monitoring. This in turn has limitations, primarily in regard to 

unequivocal seizure lateralization. However, the proportion of patients who underwent ictal 

monitoring is quite similar to the prevalence of medication refractory epilepsy (Kwan & 

Brodie, 2000). In this regard the cohort is less biased toward medication-refractory/surgical 

temporal lobe epilepsy and, therefore, more representative of temporal lobe epilepsy in 

general.

Adjusted (age, ICV) hippocampal volumes were derived and at a conservative threshold (z ≤ 

−1.5), 23% of the temporal lobe epilepsy group exhibited unilateral (12.4%) or bilateral 

(10.3%) hippocampal atrophy. Using a more liberal threshold (z < −1.0), 43% of the 

temporal lobe epilepsy sample exhibited hippocampal atrophy pointing to the presence but 

less severe nature of hippocampal atrophy in this temporal lobe epilepsy group. As expected, 

the rate of hippocampal atrophy (z ≤ −1.5) in the temporal lobe epilepsy group compared to 

controls was significantly elevated (p = .037). Of those temporal lobe epilepsy patients with 

hippocampal atrophy, 55% were unilateral and 45% were bilateral (using z ≤ −1.5 

threshold).

Control participants were healthy adults between the ages of 18 and 60. Exclusion criteria 

included: Edinburgh Laterality (Handedness) Quotient less than +50; primary language other 

than English; history of any learning disability, brain injury or illness, substance abuse, or 

major psychiatric illness (major depression, bipolar disorder, or schizophrenia); current use 

of vasoactive medications; and medical contraindications to MRI. The controls were 

volunteers recruited through IRB-approved publicly posted announcements. All participants 

were compensated for participation in the study. There were 104 temporal lobe epilepsy 

patients and, per protocol, 30 controls with complete neuropsychological datasets. The 

specific data from ECP used in this investigation (cognition) (https://osf.io/4z5bd/).

2.2. Neuropsychological assessment

The healthy control and epilepsy participants underwent comprehensive neuropsychological 

evaluation. A total of 18 cognitive tests were administered (Table 2) and participants with 

complete datasets were included. The battery comprised measures of intelligence (Wechsler 

Abbreviated Scale of Intelligence-2 Vocabulary and Block Design subtests) (Wechsler, 
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2011), verbal learning and memory (Rey Auditory Verbal Learning Test) including total 

words learned across trials and delayed recall (Rey, 1964), object naming (Boston Naming 

Test) (Kaplan et al., 1983), letter fluency (Controlled Oral Word Association Test) (Heaton 

et al., 2004), semantic fluency (Animal Naming) (Heaton et al., 2004; Strauss et al., 2006), 

spatial orientation (Judgement of Line Orientation) (Benton et al., 1983), face recognition 

(Facial Recognition Test) (Benton et al., 1983), speeded fine motor dexterity (Grooved 

Pegboard, dominant and non-dominant hands) (Klove, 1963), and selected subtests from the 

National Institutes of Health Toolbox-Cognitive Battery including the Pattern Comparison 

Processing Speed (Carlozzi et al., 2014, 2015), Dimensional Change Card Sort, List Sorting 

Working Memory, Flanker Inhibitory Control and Attention, Picture Vocabulary, Oral 

Reading Recognition, and Picture Sequence Memory tests. Legal copyright restrictions 

prevent public archiving of the various neuropsychological tests used in the study. These can 

be obtained from the copyright holders in the cited references accompanying each test.

Each raw test score was regressed on age for the control data. Gender and education were 

not adjusted, as those and other sociodemographic variables were of interest as predictors of 

phenotype membership. Scores were normalized to z-scores with the regression parameters 

and standard error of the estimate from the control group used to compute z-scores for the 

patients. Regression assumptions were checked using both plots and statistical tests. No 

obvious patterning or deviations from linearity were seen in a residual versus fitted value 

plot using the control data. Residual normality was investigated both visually using a 

quantile–quantile comparison plot as well as statistically using Shapiro–Wilks test.

2.3. Graph theory (GT) measures

Symmetric matrices of 18 tests (nodes) were calculated for the healthy controls and each 

temporal lobe epilepsy cluster group based on the z-scores from the cognitive tests (Table 2) 

controlling for gender. Weighted-symmetric adjacency matrices were created for each group 

based on the partial correlation coefficient between each pair of nodes. Subsequently, the 

diagonal elements and the negative correlations were removed from graphs, and both global 

and local measures were calculated. Given that graphs only have 18 nodes, we decided to be 

conservative and preserve all positive correlations for the analyses. The MATLAB-based 

Brain Connectivity Toolbox (http://www.brain-connectivity-toolbox.net/) was used to 

calculate GT measures.

To statistically investigate group differences, each group matrix was resampled by 

replacement (i.e., bootstrapped) a total of 250 times for each group. Since results from GT 

measures can occur by chance, each graph measure was also calculated on 250 random 

matrices with the same number of nodes and degree distribution as the pertinent graphs. In 

this way, the null hypothesis could be tested. P-values were corrected for multiple 

comparisons for each of the measures. Specifically, Bonferroni correction for the global 

analyses was based on the standard alpha level of .05 divided by the number of tests (three in 

total) multiplied by the permuted matrices of all four groups (2504). Graph theory measures 

were obtained from each resampled matrix, and averages of the GT measures were used for 

evaluations.
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The global measures investigated included normalized average clustering coefficient (CC), 

normalized global efficiency, and modularity index (Q), using the modularity Louvain 

algorithm. These measures have been thoroughly described in previous work (Garcia-Ramos 

et al., 2016). In short, global efficiency examines network integration (Wang et al., 2010); 

having a high global efficiency means that nodes are interconnected efficiently since there 

are many paths that connect different pairs of nodes. The average CC characterizes the level 

of segregation of the network, since it quantifies the number of connections that exist 

between the nearest neighbors of a node as a proportion of the maximum number of possible 

connections (Sporns et al., 2004). Since the investigated networks have a small number of 

nodes, we decided to be conservative and calculate normalized values for the average CC 

and global efficiency in order to avoid the influence of other network characteristics. This 

was done by dividing the given measure to the same measure calculated in 250 random 

graphs, for each group.

The community structure of a network indexes the sub-division of such a network into 

segregated communities or modules that contribute to the same processes while also 

allowing for a visual inspection of the network, while Q speaks to how easily the 

communities are identified by the algorithm. Given that the modularity algorithm provides a 

statistical estimate for each output (Blondel et al., 2008), we calculated modularity 1,000 

times for each group, and the highest proportion was chosen as the number of modules in 

that group. Furthermore, in order to be certain regarding the module assignment for each 

node, we created a script that calculated the proportion of module assignment for each node 

in order to have each node assigned to the module with the highest probability. The Force 

Atlas 2 algorithm of the open source software Gephi 9.2 (https://gephi.org) was used for the 

2D visualization of modularity and community structures (scaling = 100).

To investigate the network hubs, which are the most fundamental regions for the 

configuration of a network (Sporns et al., 2007), the node degree was the centrality measure 

used. The degree of a node is the sum of the edges or connections that a given node has. 

Nodes with high degree (>average + SD) are considered hubs of the network. The strength 

of a node denotes the strength of the correlation between a node and the rest of the nodes in 

the graph. The node strength was also investigated for each cognitive phenotype group with 

respect to controls by calculating Z-scores.

3. Results

Examining demographic and clinical characteristics of the groups (Table 1), the epilepsy and 

controls groups were comparable in age (p = .54) and gender (p = .28), but differed 

significantly in FSIQ (p < .001); and the groups with temporal lobe epilepsy were not 

significantly different in age of first seizure (p = .097) and number of antiepileptic drugs 

(AED) (p = .052) but differed significantly in age of onset of recurrent seizures (p = .009).

3.1. Phenotype groups

Figure 1 represents the three identified cognitive phenotype groups from the ECP (Hermann 

et al., 2020). As noted, 18 neuropsychological test metrics were examined in all participants, 

and the test metrics were assigned to 5 cognitive domains that were then subjected to cluster 
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analysis. Three cognitive phenotypes were identified that ranged from performance 

comparable to controls (No-CI), performance impaired across all cognitive domains 

(Generalized-CI), and performance characterized by leading impairment in language, 

memory and executive function (Focal-CI). The network typology of the 18 

neuropsychological metrics within and across the control and epilepsy cognitive phenotype 

groups follows below.

Details regarding construction of the overarching cognitive phenotypes and their correlates 

are provided in Hermann et al. (2020) including the association of hippocampal atrophy 

(none, unilateral, bilateral) with cognitive phenotype distribution which was significant (Chi 

Square = 20.7, df = 9, p < .014) indicating that bilateral hippocampal atrophy was associated 

with the generalized cognitive impairment cluster (No-CI, Focal-CI, Generalized-CI = 10%, 

10%, 26%). There was no significant association between cognitive phenotype and laterality 

defined by interictal EEG (left, right, bilateral) (p = .55) or ictal monitoring (p = .23). That 

said, only a subset of temporal lobe epilepsy participants (34%) underwent ictal monitoring, 

another indication of the less severe nature of the epilepsy of this cohort. The presence 

versus absence of ictal monitoring (a potential indication of medication resistant seizures) 

was not associated with cognitive phenotype membership (p = .24).

3.2. Adjacency matrices

Figure 2 shows the adjacency matrices of each group without the diagonal elements. It can 

be observed that negative correlations increase with increasing cognitive impairment. 

Specifically, controls show 8 negative correlations, No-CI show 33, Focal-CI show 52, and 

Generalized-CI show 60. These deviations from positive associations infer a breakdown of 

the so-called positive manifold (positive correlations among the test measures). Since this 

investigation removed negative links from the matrices, such a reduction of positive 

associations resulted in a reduction in the number of edges with increased cognitive 

impairment. To be exact, controls preserved 95% of their edges, No-CI preserved 68%, 

Focal-CI 60%, and Generalized-CI preserved 57%.

3.3. Modularity and network hubs

The community structure of the controls appeared highly integrated compared to the 

temporal lobe epilepsy groups (Fig. 3), reflected in the node separation, which was more 

pronounced in all three temporal lobe epilepsy groups. Although the No-CI group did not 

show the same level of integration as controls, its network appeared highly segregated with 

well-defined modules, followed by the Focal-CI group. In the Generalized-CI phenotype the 

modules were less organized as reflected in the mixture of same-color nodes. Although 

controls have a highly integrated network and modules are separated, they are not as 

segregated as in the temporal lobe epilepsy groups. This can be observed in the closeness of 

different modules (same-color nodes) in controls. The three modules of the controls 

reflected well organized systems characterized predominantly but not exclusively by verbal 

and visual memory metrics (red), executive function/processing speed (green), and language 

and visuospatial and motor dexterity measures (yellow). Deviations from this network 

organization were clearly evident across the epilepsy cognitive phenotype groups.
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ANOVA testing revealed the groups were significantly different in Q (inset within Fig. 3), 

and post-hoc analyses revealed that each group was significantly different from each other 

(F1,3 = 1086, p < .001). The lack of segregation that is observed in the community structure 

of controls was confirmed with their low Q. Starting with controls at the bottom, the 

cognitive phenotype groups exhibited a stepwise increase in Q, with the No-CI phenotype 

higher than controls, the Focal-CI phenotype higher than No-CI phenotype, and the 

Generalized-CI higher than all phenotype groups. Lower Q appears to reflect benefit in 

terms of the integrity of the cognitive networks.

Regarding the hubs of the networks, the controls showed only one, the No-CI and 

Generalized-CI phenotype groups showed 2, and Focal-CI phenotype group revealed 3 hubs; 

based on node degree. However, most of the nodes in controls showed high degree: the node 

with the lowest degree had a degree of 11, while in the other groups the comparable figure 

was 9.7 (No-CI), 6 (Focal-CI), and 5 (Generalized-CI). In order to know which nodes serve 

as a hub, we calculated the average + one SD of the degree for each group. The threshold in 

controls was higher compared to the other groups (HC = 16.5, No-CI = 13.6, Focal-CI = 

11.5, and Generalized-CI = 10.7), and 17/18 nodes in controls had a degree higher than 13.6 

(the threshold for No-CI). The hub in controls was a verbal learning metric [total words 

recalled over learning trials (RAVLT_TOTAL)], while the hubs in No-CI were tests of 

visuospatial-construction ability (WASI_BLCK) and speeded fine motor dexterity 

(GROVPEGND). Focal-CI exhibited two hubs involving executive/processing speed (DCCS, 

FLANK) and one language/executive metric (SEMNTFL); and Generalized-CI exhibited 

two hubs reflected by metrics of language/executive function (COWA) and language 

(ORAL).

3.4. Global measures

In terms of normalized average CC, the Generalized-CI group exhibited the highest values, 

followed by Focal-CI, then No-CI, and lastly healthy controls (Fig. 4). Normalized global 

efficiency showed the healthy controls to have the highest value, followed by No-CI, then 

Focal-CI and lastly Generalized-CI. Both global measures seem to be sensitive to increasing 

impairment when examining the neuropsychological networks across cognitive phenotypes; 

normalized CC increased with increasing cognitive impairment while normalized Global 

efficiency decreased with increasing cognitive impairment. ANOVA revealed that groups 

differed significantly in global efficiency (F1,3 = 2260, p < .001) but not average CC (F1,3 

= .152, p > .9).

The higher Q associated with Generalized-CI seemed to be due to high CC and low global 

efficiency. Since both controls and No-CI were those with the highest cognitive integrity, 

and both showed higher normalized global efficiency, lower normalized CC, and lower Q, 

the combination of high normalized global efficiency with low normalized CC and Q infers 

a more intact cognitive network.

3.5. Node strength

The node strength was calculated for each group, and z-scores were calculated based on the 

average and standard deviation of the node strength in controls. Fig. 5 shows the No-CI 
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group presented only three nodes with a strength lower than controls, based on one SD 

below controls, while both Focal-CI and Generalized-CI showed 8 nodes with lower strength 

than controls. None of the groups showed a node with significantly higher strength than 

controls.

4. Discussion

While the neuropsychological presentations of temporal lobe epilepsy are heterogeneous 

across individual patients, this heterogeneity has been captured by unsupervised machine 

learning and other analytic approaches that have demonstrated the existence of a core set of 

distinct cognitive phenotypes that are reproducible across centers and robust to the methods 

used to identify them. These phenotypes range from surprisingly cognitively unaffected, to 

predominantly memory impaired with/without language and executive dysfunction, to 

unexpected pervasive cognitive impairment in this focal epilepsy (Hermann et al., 2007; 

Elverman et al., 2019; Baxendale and Thompson, 2020; Rodríguez-Cruces et al., 2018, 

2020; Reyes et al., 2019, 2020).

Fundamental to this approach, and rarely considered, is the fact that a large set of individual 

neuropsychological tests and metrics form the basic building blocks for these phenotypic 

approaches. Typically, a substantial number of tests and metrics are grouped into a much 

smaller number of widely appreciated cognitive domains (e.g., language, visuospatial 

function, memory, executive function, motor speed) where-upon latent profiles of these 

cognitive domains, or phenotypes, are identified. While there is regularity in the identified 

phenotypic profiles of temporal lobe epilepsy, the nature of the “neuropsychological 

networks” that underlie them, defined by the patterns of association, integration and 

organization of the neuropsychological tests themselves across the cognitive phenotypes, has 

remained an open question and one that was addressed here using a graph theory approach.

In this investigation the “neuropsychological networks” of controls and three temporal lobe 

epilepsy cognitive phenotype groups were investigated using the 18 basic 

neuropsychological tests/metrics. Three main findings emerged. First, across increasingly 

impaired cognitive phenotype groups there was an increasing breakdown in the positive 

manifold of the neuropsychological network reflected in a reduction of the number of 

positive associations. Second, global measures including normalized CC and the modularity 

index showed a stepwise increase across the increasingly abnormal temporal lobe epilepsy 

phenotype groups, while normalized global efficiency showed the opposite stepwise 

behavior. Third, regarding community structure, controls exhibited well organized modules 

while each epilepsy group showed substantial deviations from controls. Finally, node 

strength calculations again showed a superior integration in controls now in terms of local 

connections. These findings will be discussed below.

4.1. Adjacency matrices

Regarding the correlation or adjacency matrices, it was evident that the underlying 

neuropsychological networks increasingly “lost” positive correlations between the tests and 

an associated reduced number of edges as a function of membership in increasingly 

impaired cognitive phenotype groups (Controls > No-CI > Focal-CI > Gen-CI). These 
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findings infer a stepwise breakdown in the positive manifold across increasingly abnormal 

cognitive phenotype groups, pointing to a unique and uncommonly documented correlate of 

cognitive impairment.

4.2. Global measures and community structure

Across increasingly abnormal epilepsy cognitive phenotype groups, global measures of the 

underlying neuropsychological networks demonstrated a stepwise increase in Q and 

normalized CC; with a concomitant stepwise reduction in normalized global efficiency. 

Therefore, with worsening cognitive phenotypes, network segregation (global CC) was 

higher and network integration (global efficiency) was lower, pointing to more segregated 

and less integrated neuropsychological networks in a stepwise and orderly pattern of 

abnormality across groups (Controls to No-CI to Focal CI to Generalized CI).

Controls also demonstrated a highly integrated network with low segregation which was 

evident in the closeness of nodes regardless of their module association. Controls showed 

one module composed predominantly of verbal and visual memory metrics, a second 

comprised primarily of executive function/speed-related tests, and a third module 

characterized predominantly but not exclusively by a mix of language, visuospatial, and 

motor dexterity measures. Controls appeared to demonstrate good integration within and 

between modules, a configuration not unexpected for a healthy cognitive network. The 

epilepsy phenotype groups deviated considerably from this network configuration.

The No-CI phenotype exhibited one module containing only language-based tests, with the 

second module containing a mixture of verbal memory, language/executive, language, and 

visuospatial skills. The rest of the nodes were together in a module. Like controls, nodes 

within modules were highly integrated, however, but showing high segregation from the 

other modules.

In the Focal-CI phenotype most tests from both the visuospatial and verbal domains were 

together in the same module (yellow) with the addition of a metric of working memory. A 

second module, containing only memory tests, appeared as a peripheral module, almost not 

connected to the rest of the graph. Similar to the No-CI phenotype, nodes within a module 

were well-integrated with the exception of the yellow module, which had working memory 

almost disconnected from the network as a peripheral node (i.e., almost not connected to its 

module and the network in general); therefore, barely contributing to the network topology.

In the Generalized-CI phenotype, node configuration seemed completely opposite to 

controls. This group demonstrated poorly integrated nodes within modules, which were also 

weakly integrated to the rest of the network. Specifically, there was a module comprised of 

tests from the processing speed domain, speeded fine motor dexterity, and one memory 

measure. Furthermore, two of the three visuospatial tests were together with one executive/

processing speed measure in another module where nodes were not well-integrated together 

(yellow module). Another module contained the two language/executive tests along with 

working memory that also showed a lack of within-module integration. Finally, a fourth 

module contained the measures of language and verbal learning and memory, as well as the 

one remaining visuospatial measure.
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In summary, the cognitive networks of all three temporal lobe epilepsy phenotypes 

demonstrated an overall and within-module reduction in integration with increasing 

cognitive impairment, which ultimately was substantially different from controls.

4.3. Network hubs and node strength

There were differences across groups in both the number and type of hubs represented, with 

all epilepsy groups exhibiting more hubs than controls, and also differing from controls in 

the neuropsychological abilities represented by those hubs. These findings suggest that 

controls do not require multiple central regions to demonstrate typical cognitive ability, 

while temporal lobe epilepsy phenotypes appear to actively rely on a greater number of 

hubs. Furthermore, since most of the nodes in controls showed high degree (>11), it appears 

that nodes in controls contribute equally to the configuration of the network, appearing 

greatly integrated to each other and resulting in almost no node overshadowing another.

When investigating node strength using Z-scores, none of the epilepsy groups showed a 

node with a significantly higher strength than the control group. The No-CI group showed 3 

nodes with lower strength than controls, and both Focal-CI and Generalized-CI groups 

presented 8 nodes with lower strength than controls, suggesting that the strength of 

associations between neuropsychological tests might be playing a role in the 

neuropsychological networks undergirding the epilepsy phenotypes.

4.4. The broader utility and potential implications of a network analysis of 
neuropsychological data

Clearly a major finding is that the positive correlative manifold for cognitive tests breaks 

down in temporal lobe epilepsy. The comparison of the adjacency matrices (Fig. 2) provides 

a clear visual representation of this finding. Conceiving of these relationships between tests 

as a network of cognitive abilities it then follows that the use of graph theory may be a 

natural analytical tool to quantify and visualize network features. The modularity results 

(Fig. 3) serve as a useful example of how graph theory can quantify a general finding into a 

single metric (Q) that allows for statistical comparison and was able to highlight the 

monotonic relationship between increasing Q from controls through the generalized 

cognitive impairment phenotype. Similar results follow from examination of the clustering 

coefficient and global efficiency metrics (Fig. 4). These results expand upon the adjacency 

matrix gestalt by providing specific established graph theory metrics with explanatory 

power. Increased modularity, increased clustering coefficient and decreased normalized 

global efficiency associated with increasingly abnormal cognitive phenotypes of temporal 

lobe epilepsy suggest that the cognitive domains are increasing less integrated—inferring 

that that the primary abnormality in temporal lobe epilepsy may not be domain specific but 

rather related to disrupted interactions (networks) of cognitive abilities and domains and that 

these graph theory metrics provide an established and arguably useful method for 

quantifying this result.

Might these results have implications for interventions such as cognitive therapy? The 

decrease in the positive manifold across cognitive phenotype groups clearly indicates that 

treatment of one ability or one test deficit may have less generalized benefit across cognitive 
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abilities. The implication is that cognitive rehabilitation may be more challenging in the 

more impaired cognitive phenotypes. From a speculative perspective, neurostimulatory 

techniques may be better suited to attempt to re-establish normal cognitive network 

architecture than typical epilepsy treatments such as anti-seizure medications or resection. 

This could be a testable hypothesis through examining surgical cohorts with similar baseline 

cognitive dysfunction and comparing outcomes for those treated with responsive 

neurostimulation (RNS) (Skarpaas et al., 2019) adjusting for response to treatment (seizure 

freedom).

Could particularly salient nodes/hubs be a useful consideration for therapies for cognitive 

impairment? It would be interesting if specific cognitive domains could be targeted in each 

subgroup that could result in focal or generalized improvement. Unfortunately, we do not 

believe these data would support such a strategy. Shown in the results (Fig. 3) is that the 

cognitive domains become more isolated in temporal lobe epilepsy and the hubs are in 

general the areas that are better preserved within particular subgroups. In general, we would 

advocate for therapies related to the patient specific deficits, though as above we are 

interested in the possibility that neurostimulation might have broader network effects, 

though this remains to be studied.

One evident value of the approach presented here is that differences between groups or 

within individuals over time can be visualized in a way that reveals patterns that would 

otherwise be very difficult to discern from tables or simple bar graphs. Relationships 

between nodes are obvious and colorization can be used to bring into view proposed 

modules. Whether the visualization of the patterns that emerge can have practical 

significance remains to be seen, but of course it is possible especially in the case of 

longitudinal research.

4.5. Conclusion and future directions

Heterogeneity inherent in the breakdown of cognitive function in temporal lobe epilepsy has 

been demonstrated through investigation of individual tests, broader cognitive domains, and 

recently identified cognitive phenotypes. The latter is a useful approach to capturing the 

neuropsychological heterogeneity inherent in the epilepsies and ultimately the similarities 

and differences across epilepsy syndromes. To date, the identified cognitive phenotypes have 

not been tethered to the perturbations that may be occurring in the interrelationships among 

the individual tests themselves which, as shown here through application of graph theory, are 

informative in and of themselves. It is uncommon to apply graph theory to 

neuropsychological tests themselves (Garcia-Ramos et al., 2016; Tosi et al., 2020; van der 

Maas et al., 2017), but this may merit more consideration in the future. Specifically, future 

studies could focus on how or whether cognitive cluster classification can provide evidence 

about the trajectory or prognosis of epilepsy, drug resistance, and prognosis for psychiatric 

co-morbidity.
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No-CI No-cognitive impairment = characterized by unimpaired and 

generally commensurate performance compared to controls across all 
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REFERENCES

Baxendale S, & Thompson P (2020 9 7). The association of cognitive phenotypes with postoperative 
outcomes after epilepsy surgery in patients with temporal lobe epilepsy. Epilepsy & Behavior: E&b, 
112, 107386. 10.1016/j.yebeh.2020.107386.

Benton AL, Hamsher KD, Varney NR, & Spreen O (1983). Contributions to neuropsychological 
assessment: A clinical manual. New York, NY: Oxford University Press.

Blondel VD, Guillaume JL, Lambiotte R, & Lefebvre E (2008). Fast unfolding of communities in large 
networks. Journal of Statistical Mechanics: Theory and Experiment, IOP Publishing, P10008, 1–12.

Carlozzi NE, Beaumont JL, Tulsky DS, & Gershon RC (2015). The NIH toolbox pattern comparison 
processing speed test: Normative data. Archives of Clinical Neuropsychology: the Official Journal 
of the National Academy of Neuropsychologists, 30(5), 359–368. 10.1093/arclin/acv031 [PubMed: 
26025230] 

Carlozzi NE, Tulsky DS, Chiaravalloti ND, Beaumont JL, Weintraub S, Conway K, & Gershon RC 
(2014). NIH toolbox Cognitive Battery (NIHTB-CB): The NIHTB pattern comparison processing 
speed test. Journal of the International Neuropsychological Society: JINS, 20(6), 630–641. 10.1017/
S1355617714000319 [PubMed: 24960594] 

Cook CJ, Hwang G, Mathis J, Nair VA, Conant LL, Allen L, & Meyerand ME (2019). Effective 
connectivity within the default mode network in left temporal lobe epilepsy: Findings from the 
epilepsy connectome project. Brain Connectivity, 9(2), 174–183. 10.1089/brain.2018.0600 
[PubMed: 30398367] 

Dabbs K, Jones J, Seidenberg M, & Hermann B (2009 8). Neuroanatomical correlates of cognitive 
phenotypes in temporal lobe epilepsy. Epilepsy & Behavior: E&b, 15(4), 445–451. 10.1016/
j.yebeh.2009.05.012. Epub 2009 Jun 26.

Elverman KH, Resch ZJ, Quasney EE, Sabsevitz DS, Binder JR, & Swanson SJ (2019 7). Temporal 
lobe epilepsy is associated with distinct cognitive phenotypes. Epilepsy & Behavior: E&b, 96, 61–
68. 10.1016/j.yebeh.2019.04.015. Epub 2019 May 9.

Garcia-Ramos C, Lin JJ, Kellermann TS, Bonilha L, Prabhakaran V, & Hermann BP (2016 11). Graph 
theory and cognition: A complementary avenue for examining neuropsychological status in 
epilepsy. Epilepsy & Behavior: E&b, 64(Pt B), 329–335. 10.1016/j.yebeh.2016.02.032. Epub 2016 
Mar 24.

Garcia-Ramos et al. Page 13

Cortex. Author manuscript; available in PMC 2022 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Garcia-Ramos C, Lin JJ, Prabhakaran V, & Hermann BP (2015 10 27). Developmental reorganization 
of the cognitive network in pediatric epilepsy. Plos One, 10(10), e0141186. 10.1371/
journal.pone.0141186. eCollection 2015. [PubMed: 26505900] 

Heaton RK, Miller SW, Taylor MJ, & Grant I (2004). Revised comprehensive norms for an expanded 
Halstead-Reitan battery: Demographically adjusted neuropsychological norms for African 
American and Caucasian adults. Lutz, Fla: Psychological Assessment Resources.

Hermann B, Conant LL, Cook CJ, Hwang G, Garcia-Ramos C, Dabbs K, Nair VA, Mathis J, Bonet 
CNR, Allen L, Almane DN, Arkush K, Birn R, DeYoe EA, Felton E, Maganti R, Nencka A, 
Raghavan M, Shah U, … Meyerand ME (2020). Network, clinical and sociodemographic features 
of cognitive phenotypes in temporal lobe epilepsy. Neuroimage Clinical, 27, 102341. 10.1016/
j.nicl.2020.102341. Epub 2020 Jul 10.Neuroimage Clin. 2020. [PubMed: 32707534] 

Hermann B, Seidenberg M, Lee EJ, Chan F, & Rutecki P (2007 1). Cognitive phenotypes in temporal 
lobe epilepsy. Journal of the International Neuropsychological Society: JINS, 13(1), 12–20. 
10.1017/S135561770707004X [PubMed: 17166299] 

Hwang G, Dabbs K, Conant L, Nair VA, Mathis J, Almane DN, & Hermann B (2019). Cognitive 
slowing and its underlying neurobiology in temporal lobe epilepsy. Cortex; a Journal Devoted To 
the Study of the Nervous System and Behavior, 117, 41–52. 10.1016/j.cortex.2019.02.022 
[PubMed: 30927560] 

Kaplan EF, Goodglass H, & Weintraub S (1983). The boston naming test (2nd ed.). Philadelphia, PA: 
Lea & Febiger.

Kellermann TS, Bonilha L, Eskandari R, Garcia-Ramos C, Lin JJ, & Hermann BP (2016 10). Mapping 
the neuropsychological profile of temporal lobe epilepsy using cognitive network topology and 
graph theory. Epilepsy & Behavior: E&b, 63, 9–16. 10.1016/j.yebeh.2016.07.030. Epub 2016 Aug 
15.

Klove H (1963). Clinical neuropsychology. The Medical Clinics of North America, 47, 1647–1658. 
[PubMed: 14078168] 

Kwan P, & Brodie MJ (2000 2 3). Early identification of refractory epilepsy. The New England Journal 
of Medicine, 342(5), 314–319. 10.1056/NEJM200002033420503. [PubMed: 10660394] 

Rey A (1964). L’Examen clinique en psychologie, par André Rey., 2e édition. Paris: Presses 
universitaires de France (Vend^me Impr. des P.U.F.).

Reyes A, Kaestner E, Bahrami N, Balachandra A, Hegde M, Paul BM, Hermann B, & McDonald CR 
(2019 4 23). Cognitive phenotypes in temporal lobe epilepsy are associated with distinct patterns 
of white matter network abnormalities. Neurology, 92(17), e1957–e1968. 10.1212/
WNL.0000000000007370. Epub 2019 Mar 27.Neurology. 2019. [PubMed: 30918094] 

Reyes A, Kaestner E, Ferguson L, Jones JE, Seidenberg M, Barr WB, Busch RM, Hermann BP, & 
McDonald CR (2020 6). Among authors: Hermann BP. Cognitive phenotypes in temporal lobe 
epilepsy utilizing data and clinically driven approaches: Moving toward a new taxonomy. 
Epilepsia, 61(6), 1211–1220. 10.1111/epi.16528. Epub 2020 May 4.Epilepsia. 2020. [PubMed: 
32363598] 

Rodríguez-Cruces R, Bernhardt BC, & Concha L (2020 6). Multidimensional associations between 
cognition and connectome organization in temporal lobe epilepsy. Neuroimage, 213, 116706. 
10.1016/j.neuroimage.2020.116706. Epub 2020 Mar 6. [PubMed: 32151761] 

Rodríguez-Cruces R, Velázquez-Pérez L, Rodríguez-Leyva I, Velasco AL, Trejo-Martínez D, 
Barragán-Campos HM, Camacho-Téllez V, & Concha L (2018 2). Association of white matter 
diffusion characteristics and cognitive deficits in temporal lobe epilepsy. Epilepsy & Behavior: 
E&b, 79, 138–145. 10.1016/j.yebeh.2017.11.040. Epub 2018 Jan 4.

Skarpaas TL, Jarosiewicz B, & Morrell MJ (2019 7). Brain-responsive neurostimulation for epilepsy 
(RNS® System). Epilepsy Research, 153, 68–70. 10.1016/j.eplepsyres.2019.02.003. Epub 2019 
Feb 20. [PubMed: 30850259] 

Sporns O, Chialvo D, Kaiser M, & Hilgetag CC (2004). Organization, development and function of 
complex brain networks. Trends in Cognitive Sciences, 8, 418–425. [PubMed: 15350243] 

Sporns O, Honey CJ, & Kotter R (2007). Identification and classification of hubs in brain networks. 
Plos One, 2(10). 10.1371/journal.pone.0001049

Garcia-Ramos et al. Page 14

Cortex. Author manuscript; available in PMC 2022 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Strauss E, Sherman E, & Spreen O (2006). A compendium of neuropsychological tests (3rd ed.). New 
York: Oxford University Press.

Tosi G, Borsani C, Castiglioni S, Daini R, Franceschi M, & Romano D (2020 3). Complexity in 
neuropsychological assessments of cognitive impairment: A network analysis approach. Cortex; a 
Journal Devoted to the Study of the Nervous System and Behavior, 124, 85–96. 10.1016/
j.cortex.2019.11.004 [PubMed: 31846889] 

Van Der Maas HLJ, Kan KJ, Marsman M, & Stevenson CE (2017). Network models for cognitive 
development and intelligence. Journal of Intelligence, 5(2), 16. 10.3390/jintelligence5020016. 
Published 2017 Apr 20.

Wang J, Zuo X, & He Y (2010 6 7). Graph-based network analysis of resting-state functional MRI. 
Frontiers in Systems Neuroscience, 4, 16. 10.3389/fnsys.2010.00016. eCollection 2010. [PubMed: 
20589099] 

Wechsler D (2011). Wechsler Abbreviated Scale of Intelligence-second edition (WASI-II). San 
Antonio, TX: NCS Pearson.

Garcia-Ramos et al. Page 15

Cortex. Author manuscript; available in PMC 2022 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1 –. 
Cognitive phenotype groups from the Epilepsy Connectome Project. Controls (green, N = 

30), No Cognitive Impairment (No-CI) being the most intact (blue, N = 57), Focal Cognitive 

Impairment (Focal-CI) (yellow, N = 34) with leading impairments in language, executive 

function and memory; and Generalized Cognitive Impairment (Gen-CI) (red, N = 20) being 

the most impaired overall. Plotted are mean domain scores for each phenotype. Reprinted 

from Hermann et al. (2020).
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Fig. 2 –. 
Adjacency matrices. Adjacency matrices of (from left to right): healthy controls, temporal 

lobe epilepsy with No-CI, temporal lobe epilepsy with Focal-CI, and temporal lobe epilepsy 

with Generalized-CI. Diagonal elements were set to zero.
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Fig. 3 –. 
Community Structure and Modularity Index. (top) Community structure of healthy controls 

and the modularity index graph, with healthy controls (gray), No-CI (blue), Focal-CI 

(yellow), and Generalized-CI (orange). Error bars represent the standard deviation. (Bottom) 

Community structure in No-CI, Focal-CI, and Generalized-CI.
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Fig. 4 –. 
Normalized Global Measures. (left) Normalized average clustering coefficient, and (right) 

normalized global efficiency in controls (gray), patients with No-CI (blue), patients with 

Focal-CI (yellow), and patients with Generalized-CI (orange).
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Fig. 5 –. 
Node Strength Z-scores. Z-scores regarding the node strength in No-CI (left), Focal-CI 

(middle), and Generalized-CI (right).
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