Skip to main content
. 2021 Jul 28;11:15343. doi: 10.1038/s41598-021-93543-8

Table 6.

Implementation details of the CNN trained on image data.

Hyper-parameters Values
Number of convolutional kernels of first layer 64
Number of convolutional kernels of second layer 128
Number of convolutional kernels of third layer 256
Size of convolutional kernels 3×3
Strides size 2
Input dimension 100×100
Output dimension 2
Number of convolutional layers 3
Number of fully connected layers 2
Activation function for convolutional and fully connected layers ReLU
Activation function of last layer Sigmoid
Adam hyper-parameters β1=0.9,β2=0.999
Learning rate 0.001
Loss function Binary cross entropy (BCE)
Number of neurons of the fourth layer (fully connected) 256
Number of neurons of fifth layer (fully connected) 128
Dropout probability 0.5
Number of epochs 30
Batch size 128