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An ensemble learning approach 
to digital corona virus preliminary 
screening from cough sounds
Emad A. Mohammed1, Mohammad Keyhani2, Amir Sanati‑Nezhad3, S. Hossein Hejazi4* & 
Behrouz H. Far1*

This work develops a robust classifier for a COVID-19 pre-screening model from crowdsourced cough 
sound data. The crowdsourced cough recordings contain a variable number of coughs, with some 
input sound files more informative than the others. Accurate detection of COVID-19 from the sound 
datasets requires overcoming two main challenges (i) the variable number of coughs in each recording 
and (ii) the low number of COVID-positive cases compared to healthy coughs in the data. We use 
two open datasets of crowdsourced cough recordings and segment each cough recording into non-
overlapping coughs. The segmentation enriches the original data without oversampling by splitting 
the original cough sound files into non-overlapping segments. Splitting the sound files enables us to 
increase the samples of the minority class (COVID-19) without changing the feature distribution of 
the COVID-19 samples resulted from applying oversampling techniques. Each cough sound segment 
is transformed into six image representations for further analyses. We conduct extensive experiments 
with shallow machine learning, Convolutional Neural Network (CNN), and pre-trained CNN models. 
The results of our models were compared to other recently published papers that apply machine 
learning to cough sound data for COVID-19 detection. Our method demonstrated a high performance 
using an ensemble model on the testing dataset with area under receiver operating characteristics 
curve = 0.77, precision = 0.80, recall = 0.71, F1 measure = 0.75, and Kappa = 0.53. The results show an 
improvement in the prediction accuracy of our COVID-19 pre-screening model compared to the other 
models.

From what we know about COVID-19, more than 40% of infected people show no to very moderate symptoms, 
significantly contributing to the disease’s non-intentional spread1. This situation mandates prompt and precise 
identification of COVID-19 through frequent and widespread testing to prevent community outbreaks. The 
world health organization (WHO) has identified and updated several symptoms of COVID-19, such as high 
temperature, coughing, and breathing difficulties2. However, these symptoms are common for several respiratory 
diseases and not necessarily unique to COVID-19, rendering it difficult for patients to self-assess. The gold-
standard method for diagnosing COVID-19 uses reverse transcription-polymerase chain reaction (rRT-PCR) 
in nasopharyngeal (NP) swabs. However, sample collection with the NP swab is an invasive method and is not 
ideal for screening, prognostics, and longitudinal monitoring purposes, given that it requires close contact 
between healthcare providers and patients. This contact introduces a significant risk of viral transmission to 
healthcare providers and other patients and burdens healthcare systems. The longitudinal monitoring and early 
pre-screening of individuals suspicious of COVID-19 could be improved substantially with new non-invasive 
and easy-to-implement approaches that can be carried out efficiently at a low-cost by patients themselves without 
professional help.

Given the difficulties and bottlenecks experienced so far around the world with the implementation of wide-
spread testing, the ideal test procedure would, while maintaining a high level of accuracy (sensitivity and speci-
ficity), (a) allow patients to self-assess without the need for physical contact with healthcare professionals, (b) 
bring down the cost per test substantially (ideally close to zero), (c) eliminate the dependency of diagnostic kits 
on scarce materials, manufacturing capacity, and supply chain bottlenecks, and (d) be rapidly deployable around 
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the world without dependency on logistics and physical distribution bottlenecks. In this work, we pursue a digital 
method of COVID-19 testing based on audio recordings that would satisfy all four criteria. It is noted that the 
cough-based COVID-19 testing does not aim primarily to replace gold-standard diagnostic methods but to be 
used as a longitudinal and pre-screening approach for better management of COVID-19.

Computer representations of sound data may reveal information that is not detectable by humans. There is 
also mounting evidence that machine learning methods can detect COVID-19 signatures in cough sounds3–6. 
Since cough sounds can easily be converted to information signals and stored as digital files, and they may allow 
us to create a purely digital COVID-19 testing and offer enormous economic benefits. In essence, a purely digital 
COVID-19 testing is an ’information good’ that benefits from the many favourable economics of information 
goods, such as zero marginal cost of production and distribution7,8. If the user can employ the digital test without 
professional supervision, it becomes instantly usable anywhere, anytime, and by anyone. Therefore, the benefits 
of a digital COVID-19 test are significant enough to merit its pursuit.

Several studies have collected and analyzed cough sound data for COVID-19 pre-screening testing using 
mobile devices and Web technology9–12. If enough data is available, artificial intelligence (AI) techniques would 
be leveraged to design and deploy COVID-19 detection models. However, publicly available datasets of cough 
sounds containing a substantial number of COVID-19 positive cases are limited, so data availability represents 
a bottleneck for training such machine learning models. The work illustrated in Imran et al.10 provided a proof-
of-concept COVID-19 pre-screening model. They used smartphones to collect cough recordings from a limited 
number of COVID-positive patients (70 patients) as well as cough recordings from healthy people (247 samples) 
and patients with other pathological diseases (96 bronchitis and 130 pertussis patients). The coughs were then 
used to train three machine learning models to detect coughs of COVID-positive patients. The data and trained 
models for this study are not publicly available.

In another study, a crowdsourced database that contained more than 10,000 cough samples (at the time of 
writing) was collected from 7000 unique users, 235 of whom self-declared to have been diagnosed with COVID-
199. Neither the dataset nor the models developed are publicly available. A publicly and verified crowdsourced 
COVID-19 cough dataset was presented by Sharma et al.11. Although the dataset contains more than 14,000 
unique subjects, less than 10% are identified as COVID-19 positive. Such highly imbalanced datasets have 
limitations to be used for training machine learning models for pre-screening the patients. Another dataset of 
cough sounds collected from media interviews of COVID-19 patients was presented, known as NoCoCoDa12. 
This database has cough sounds from only ten unique subjects, which is very limited to train machine learning 
algorithms. Another publicly available dataset of 121 segmented cough samples was collected from 16 patients4. 
The data also contains clinical annotation, which is accurate given its collection at a hospital under supervision. 
The cough samples were pre-processed and labelled with COVID-19 status acquired from polymerase chain 
reaction (PCR) testing, along with patient demographics (age, gender, medical history). More details on the 
datasets presented above can be found in the “Materials and methods” section4,11.

Coughing is a common symptom for over one hundred pathological conditions13. Support Vector Machine 
(SVM), Neural Network (NN), and K-Nearest Neighbour (KNN) algorithms have been utilized to analyze cough 
and breath sound recorded using smart-phones14,15 for different diseases, such as chronic obstructive pulmonary 
disease (COPD)16, tuberculosis17, and respiratory disorders like asthma and pneumonia. Nonnegative Matrix 
Factorization (NMF), SVM, CNN, logistic regression algorithms were used to extract features to analyze speech 
and cough sounds18–24. The features included the number of peaks in the energy envelope of the cough signal and 
the power ratio of the two frequency bands of the second phase of the cough signal. The results showed that these 
features could classify dry and wet coughs, enabling the identification of associated diseases. Mobile applications 
and Web services were developed for COVID-19 cough sound data collection and pre-screening25–28. However, 
none of the datasets are publicly available for replication.

Bagad et al.3 collected a large dataset of microbiologically confirmed COVID-19 cough sound from 3621 
individuals, of which 2001 had tested positive. While voice and breathing sounds were collected and manually 
verified, only the cough sounds were used for model training. They applied a CNN model and showed a statisti-
cally significant signal predicting the COVID-19 status with the area under the receiver operating characteristic 
curve (AUC = 0.72). Due to the imbalanced nature of the collected dataset (more negative vs. positive cases), the 
authors performed two data augmentations to enrich the minority class (COVID-positive) by adding external 
background environment sounds from the ESC-50 dataset29 creating different time and frequency masking of 
the input spectrogram30. Furthermore, the authors randomly sampled 2-s overlapped segments from the entire 
cough segment and used short-term magnitude spectrograms as input to the CNN model.

A study conducted by MIT researchers claimed that COVID-19 patients, specifically asymptomatic patients, 
could be accurately identified from a forced-cough cell phone recording using CNN models31. They collected a 
balanced audio COVID-19 cough dataset (not publicly available) with 5320 patients. They developed a CNN-
based speech processing framework that leverages acoustic features to pre-screen COVID-19 from cough record-
ings. Cough recordings were transformed with Mel Frequency Cepstral Coefficient (MFCC) and trained with a 
CNN ensemble model. The ensembled model was composed of a CNN model trained on the Poisson transformed 
MFCC layer representing the patient’s muscular degradation. Three parallel pre-trained ResNet50 models tuned 
on speech recordings representing the patient’s vocal cord, sentiment, lungs and respiratory tract characteristics. 
The results showed that the CNN model achieved COVID-19 sensitivity of 98.5% with a specificity of 94.2% 
(AUC: 0.97).

Moreover, for asymptomatic patients, the trained model achieved a sensitivity of 100% with a specificity of 
83.2%. The CNN model was trained on 4,256 patients and tested on 1,064 patients. Each split input cough record-
ing was split into 6-s audio segments, padded as needed, processed with the MFCC module32, and implemented 
the ensemble model.
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To achieve better automation in voice/cough feature extraction, a large-scale crowdsourced dataset of respira-
tory sounds was collected to aid the detection of COVID-199. The authors used cough and breathing sounds to 
identify COVID-19 distinguished from sounds from asthma patients or healthy people. The librosa module was 
used as the primary audio processing library, while VGGish was used to automatically extract audio features in 
addition to the various handcrafted features33. The handcrafted and VGGish extracted features were utilized in 
shallow machine learning algorithms (i.e., logistic regression and support vector machine). The results showed 
that this model could differentiate between cough and breathing sounds of COVID-19 patients and healthy users 
or patients with asthma (AUC = 0.8).

There are several challenges and limitations associated with the previous studies. The main challenge is data 
availability and quality. Even though some datasets are publicly available, the datasets are naturally limited in 
COVID-positive samples compared to the negative samples. Moreover, the nature of the crowdsourced data does 
not guarantee any noise-free recordings. The crowdsourced cough sounds may include prolonged silence peri-
ods or significant background noise, making it challenging for any machine learning model to identify valuable 
patterns related to COVID-19. Previous studies have used an overlapped sliding window approach to segment 
the cough sound files and, consequently, enrich the data of limited COVID-positive samples. The overlapped 
sliding window size may significantly impact the machine learning model results as it may accumulate sound 
information unrelated to the cough (silence) if the window size is relatively long. If the window size is small, the 
machine learning model may learn repetitive patterns that might not necessarily correlate with COVID-19. The 
previous studies based their analysis on either the MFCC or Spectrogram of the sound files and did not explore 
other features or representations of the cough sound files. Moreover, the lack of fully automated feature extrac-
tion limits the ability of machine learning models to learn from diverse features that may identify COVID-19.

In this work, we utilize a crowdsourced cough dataset with diverse length, pacing, number of coughs, and 
stochastic background noise from publicly available data4,11 and segment the cough sound recordings into indi-
vidual non-overlapped segments to enrich the COVID-positive records. We process each recorded cough for the 
first time to generate multiple representations and extract automated features per record. We then employ the 
generated feature library to develop and examine several shallow and deep learning models. The high-perfor-
mance models are selected and further aggregated into an ensemble of classifiers to produce a robust classifier 
to identify COVID-19 from cough recordings. We used the kappa statistic to incorporate high-rank classifiers 
without favouring any of the classes34.

Results and discussion
The presented work identifies COVID-19 from cough sound recordings. The main challenge faced in this work is 
how to utilize a crowdsourced cough dataset with diverse length, pacing, number of coughs, and stochastic back-
ground noise from publicly available COVID-19 cough sounds. We provide a practical solution that segments 
the cough sound recordings into individual non-overlapped segments to enrich the COVID-19 positive records. 
We process each recorded cough to generate multiple representations and extract automated features per record. 
We then employ the generated feature library to develop and examine several shallow and deep learning models.

The high-performance models are selected and aggregated into an ensemble of classifiers to produce a robust 
classifier and identify COVID-19 patients from their cough recordings. In addition, we used the kappa statistic 
to incorporate high-rank classifiers without favouring any of the classes. Finally, we show the significance of 
the proposed classification method by comparing the proposed method to recent related works. The proposed 
method outperforms compared to other complicated methods.

The methods developed so far segmented the cough sound recordings into overlapped segments of unjustified 
length and padded the resulted segments as needed. This type of segmentation introduced undesired frequencies 
and led to misleading classification results. Our method was deployed into a Web App to identify COVID-19 
patients from cough sounds that signal the work’s potential practical significance.

There is a legitimate need for the proposed predictive models based on shallow and deep learning, wherein 
these models use non-medical secondary data to identify health-related conditions such as COVID-19. These pre-
dictive models can be used in large-scale real-world settings. The results on real-world datasets are promising and 
motivate further investigations into secondary data analysis for identification of other health-related conditions".

Here we illustrate the shallow and deep learning experimentation results on the target cough sound data 
extracted from crowdsourced recordings. The goal is to identify COVID-19 patients from just one cough. 
Table 1 shows the accuracy (average ± standard deviation) of seven different classifiers trained on each of the six 

Table 1.   Classification accuracy of several shallow machine learning models.

Feature/classifier NB KNN LogitReg RF SGD XGB SVM

Chroma 0.51 ± 0.01 0.54 ± 0.03 0.55 ± 0.03 0.55 ± 0.03 0.52 ± 0.03 0.53 ± 0.03 0.54 ± 0.03

MelSpectrum 0.54 ± 0.03 0.65 ± 0.03 0.63 ± 0.03 0.63 ± 0.03 0.56 ± 0.03 0.63 ± 0.03 0.63 ± 0.04

MFCC 0.55 ± 0.04 0.65 ± 0.04 0.62 ± 0.04 0.64 ± 0.02 0.57 ± 0.04 0.63 ± 0.03 0.62 ± 0.03

PowerSpec 0.54 ± 0.03 0.64 ± 0.04 0.62 ± 0.03 0.63 ± 0.02 0.57 ± 0.04 0.62 ± 0.03 0.64 ± 0.02

RAW​ 0.53 ± 0.02 0.59 ± 0.03 0.59 ± 0.03 0.58 ± 0.03 0.54 ± 0.03 0.58 ± 0.03 0.59 ± 0.04

Spec 0.57 ± 0.05 0.65 ± 0.03 0.66 ± 0.03 0.67 ± 0.04 0.58 ± 0.04 0.66 ± 0.02 0.65 ± 0.02

Tonal 0.52 ± 0.02 0.54 ± 0.02 0.55 ± 0.04 0.54 ± 0.03 0.52 ± 0.03 0.53 ± 0.03 0.54 ± 0.02
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representations extracted from each cough sound segment. We also use the raw data directly as input images to 
train these classifiers. The results show that the shallow learning models cannot explain much of the data variance. 
The Random Forest (RF) classifier trained with spectrogram shows the highest accuracy of 0.67, followed by 
the logistic regression classifier trained with spectrogram (0.66). Tables 1, 2 and 3 highlights the top-three high-
est (accuracy, sensitivity, specificity, precision, and negative predictive value) features per classifier. The results 
also show that the essential representations of the cough sounds are the spectrogram, power spectrum, MFCC, 
and MelSpectrum. This ranking is based on how many times a specific representation appears in the top-three 
highest accuracy features per classifier list. This is mainly due to the non-overlapping window used to perform 
the cough sound segmentation in this study. The Chroma, RAW, and Tonal representations have no significant 
impact in detecting COVID-19 from cough sounds. Since the other studies have not presented multiple features 
as we did in this study3,9,31, there is no comparative information presentable in this regard. As most of the clas-
sification results are close to a random chance on average across all features of the classifiers, we do not proceed 
with shallow learning models in the final ensemble.

Tables 4 and 5 show the experimentation results with the three deep learning models of CNN from scratch, 
the original Vgg16 model, and used Vgg16 with data augmentation. The deep learning models showed a better 
performance compared to the other shallow learning models. It is noted that the essential features that produce 

Table 2.   Classification sensitivity (Sens) and specificity (Spec) of several shallow machine learning models 
(training phase).

Feature/classifier

NB KNN LogitReg RF SGD XGB SVM

Sens Spec Sens Spec Sens Spec Sens Spec Sens Spec Sens Spec Sens Spec

Chroma 0.14 0.88 0.50 0.56 0.50 0.58 0.45 0.61 0.51 0.58 0.51 0.52 0.59 0.50

MelSpectrum 0.34 0.79 0.63 0.63 0.63 0.65 0.58 0.66 0.60 0.57 0.61 0.63 0.62 0.66

MFCC 0.58 0.48 0.66 0.55 0.63 0.61 0.68 0.59 0.60 0.58 0.61 0.67 0.58 0.73

PowerSpec 0.74 0.36 0.58 0.62 0.59 0.65 0.65 0.66 0.56 0.59 0.61 0.62 0.63 0.64

RAW​ 0.23 0.83 0.55 0.63 0.56 0.63 0.54 0.61 0.48 0.56 0.62 0.53 0.55 0.65

Spec 0.51 0.62 0.68 0.64 0.69 0.60 0.68 0.67 0.65 0.57 0.65 0.65 0.65 0.75

Tonal 0.85 0.24 0.62 0.46 0.58 0.52 0.58 0.53 0.54 0.48 0.57 0.49 0.62 0.44

Table 3.   Classification precision (Pre) and negative predictive value (NPV) of several shallow machine 
learning models (training phase).

Feature/classifier

NB KNN LogitReg RF SGD XGB SVM

Pre NPV Pre NPV Pre NPV Pre NPV Pre NPV Pre NPV Pre NPV

Chroma 0.52 0.50 0.53 0.53 0.54 0.54 0.53 0.53 0.55 0.54 0.51 0.51 0.54 0.55

MelSpectrum 0.68 0.55 0.63 0.63 0.64 0.64 0.63 0.61 0.58 0.59 0.61 0.62 0.64 0.63

MFCC 0.55 0.64 0.60 0.62 0.62 0.62 0.63 0.65 0.59 0.59 0.61 0.63 0.68 0.64

PowerSpec 0.54 0.58 0.60 0.60 0.62 0.61 0.66 0.65 0.58 0.57 0.61 0.61 0.63 0.63

RAW​ 0.59 0.53 0.60 0.59 0.60 0.59 0.58 0.57 0.53 0.52 0.56 0.58 0.61 0.59

Spec 0.56 0.57 0.65 0.66 0.63 0.66 0.68 0.68 0.60 0.62 0.65 0.65 0.73 0.68

Tonal 0.53 0.63 0.53 0.55 0.55 0.55 0.56 0.56 0.51 0.51 0.57 0.53 0.53 0.54

Table 4.   Classification performance per measure per classifier (CNN from scratch and tuned Vgg16 with data 
augmentation) after 100 training epochs.

Feature

Scratch CNN Tuned Vgg16 with data augmentation

ACC​ Prec Recall F1 kappa AUC​ ACC​ Prec Recall F1 kappa AUC​

SPEC 0.68 0.67 0.71 0.69 0.37 0.68 0.76 0.72 0.85 0.78 0.52 0.76

Chroma 0.55 0.56 0.53 0.54 0.11 0.55 0.63 0.65 0.56 0.61 0.27 0.63

MFCC 0.71 0.75 0.64 0.69 0.42 0.71 0.61 0.63 0.54 0.58 0.23 0.61

MelSpectrum 0.74 0.70 0.84 0.76 0.48 0.74 0.69 0.68 0.72 0.70 0.38 0.69

PowerSPEC 0.70 0.68 0.75 0.71 0.40 0.70 0.69 0.76 0.54 0.64 0.38 0.68

RAW​ 0.56 0.57 0.49 0.53 0.13 0.56 0.58 0.56 0.69 0.62 0.16 0.58

Tonal 0.53 0.54 0.59 0.56 0.08 0.54 0.49 0.49 0.70 0.58  − 0.02 0.49

ALL features 0.62 0.63 0.55 0.59 0.23 0.62 0.63 0.62 0.67 0.64 0.26 0.63
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the highest accuracy and AUC are the same as the list discovered by the shallow learning models. The top four 
features of the kappa statistic are more than 0.2, suggesting at least a fair agreement between the observed accu-
racy from data and the accuracy due to the classifier decision function. This comparison justifies composing an 
ensemble from all the features and classifiers where the kappa statistic is more than 0.2. Here, we only compose 
four classifier models to obtain a more accurate classifier ensemble. The ensemble is, though, created from all 
the features regardless of the associated kappa values. The last rows in Tables 2 and 3 represent the performance 
of three deep learning models following their training using all features. The high variation in the entire fea-
ture images creates a very diverse pattern that could not be captured well enough using deep learning models 
(maximum AUC = 0.63).

Tables 6, 7 and 8 show the classification performances of the classifiers for training and testing the three deep 
learning models. The three deep learning models were trained for 100 epochs and recorded the average accuracy 
and standard deviation per feature. A CNN model was designed from scratch and trained on the power spec-
trum feature to train the other two deep learning models. The results show the highest average accuracy of 0.84 
for the CNN model, followed by the accuracy of 0.8 for the Mel spectrum, 0.77 for the spectrogram, and 0.68 
for MFCC. Chroma, Tonal, and the Raw data did not show an improved performance compared to the other 

Table 5.   Classification performance per feature per classifier (original Vgg16 with data augmentation) after 
100 training epochs.

Feature

Original Vgg16 with data augmentation

ACC​ Prec Recall F1 kappa AUC​

SPEC 0.63 0.61 0.70 0.65 0.25 0.63

Chroma 0.56 0.58 0.44 0.50 0.13 0.56

MFCC 0.61 0.60 0.63 0.62 0.21 0.60

MelSpectrum 0.62 0.63 0.56 0.60 0.23 0.61

PowerSPEC 0.60 0.63 0.46 0.53 0.20 0.60

RAW​ 0.57 0.63 0.37 0.46 0.15 0.57

Tonal 0.54 0.60 0.22 0.32 0.07 0.54

All features 0.53 0.52 0.88 0.65 0.05 0.53

Table 6.   Average classification performance per feature for training and testing the convolutional neural 
network from scratch over 100 training epochs.

Feature

Training scratch CNN Testing scratch CNN

Average accuracy Standard deviation Average accuracy Standard deviation

SPEC 0.77  ± 0.09 0.65  ± 0.06

Chroma 0.63  ± 0.06 0.55  ± 0.03

MFCC 0.68  ± 0.07 0.64  ± 0.06

MelSpectrum 0.80  ± 0.11 0.67  ± 0.07

PowerSPEC 0.84  ± 0.13 0.67  ± 0.04

RAW​ 0.77  ± 0.15 0.57  ± 0.03

Tonal 0.69  ± 0.13 0.53  ± 0.02

All features 0.67  ± 0.07 0.60  ± 0.02

Table 7.   Average classification performance for the training and testing of the tuned Vgg16 network with data 
augmentation over 100 training epochs.

Feature

Training tunned Vgg16 with data 
augmentation

Testing tunned Vgg16 with data 
augmentation

Average accuracy Standard deviation Average accuracy Standard deviation

SPEC 0.75  ± 0.06 0.71  ± 0.04

Chroma 0.75  ± 0.10 0.60  ± 0.02

MFCC 0.64  ± 0.04 0.59  ± 0.03

MelSpectrum 0.84  ± 0.10 0.67  ± 0.03

PowerSPEC 0.85  ± 0.10 0.68  ± 0.02

RAW​ 0.77  ± 0.09 0.58  ± 0.02

Tonal 0.72  ± 0.10 0.52  ± 0.02

All features 0.76  ± 0.10 0.61  ± 0.02
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features, consistent with the results of shallow classifiers. Although the standard deviation of all models appeared 
to be relatively small, overfitting is observed for all classifiers, marked by the significant difference between the 
average accuracy for training and testing. The overfitting is mainly due to a relatively large number of weights 
and hyperparameters (compared to the input training image size) that must be estimated during training. Early 
stopping during the training phase is an effective method to compact overfitting. However, the stochastic gradi-
ent descent algorithm used for training a CNN model may get stuck into a local minimum when one uses the 
’early stopping’ as a stopping criterion to terminate the training process. Another method to create a more robust 
classifier with resistance to overfitting is to promote independent classifier models (with different features) or 
aggregate them using majority voting.

Tables 9, 10, and 11 present the result of ensembling the top 4 classifiers with kappa >  = 0.2. The last row of 
these tables shows the performance of the ensemble models resulting from all the classifiers and all features. The 
CNN models trained from scratch showed the highest performance compared to other models (Precision = 0.8, 
Recall = 0.71, F1 = 0.75, AUC = 0.77, and kappa = 0.53).

Table 12 provides a comparison of our results with results reported in previous studies. Previous works 
manipulated the classifier threshold to achieve specific sensitivity and specificity of interest3,31. However, we set 
the threshold of all classifiers at 0.5 to eliminate the bias to a specific class (COVID-19 versus non-COVID-19). 
Our results are closest to the study24, where they used log-Mel spectrogram from cough sounds to train a 
ResNet18 CNN model and manipulated the model threshold toward producing the sensitivity of 0.9. The study 
of Laguarta et al.31 used four ResNet 50 CNN pre-trained models trained on muscular degradation and vocal 
cords, where the threshold manipulation was done on MFCC features to achieve AUC = 0.97.

Table 8.   Average classification performance for the training and testing of the original Vgg16 network with 
data augmentation over 100 training epochs.

Feature

Training original Vgg16 with data 
augmentation

Testing original Vgg16 with data 
augmentation

Average accuracy Standard deviation Average accuracy Standard deviation

SPEC 0.60  ± 0.03 0.61  ± 0.04

Chroma 0.56  ± 0.02 0.54  ± 0.03

MFCC 0.55  ± 0.02 0.56  ± 0.03

MelSpectrum 0.61  ± 0.03 0.59  ± 0.03

PowerSPEC 0.62  ± 0.02 0.63  ± 0.03

RAW​ 0.59  ± 0.03 0.54  ± 0.03

Tonal 0.55  ± 0.02 0.54  ± 0.02

All features 0.51  ± 0.01 0.52  ± 0.02

Table 9.   The performance of ensemble model classification for the features with kappa >  = 0.2 and all the 
features (ACC, Prec, Recall, F1, kappa). Bold values indicate best performance of the classifiers.

Ensemble model

Features with kappa >  = 0.2 All features

ACC​ Prec Recall F1 kappa AUC​ ACC​ Prec Recall F1 kappa AUC​

Scratch CNN 0.77 0.80 0.71 0.75 0.53 0.77 0.74 0.73 0.76 0.75 0.48 0.74

Tunned Vgg16 with data augmentation 0.76 0.82 0.66 0.73 0.52 0.76 0.71 0.70 0.76 0.73 0.43 0.71

Original Vgg16 with data Augmentation 0.63 0.66 0.53 0.59 0.26 0.63 0.62 0.66 0.49 0.57 0.24 0.62

All models ensemble 0.73 0.78 0.66 0.71 0.47 0.73 0.71 0.72 0.68 0.71 0.43 0.71

Table 10.   The performance of ensemble model classification for the features with kappa >  = 0.2 and all the 
features (specificity and negative predictive value (NPV)).

Ensemble model

Features with 
kappa >  = 0.2 All features

Spec NPV Spec NPV

Scratch CNN 0.82 0.73 0.73 0.75

Tunned Vgg16 with data augmentation 0.86 0.71 0.67 0.74

Original Vgg16 with data augmentation 0.73 0.61 0.75 0.60

All models ensemble 0.81 0.70 0.74 0.70
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Conclusion and future work
This work contributes to the crucial project of developing a purely digital COVID-19 diagnostic test by applying 
machine learning methods to analyze cough recordings. We developed a new technique to enrich crowdsourced 
cough sound samples by splitting/isolating the cough sound into non-overlapping coughs and extracting six 
different representations from each cough sound. It is assumed that there is a negligible information loss or fre-
quency distortion due to the segmentation35 (dynamic behaviour of the cough sound such as start-stop sequence 
or pauses). Several shallow (traditional) and deep machine learning models were trained to detect COVID-19 
status (either positive or negative) using the kappa statistic (> = 0.2) to select candidate classifiers and create an 
ensemble model to identify COVID-19 status with better accuracy compared to individual models. Because 
there is a high degree of overlap between the class features, we did not reach an accuracy above 90%. However, 
this unbiased classification threshold ensures the minimal dependency of the predictive model on the type and 
pattern of classifiers. Future work can emphasize learning the similarity and difference among class labels and 
avoid or minimize excessive false positive (waste or resources) or false negative (untreated COVID-19 patient) 
results. The design and deployment of a mobile and Web app to longitudinally collect and analyze cough sounds 
can further support informing subjects about the algorithm’s performance for their COVID-19 pre-screening.

One of the recent developments in computational neuroscience is the utilization of the spiking neural network 
(SNN)36,37, a new neural network model based on discrete events (spikes) representation over time, rather than 
continuous values representation used in the convolutional neural network. SNN showed considerable success 
in discrete event detection such as tinnitus37 (i.e., medical condition causes ringing ears on uneven time interval 
with variable intensity). Therefore, we utilize the SNN model to identify COVID-19 vs non-COVID-19 directly 
from the coughing sound. Furthermore, utilizing the SNN model would help us prevent any information loss (due 
to quantization error) when segmenting the sound files into none overlapping segments and further converting 
each segment into different visual representations (i.e., images).

Materials and methods
COVID‑19 data pre‑processing.  Other studies used a sliding window (2 to 6 s)4,11,38,39 to extract informa-
tion from coughing and breathing sounds. The sliding window technique is sufficient if the dataset is noise-free. 
The noise may include a prolonged pause period and background noise. The sliding window may capture the 
dynamics of the sound signal. For instance, the sliding window technique can capture the number of coughs per 

Table 11.   The performance of ensemble model classification per feature for all classifiers. Bold value indicates 
best performance of the classifiers.

Feature

All three models ensemble

ACC​ Prec Recall F1 Spec NPV kappa AUC​

SPEC 0.73 0.70 0.80 0.75 0.66 0.77 0.46 0.73

Chroma 0.63 0.67 0.50 0.57 0.75 0.60 0.25 0.63

MFCC 0.67 0.69 0.61 0.65 0.73 0.65 0.34 0.67

MelSpectrum 0.74 0.72 0.78 0.75 0.70 0.76 0.48 0.74

PowerSPEC 0.67 0.71 0.56 0.63 0.77 0.64 0.34 0.67

RAW​ 0.59 0.60 0.50 0.55 0.67 0.57 0.17 0.59

Tonal 0.54 0.54 0.53 0.53 0.54 0.53 0.07 0.54

All features 0.63 0.61 0.76 0.67 0.51 0.68 0.26 0.63

Table 12.   Comparison of the model developed in this work with other related works. This comparison is not 
intended to be a head-to-head comparison because several implementation details are not available.

Study Data splitting Participants
Features/
representation Classifier ACC​ Prec Recall AUC​ Threshold Kappa

3 Random samples, 2 s 
segments 3621

Spectrogram and log-
melspectrogram from 
coughing sounds

ResNet18 NA NA 0.9 0.72 Manipulated to yield 
90% sensitivity NA

9 Used the whole audio 
and chunked audio 2000

Hand-crafted and 
Vggish extracted fea-
tures including tempo 
and MFCC from cough-
ing and breath sounds

Logistic regression, 
gradient boosting trees, 
and SVM

NA 0.72 0.69 0.80 NA NA

31 Split the sound files into 
6 s audio splits 5320

Muscular degradation, 
vocal cords, sentiment, 
MFCC

Three pre-trained 
ResNet50 1 0.94 0.985 0.97 Manipulated NA

Our method
Segment the coughing 
sounds into a single 
non-overlapping cough-
ing sound

1502
Spectrogram, MelSpec-
trum, tonal, raw, MFCC, 
power spectrum, 
chroma

Ensemble of CNN 
classifiers 0.77 0.80 0.71 0.77 0.5 0.53
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’unit time’ and the time between two consecutive coughs. The dynamics of the cough sound signal may positively 
impact the successful detection of COVID-19 cases. However, the width of the sliding window may differ based 
on the quality of the cough sound. When the sliding window is relatively small, the dynamics of the cough sound 
may not be correctly captured, which causes misleading results. The longer the sliding window length, the less 
the dynamics of the cough sound are captured.

An ensemble of machine learning models implemented in this study uses crowdsourced cough recordings 
to identify COVID-19. We randomly and manually verified 30% of the cough sound files in both datasets as a 
safe-guard. Our verification test agrees with the ones done in previous studies4,11. Table 13 shows the datasets 
used in our study. The dataset contains cough sounds for 1502 participants, of whom 114 participants are SARS-
CoV-2 positive. It is noted that the combined total duration of cough sounds from COVID-positive participants 
is about 20 min and 4 s, which is considerably short compared to the combined total duration of cough sounds 
from the population of controls (4 h, 30 min, and 15 s). This highly imbalanced data motivates the segmentation 
of the positive cough sounds into non-overlapped segments (each segment contains only one coughing sound) 
to enrich the minority class (COVID-19 positives). After segmentation, the total number of sound samples that 
are COVID-positive is 638.

Experimental setup.  Our main goal is to learn from multiple representations of crowdsourced cough 
sounds to identify COVID-19 patients. More specifically, we aim to extract and integrate multiple information 
signals from a single cough sound to identify COVID-positive versus negative patients with adequate accuracy 
in a classifier without bias toward a specific population. While ensemble learning is a standard method to inte-
grate multiple information signals40 (either learning and pooling different classifiers on the same dataset or using 
bagging or boosting methods for ensemble learning), we focus on investigating different extracted features of a 
single cough sound to enhance the identification of COVID-19 status without oversampling or sliding window 
techniques. The research hypothesis necessitates the following requirements for a successful solution: The first 
requirement is to enrich the original data without oversampling by splitting the original cough sound files into 
non-overlapping segments. Splitting the sound files allows us to increase the sample size of the minority class 
(COVID-19) without changing the feature distribution resulted from applying oversampling techniques. The 
second requirement is to use an ensemble of classifiers that act independently on each extracted information 
signal and utilize the value of 0.5 as a threshold to decide on the input feature classes (COVID-19 positive vs. 
negative). This provides those classifiers and classifier ensembles that do not favour one class over the other. The 
third requirement is to implement a robust inclusion/exclusion criterion to include or exclude a classifier in an 
ensemble.

This study utilizes several classification evaluation metrics, including AUC, accuracy (ACC), precision, recall, 
harmonic mean (F1), and Kappa statistic. The Kappa statistic is used as a reliability measure34 (the inclusion/
exclusion criterion) of each classifier to include it into an ensemble for producing a more robust classifier. The 
range of the Kappa statistic is (− 1,1). It is interpreted as follows: values ≤ 0 imply no agreement (i.e., the observed 
classification results is a random chance and not due to the expected results of a classifier decision function), 
0.01–0.20 as none to a slight agreement, 0.21–0.40 as fair, 0.41– 0.60 as moderate, 0.61–0.80 as substantial, and 
0.81–1.00 as almost perfect agreement (i.e., the observed classification results is in 100% agreement with the 
expected accuracy due to the classifier decision function).

Analysis workflow.  Figure 1a shows the analytical pipeline used in this study for pre-processing, feature 
extraction, and ensemble learning of COVID-19 relevant cough sounds. The pipeline starts with reading the 
cough audio files and segmenting them into individual non-overlapping sound files. The segmentation is con-
ducted using the audio activity detection module to process audio files (Auditok)41. This module is used as a 
universal tool for sound data tokenization, functioning based on finding where an acoustic activity occurs in 
an audio stream followed by isolating the equivalent slice of the audio signal. Figure 1b shows an example of an 
original cough recording sound signal, and Fig. 1c shows the corresponding isolated non-overlapped signals.

Table 13.   COVID-19 cough data sources.

GitHub URL 38 39 Total

Number of participants 16 1486 1502

Number of COVID-19 positive participants 7 107 114

Positive cough sound file (sample) per participant 1 2 NA

Number of non-COVID-19 participants 9 1379 1388

Negative cough sound file (sample) per participant 1 2 NA

Total positive cough sound duration 2 min and 48 s 17 min and 16 s 20 min and 4 s

Total negative cough sound duration 2 min and 15 s 4 h and 28 min 4 h, 30 min, and 15 s

Total positive cough samples (files) after segmentation 70 568 638

Total negative cough samples (files) after segmentation 103 8145 8248

Number of male participants 10 1123 1133

Number of female participants 6 363 369
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Each isolated cough sound enters the measuring module following the audio splitting step to generate six 
different independent frequency measures (representations of the same cough sound). Each measure is converted 
into a reasonable resolution image (432*288 pixels) for further analysis. The Mel frequency scale is a standard 
audio signal representation offering a rough human frequency perception model33. The six measures for each iso-
lated segment are Mel spectrum, power spectrum spectrogram, chroma, tonal, and MFCC, all based on the Mel 
frequency scale. Figure 2 shows an example of raw cough sound data with its associated images of the measures.

Inspired by the Vggish’s model42 for feature extraction in audio signals, we extract features from these images 
using Vgg16 architecture and subject them to several shallow and deep learning models. Following the segment-
ing of all the positive and negative cough sound files for all participants in both datasets used in this study, we 
reached a total of 638 COVID-positive and 8248 negative cough sounds. We used all the 638 positive cough 
sounds while randomly selecting 638 negative coughing sounds to create a balanced dataset (1276 cough sound 
samples) for training and testing purposes. The data was divided into 80% for training (1020 images for each 
measure) and 20% for testing all the machine learning classifiers used in this study (256 images for each measure).

We experiment with several traditional (shallow) machine learning models, including Naïve Bayes, logistic 
regression, k-nearest neighbours, random forest, stochastic gradient descent, extreme gradient boosting, and 
support vector machine. Figure 3 shows the overall analytical pipeline for training and testing our models. The 
training features are extracted using the pre-trained vgg19 model. the pre-trained model produces 25,088 fea-
ture vectors per input image. The principal component analysis was employed to reduce the dimension of the 
input feature and a stander scalar to normalize the input features and eventually train a set of seven classifiers. 
Furthermore, we experiment with three different CNN models, where one model is trained from scratch, and 
the other two are based on the vgg16 pre-trained model.

Figure 1.   The analytical pipeline for the processing of cough sounds and the sample processed file. (a) The 
analytical pipeline for pre-processing, feature extraction, and ensemble learning from cough sounds; (b) Sample 
original cough recording sound signal; and (c) Segmented non-overlapped cough signals.

Figure 2.   An example of raw cough sound data with the associated six representations.
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