Skip to main content
. 2021 Jul 28;11:15404. doi: 10.1038/s41598-021-95042-2

Table 11.

The performance of ensemble model classification per feature for all classifiers.

Feature All three models ensemble
ACC Prec Recall F1 Spec NPV kappa AUC
SPEC 0.73 0.70 0.80 0.75 0.66 0.77 0.46 0.73
Chroma 0.63 0.67 0.50 0.57 0.75 0.60 0.25 0.63
MFCC 0.67 0.69 0.61 0.65 0.73 0.65 0.34 0.67
MelSpectrum 0.74 0.72 0.78 0.75 0.70 0.76 0.48 0.74
PowerSPEC 0.67 0.71 0.56 0.63 0.77 0.64 0.34 0.67
RAW 0.59 0.60 0.50 0.55 0.67 0.57 0.17 0.59
Tonal 0.54 0.54 0.53 0.53 0.54 0.53 0.07 0.54
All features 0.63 0.61 0.76 0.67 0.51 0.68 0.26 0.63

Bold value indicates best performance of the classifiers.