Skip to main content
. 2021 Jul 28;11:15404. doi: 10.1038/s41598-021-95042-2

Table 4.

Classification performance per measure per classifier (CNN from scratch and tuned Vgg16 with data augmentation) after 100 training epochs.

Feature Scratch CNN Tuned Vgg16 with data augmentation
ACC Prec Recall F1 kappa AUC ACC Prec Recall F1 kappa AUC
SPEC 0.68 0.67 0.71 0.69 0.37 0.68 0.76 0.72 0.85 0.78 0.52 0.76
Chroma 0.55 0.56 0.53 0.54 0.11 0.55 0.63 0.65 0.56 0.61 0.27 0.63
MFCC 0.71 0.75 0.64 0.69 0.42 0.71 0.61 0.63 0.54 0.58 0.23 0.61
MelSpectrum 0.74 0.70 0.84 0.76 0.48 0.74 0.69 0.68 0.72 0.70 0.38 0.69
PowerSPEC 0.70 0.68 0.75 0.71 0.40 0.70 0.69 0.76 0.54 0.64 0.38 0.68
RAW 0.56 0.57 0.49 0.53 0.13 0.56 0.58 0.56 0.69 0.62 0.16 0.58
Tonal 0.53 0.54 0.59 0.56 0.08 0.54 0.49 0.49 0.70 0.58  − 0.02 0.49
ALL features 0.62 0.63 0.55 0.59 0.23 0.62 0.63 0.62 0.67 0.64 0.26 0.63