Table 4.
Classification performance per measure per classifier (CNN from scratch and tuned Vgg16 with data augmentation) after 100 training epochs.
Feature | Scratch CNN | Tuned Vgg16 with data augmentation | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
ACC | Prec | Recall | F1 | kappa | AUC | ACC | Prec | Recall | F1 | kappa | AUC | |
SPEC | 0.68 | 0.67 | 0.71 | 0.69 | 0.37 | 0.68 | 0.76 | 0.72 | 0.85 | 0.78 | 0.52 | 0.76 |
Chroma | 0.55 | 0.56 | 0.53 | 0.54 | 0.11 | 0.55 | 0.63 | 0.65 | 0.56 | 0.61 | 0.27 | 0.63 |
MFCC | 0.71 | 0.75 | 0.64 | 0.69 | 0.42 | 0.71 | 0.61 | 0.63 | 0.54 | 0.58 | 0.23 | 0.61 |
MelSpectrum | 0.74 | 0.70 | 0.84 | 0.76 | 0.48 | 0.74 | 0.69 | 0.68 | 0.72 | 0.70 | 0.38 | 0.69 |
PowerSPEC | 0.70 | 0.68 | 0.75 | 0.71 | 0.40 | 0.70 | 0.69 | 0.76 | 0.54 | 0.64 | 0.38 | 0.68 |
RAW | 0.56 | 0.57 | 0.49 | 0.53 | 0.13 | 0.56 | 0.58 | 0.56 | 0.69 | 0.62 | 0.16 | 0.58 |
Tonal | 0.53 | 0.54 | 0.59 | 0.56 | 0.08 | 0.54 | 0.49 | 0.49 | 0.70 | 0.58 | − 0.02 | 0.49 |
ALL features | 0.62 | 0.63 | 0.55 | 0.59 | 0.23 | 0.62 | 0.63 | 0.62 | 0.67 | 0.64 | 0.26 | 0.63 |