Skip to main content
. 2021 Jul 28;11:15404. doi: 10.1038/s41598-021-95042-2

Table 5.

Classification performance per feature per classifier (original Vgg16 with data augmentation) after 100 training epochs.

Feature Original Vgg16 with data augmentation
ACC Prec Recall F1 kappa AUC
SPEC 0.63 0.61 0.70 0.65 0.25 0.63
Chroma 0.56 0.58 0.44 0.50 0.13 0.56
MFCC 0.61 0.60 0.63 0.62 0.21 0.60
MelSpectrum 0.62 0.63 0.56 0.60 0.23 0.61
PowerSPEC 0.60 0.63 0.46 0.53 0.20 0.60
RAW 0.57 0.63 0.37 0.46 0.15 0.57
Tonal 0.54 0.60 0.22 0.32 0.07 0.54
All features 0.53 0.52 0.88 0.65 0.05 0.53