Skip to main content
. 2021 Jul 28;11:15404. doi: 10.1038/s41598-021-95042-2

Table 9.

The performance of ensemble model classification for the features with kappa >  = 0.2 and all the features (ACC, Prec, Recall, F1, kappa).

Ensemble model Features with kappa >  = 0.2 All features
ACC Prec Recall F1 kappa AUC ACC Prec Recall F1 kappa AUC
Scratch CNN 0.77 0.80 0.71 0.75 0.53 0.77 0.74 0.73 0.76 0.75 0.48 0.74
Tunned Vgg16 with data augmentation 0.76 0.82 0.66 0.73 0.52 0.76 0.71 0.70 0.76 0.73 0.43 0.71
Original Vgg16 with data Augmentation 0.63 0.66 0.53 0.59 0.26 0.63 0.62 0.66 0.49 0.57 0.24 0.62
All models ensemble 0.73 0.78 0.66 0.71 0.47 0.73 0.71 0.72 0.68 0.71 0.43 0.71

Bold values indicate best performance of the classifiers.