Table 9.
Ensemble model | Features with kappa > = 0.2 | All features | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
ACC | Prec | Recall | F1 | kappa | AUC | ACC | Prec | Recall | F1 | kappa | AUC | |
Scratch CNN | 0.77 | 0.80 | 0.71 | 0.75 | 0.53 | 0.77 | 0.74 | 0.73 | 0.76 | 0.75 | 0.48 | 0.74 |
Tunned Vgg16 with data augmentation | 0.76 | 0.82 | 0.66 | 0.73 | 0.52 | 0.76 | 0.71 | 0.70 | 0.76 | 0.73 | 0.43 | 0.71 |
Original Vgg16 with data Augmentation | 0.63 | 0.66 | 0.53 | 0.59 | 0.26 | 0.63 | 0.62 | 0.66 | 0.49 | 0.57 | 0.24 | 0.62 |
All models ensemble | 0.73 | 0.78 | 0.66 | 0.71 | 0.47 | 0.73 | 0.71 | 0.72 | 0.68 | 0.71 | 0.43 | 0.71 |
Bold values indicate best performance of the classifiers.