Skip to main content
. 2021 Apr 28;17(1):5–11. doi: 10.17925/EE.2021.17.1.5

Table 1: Performance of the benchmark algorithms on the testing set.

Benchmark algorithm Recall Precision F1 score mAP
FRCNN R-FCN 0.7511 0.6186 0.6784 0.6596
FRCNN ResNet101 0.7396 0.5995 0.6623 0.6518
FRCNN Inception-v2-ResNet101 0.7554 0.6046 0.6716 0.6462
YOLOv5 0.7244 0.6081 0.6612 0.6304
EffDet 0.6939 0.6919 0.6929 0.6216

FRCNN Inception-v2-ResNet101 achieved the best recall, EffDet achieved the best precision and F1 score, and FRCNN R-FCN achieved the highest mAP.

EffDet = EfficientDet; F1 = harmonic mean of precision and recall; FRCNN = Faster region-based convolutional neural network; mAP = mean average precision;

R-FCN = region-based fully convolutional network; ResNet = residual neural network; YOLOv5 = You Only Look Once version 5.