Table 1: Performance of the benchmark algorithms on the testing set.
Benchmark algorithm | Recall | Precision F1 score | mAP | |
---|---|---|---|---|
FRCNN R-FCN | 0.7511 | 0.6186 | 0.6784 | 0.6596 |
FRCNN ResNet101 | 0.7396 | 0.5995 | 0.6623 | 0.6518 |
FRCNN Inception-v2-ResNet101 | 0.7554 | 0.6046 | 0.6716 | 0.6462 |
YOLOv5 | 0.7244 | 0.6081 | 0.6612 | 0.6304 |
EffDet | 0.6939 | 0.6919 | 0.6929 | 0.6216 |
FRCNN Inception-v2-ResNet101 achieved the best recall, EffDet achieved the best precision and F1 score, and FRCNN R-FCN achieved the highest mAP.
EffDet = EfficientDet; F1 = harmonic mean of precision and recall; FRCNN = Faster region-based convolutional neural network; mAP = mean average precision;
R-FCN = region-based fully convolutional network; ResNet = residual neural network; YOLOv5 = You Only Look Once version 5.