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Abstract 

Background:  Studies regarding the impact of (neuro)inflammation and inflammatory response following repeti‑
tive, intrathecally administered antisense oligonucleotides (ASO) in 5q-associated spinal muscular atrophy (SMA) 
are sparse. Increased risk of hydrocephalus in untreated SMA patients and a marginal but significant increase of the 
serum/CSF albumin ratio (Qalb) with rare cases of communicating hydrocephalus during nusinersen treatment were 
reported, which confirms the unmet need of an inflammatory biomarker in SMA. The aim of this study was to inves‑
tigate the (neuro)inflammatory marker chitotriosidase 1 (CHIT1) in SMA patients before and following the treatment 
with the ASO nusinersen.

Methods:  In this prospective, multicenter observational study, we studied CSF CHIT1 concentrations in 58 adult 
and 21 pediatric patients with SMA type 1, 2 or 3 before treatment initiation in comparison to age- and sex-matched 
controls and investigated its dynamics during nusinersen treatment. Concurrently, motor performance and disease 
severity were assessed.

Results:  CHIT1 concentrations were elevated in treatment-naïve SMA patients as compared to controls, but less pro‑
nounced than described for other neurodegenerative diseases such as amyotrophic lateral sclerosis. CHIT1 concentra‑
tion did not correlate with disease severity and did not distinguish between clinical subtypes. CHIT1 concentration 
did show a significant increase during nusinersen treatment that was unrelated to the clinical response to nusinersen 
therapy.

Conclusions:  CHIT1 elevation in treatment-naïve SMA patients indicates the involvement of (neuro)inflammation in 
SMA. The lacking correlation of CHIT1 concentration with disease severity argues against its use as a marker of disease 
progression. The observed CHIT1 increase during nusinersen treatment may indicate an immune response-like, off-
target reaction. Since antisense oligonucleotides are an establishing approach in the treatment of neurodegenerative 
diseases, this observation needs to be further evaluated.
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Background
5q-associated spinal muscular atrophy (SMA) is a rare 
lower motor neuron disease caused by mutations in the 
survival motor neuron 1 (SMN1) gene resulting in defi-
cient biosynthesis of SMN protein, death of lower motor 
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neurons, and consequently progressive muscle wasting. 
SMA is classified into clinical subtypes according to the 
best achieved motor milestone and age of onset [1]. In 
2016, the United States Food and Drug Administration 
(FDA) approved the antisense oligonucleotide (ASO) 
nusinersen as the first disease-modifying drug for SMA 
for all patients, regardless of their age or disease stage, 
based on exceptionally convincing study results [2, 3]. In 
order to provide appropriate and standardized recom-
mendations for choice of treatment and therapy (dis-)
continuation, conclusive biomarkers are urgently needed 
[4–6].

Chitotriosidase 1 (CHIT1) is a human endochitinase, 
that is expressed by polymorphonuclear neutrophils and 
activated macrophages and is assumed to be involved 
in innate immune system responses, e.g. after allergen 
challenge or pathogen exposure [7–10]. Consequently, 
a 24 base pair duplication in the CHIT1 gene (H allele) 
with high prevalence in European populations is associ-
ated with a deficiency in the activity of CHIT1 and is sus-
pected to result in a higher susceptibility to infection [11]. 
CHIT1 hydrolyzes the β-(1-4)-linkage of N-acetyl-d-glu-
cosamine, which is present in chitin chains [7, 8, 10]. 
Although chitin is not expressed in human cells, CHIT1 
levels are elevated in serum and cerebrospinal fluid (CSF) 
in various diseases including Gaucher disease, idiopathic 
pulmonary fibrosis, sarcoidosis, chronic obstructive pul-
monary disease and neurodegenerative/-inflammatory 
diseases such as Alzheimer’s disease (AD), frontotempo-
ral dementia, multiple sclerosis (MS) and amyotrophic 
lateral sclerosis (ALS) [7, 12–24]. In patients with MS, 
the concentration of CHIT1 was elevated compared to 
controls and was found to be associated with other well-
known MS-specific findings such as oligoclonal bands 
in CSF, elevated immunoglobulin G index, elevated CSF 
leukocyte count, and magnetic resonance imaging abnor-
malities showing dissemination in space, thus assuming 
to possess prognostic value [17]. In fact, CHIT1 activity 
is already used for the evaluation of response to immu-
nomodulatory treatment in MS as a marker of inflam-
matory activity [25, 26]. In the CSF of patients with AD, 
CHIT1 activity was shown to be increased [24]. CHIT1 
activity was discussed to be either a DNA damage marker 
and / or a response to chitin-like polysaccharides, which 
were found to accumulate as part of amyloid deposits in 
the brain of patients with AD, presumably as a conse-
quence of impaired glucose metabolism [27, 28]. Patients 
with neurodegenerative dementia revealed significantly 
increased CHIT1 levels, which illustrates neuroinflam-
mation as a common pathophysiological mechanism. 
However, because of overlapping levels of CHIT1 in 
prion disease, AD and frontotemporal lobar degenera-
tion (FTLD), it is of limited diagnostic value [13, 29]. In 

ALS, CHIT1 levels were remarkably increased compared 
to both healthy and disease controls, and correlated 
with disease progression and severity. CHIT1 stain-
ing was restricted to specific areas along the spinal tract 
and was colocalized with markers of microglia and mac-
rophages indicating the presence of microgliosis, which 
could not be detected in controls, AD or Creutzfeldt-
Jakob disease. Additionally, CHIT1 levels were found to 
be higher in TDP-43 associated FTLD with ALS pathol-
ogy compared to TDP-43 associated FTLD without 
ALS pathology, which implies a relationship of CHIT1 
increase with a specific type of microgliosis/astroglio-
sis in corticoefferent pathways and/or association fibers 
[13, 20]. Further, CHIT1 levels were found to show the 
most extensive increase between the late presymptomatic 
and early symptomatic phases of disease, while patients 
after symptom onset present minimally increasing levels. 
CHIT1 levels of asymptomatic gene carriers did not dif-
fer from controls [15].

In SMA, recent studies suggest that microglial activa-
tion, driven by SMN protein deficiency, contributes to 
the phenotype of SMA and even precedes motor neu-
ron loss [30]. Motor neurons were colocalized with 
an increased number of microglial cells in SMA mice 
which indicates a certain degree of neuroinflammation 
[31]. Increased risk of hydrocephalus in untreated SMA 
patients and a marginal but significant increase of the 
serum/CSF albumin ratio (Qalb) with rare cases of com-
municating hydrocephalus during treatment with the 
ASO nusinersen were reported [32–35].

The aim of this study was to evaluate  CHIT as a marker 
of neuroinflammation in treatment-naïve patients with 
SMA and to investigate its dynamics during nusinersen 
treatment.

Methods
Standard protocol approvals, registrations, and patient 
consents
58 adult patients and 21 children with genetically con-
firmed 5q-associated SMA from 4 German motor neuron 
disease specialist care centers (Departments of Neurol-
ogy in Dresden, Ulm, Hannover and Göttingen) and 
30 age- and sex-matched controls were prospectively 
included in this study between 2017 and 2020. The local 
ethics committees of all participating sites approved the 
study and all patients signed written informed consent.

The demographic and clinical data of patients were 
collected including age, gender, disease onset, baseline 
weight and height, clinical subtype, number of SMN2 
copies if available and ambulatory status. Additionally, 
the need of CT-guided puncture and the use of traumatic 
or atraumatic puncture needle was recorded.



Page 3 of 11Freigang et al. Orphanet J Rare Dis          (2021) 16:330 	

Patients received nusinersen treatment according to 
the prescribing information for up to 14 months.

CSF was obtained by lumbar puncture (LP), which was 
performed for intrathecal administration of nusinersen 
and was tested for total protein level, Qalb and cell count 
in the context of clinical routine by the in-house labora-
tory department of each participating center. As part of 
the clinical routine, CSF was examined microscopically 
for unusual cell types or altered cells within the cohort of 
the research site Dresden.

The samples designated for CHIT1 assay were stored 
at − 80  °C within 2  h after centrifugation (5  min; 
6500 rpm). In total, 214 CSF samples were analyzed for 
CHIT1 concentration at three time points (T1 = baseline, 
T2 = 6.2 ± 0.6  months, T3 = 14.2 ± 0.9  months) using 
ELISA kits (CircuLex Human Chitotriosidase ELISA 
Kit, CY-8074, MBL, Belgium) at 1:10 dilution according 
to the instructions of the manufacturer. For quality con-
trol, a single CSF sample was run four times per plate for 
CHIT1. The mean intra-assay and inter-assay coefficients 
of variation were < 15%. At baseline, the CSF sample of 
one patient was insufficient for CHIT1 determination 
and consequently, this patient was excluded from the 
analysis.

To monitor motor and functional outcome, established 
motor scores (Hammersmith Functional Motor Scale 
Expanded—HFMSE [36], Revised Upper Limb Module—
RULM [37]) as well as the revised ALS-Functional Rat-
ing Scale (ALSFRS-R) [38] were assessed concurrently 
at each visit. Motor scores comprise several items rating 
different motor skills with higher scores indicating bet-
ter function. Ratings were performed according to the 
manuals.

Statistical analysis
Statistical analysis and data visualization were performed 
using SPSS Statistics 27 (IBM, Chicago (IL), USA) and 
GraphPad Prism 5 (GraphPad Software Inc., San Diego 
(CA), USA). Unless otherwise stated, CHIT1 data and 
the assessed scores are presented as median ± interquar-
tile range (IQR). CHIT1 data were not normally distrib-
uted as tested by Shapiro–Wilk test. We therefore applied 
rank-based, non-parametric tests for the baseline analy-
sis. To estimate the comparability of study group and 
control group, we used Pearson’s Chi-squared test for 
equal distribution regarding sex and Mann–Whitney U 
test concerning conformity of age. To compare CHIT1 
levels of diseased individuals with controls, we calculated 
Mann–Whitney U test. To investigate the meaning of 
CHIT1 values for disease severity, we correlated CHIT1 
baseline values with demographic features and clinical 
assessments using Spearman’s rank correlation coeffi-
cient (ρ). Due to the significant association with height, 

we considered it a confounding factor and corrected for 
baseline height by partial correlation. A correlation coef-
ficient of ρ < 0.3 was considered as a weak, ρ = 0.3–0.59 
as a moderate, and ρ > 0.6 as a strong correlation (modi-
fied from [39]). We used one-way analysis of covariance 
(ANCOVA) with post-hoc Bonferroni adjustment for 
comparison of CHIT1 (dependent variable) between dif-
ferent patient subgroups considering height as covari-
ate. To meet the assumptions of ANCOVA, we applied 
log transformation (decadic logarithm) to CHIT1 data. 
For longitudinal analysis under nusinersen treatment, 
we performed Wilcoxon signed-rank test to include all 
available data (n = 58) for the comparison between base-
line and 14-month follow-up (representing third mainte-
nance dose). Data sets with missing values were excluded 
pairwise for cross-sectional and longitudinal analysis. To 
comprehensively investigate CHIT1 levels over the treat-
ment course, we used the Friedman test with post-hoc 
Dunn–Bonferroni adjustment after listwise exclusion 
in case of missing data. We performed standard multi-
ple regression to determine the contribution of patient’s 
height to CHIT1 change compared to other variables. For 
that purpose, we applied Johnson transformation to the 
difference of CHIT1 concentration between 14  months 
and baseline to approximate a standard distribution. 
Critical value was set as p < 0.05 two-sided. Whenever 
CHIT1 values were below the lower limit of quantifica-
tion (e.g. for 7.6% in all disease samples; 15.2% in baseline 
disease samples), we used the lower limit of quantifica-
tion as value in order not to exclude these measurements 
from the analysis.

Results
58 adult patients and 21 children with SMA type 1 
(n = 7), type 2 (n = 33) or type 3 (n = 39) were included 
in the analysis. Median age was 31  years (IQR 17–43), 
52% were female. The control group was age- and sex-
matched and comprised 23 adults and 7 children with-
out suspected neurodegenerative or neuroinflammatory 
disease (healthy controls: n = 23, normal pressure hydro-
cephalus: n = 3, idiopathic Bell’s palsy: n = 4). In the con-
trol group, median age was 30  years (IQR 17–44), 60% 
were female. The distribution of sex did not differ signifi-
cantly between the groups.

Details of study group characteristics and study profile 
are presented in Table 1, Additional file 1: Table S1 and 
Fig. 1.

CHIT1 levels were elevated in SMA, but did not reflect 
disease severity
CHIT1 levels in the CSF of patients with SMA before 
treatment initiation were elevated compared to the con-
trol group (MWU p < 0.0001; Fig.  2a, Table  2) and were 
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associated with patients’ height (Fig. 2b). Of note, in 15% 
of the SMA CSF samples and 57% of the control CSF 
samples, CHIT1 was below the lower limit of quantifica-
tion (LLOQ = 563 pg/mL).

CHIT1 levels in treatment-naïve patients were not 
associated with disease severity (as assessed by HFMSE, 
RULM, ALSFRS-R), baseline age, disease onset or disease 
duration after correction for patients’ height (see Addi-
tional file 2: Table S2).

CHIT1 levels and Qalb showed a weak correlation, but 
the significance of that correlation appeared to be caused 
by a single outlier. After exclusion of that outlier, no sig-
nificant correlation between CHIT1 and Qalb could be 
detected, therefore we did not consider Qalb as a con-
founding factor regarding the analysis of CHIT1.

Before treatment initiation, CHIT1 levels did not dif-
fer significantly either regarding SMA type, SMN2 copy 
number or between children and adults after adjustment 
for patients’ height (Fig. 2a). Moreover, no differences in 
CHIT1 levels between ambulatory and non-ambulatory 
patients could be detected.

CHIT1 levels increased during nusinersen treatment
Within 14 months of nusinersen treatment, CHIT1 lev-
els significantly increased (p < 0.0001; Table 3; Fig. 3b, c). 
In CSF of four patients, no change of CHIT1 levels was 
observed during the observational period because the 
amount was below the LLOQ.

Subgroup analyses are shown in Table  3, Additional 
file 3: Table S3 and Additional file 4: Fig. S1. After correc-
tion for patients’ height, no differences in CHIT1 dynam-
ics between subgroups regarding SMA type or SMN2 
copy number could be verified, but a strong inter-corre-
lation was seen between the independent variables and 
patients’ height. The CHIT1 increase was associated with 
patients’ height (ρ = − 0.303; p < 0.05; Fig. 3d) but did not 
correlate with age (ρ = − 0.231; n.s.). To determine which 
variable contributes most to the change of CHIT1 levels, 
we performed standard multiple regression considering 
patients’ height, age and SMN2 copy number as inde-
pendent variables. The regression model was statistically 
significant compared to the null model (F(3,39) = 4.443, 
p < 0.01) and explained 19.7% of the variance in CHIT1 
dynamics. However, only height added statistically sig-
nificantly to the prediction (p < 0.05) (Table 4).

CHIT1 dynamics did not differ significantly between 
patients with an increase on HFMSE or CHOP score 
and patients who lost points on those motor scores 
within 14 months. Patients with no change on the scores 
were not included. No significant difference in CHIT1 

Table 1  Study group characteristics

IQR interquartile range, BMI body mass index, CT computed tomography, LP 
lumbar puncture, PEG percutaneous endoscopic gastrostomy

SMA (n = 79) Controls (n = 30)

Age (year), median (IQR) 31 (17–43) 30 (17–44)

Age of onset (year), median (IQR) 1 (0–3)

Disease duration (year), median 
(IQR)

28 (15–37)

Sex, n (%)

 Female 41 (52) 18 (60)

 Male 38 (48) 12 (40)

SMA type, n (%)

 1 7 (9)

 2 33 (42)

 3 39 (49)

SMN2 copy number, n (%)

 2 9 (16)

 3 31 (53)

 4+ 18 (31)

 Unknown 21

Weight (kg), median (IQR) 50 (33–65)

Height (cm), median (IQR) 158 (145–170)

BMI (kg/m2), median (IQR) 20.5 (16.1–23.4)

Scoliosis, n (%)

 Present 50 (63)

 Not present 29 (37)

Spondylodesis, n (%)

 Present 24 (30)

 Not present 55 (70)

CT supported LP, n (%)

 Yes 44 (56)

 No 35 (44)

Use of a-/traumatic needle, n (%)

 Traumatic 37 (47)

 Atraumatic 42 (53)

Wheelchair-use, n (%)

 Never 9 (11)

 Occasionally 6 (8)

 Permanently 64 (81)

Mobility, n (%)

 Never able to walk 40 (51)

 Lost ability to walk 24 (30)

 Still able to walk 15 (19)

Ventilation-use, n (%)

 Never 55 (70)

 < 16 h 20 (25)

 > 16 h 4 (5)

PEG/feeding tube, n (%)

 Yes 9 (11)

 No 70 (89)
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dynamics was found regarding CT support or use of a 
traumatic puncture needle.

CSF levels of Qalb and total protein mildly but signifi-
cantly increased during 14  months of nusinersen treat-
ment, while CSF cell count did not change (Table 5).

Within the routine CSF cytology, unusual monocytes 
or macrophages with indefinable inclusions emerged dur-
ing nusinersen treatment (11 of 22 patients at least once 
within the cohort of the research site Dresden), whereas 
no inclusions were described in samples collected prior 
to treatment.

Discussion
Our study has two remarkable results. First, CHIT1 
levels were elevated in treatment-naïve SMA patients 
compared to controls and second, CHIT1 levels further 
increased following nusinersen treatment.

In SMA mouse models, motor neurons colocal-
ized with an increased number of microglial cells, and 

reduced SMN protein levels were found to be related to 
increased microglial activation [31, 40]. Also, elevated 
levels of CHIT1 were associated with microglial cell acti-
vation in ALS mouse models and in patients with the 
occurrence of higher levels in fast-progressing ALS [20]. 
Increased levels of CHIT1 in patients with SMA might 
therefore reflect a general microglial activation and might 
illustrate the neuroinflammatory aspect in the pathogen-
esis of both, ALS and SMA. We did not observe asso-
ciations either with patients’ age, SMA type or disease 
severity in SMA patients, which is in contrast to ALS. 
CHIT1 levels in SMA were lower than described for ALS 
[13, 15, 20–23, 41] or other neurodegenerative diseases 
[13, 16, 18, 19, 24, 29, 42, 43], implying a minor involve-
ment of neuroinflammation in SMA and arguing against 
the usefulness of CHIT1 as a disease severity biomarker 
for SMA. However, it might be interesting to investigate 
adjunct anti-inflammatory treatment strategies in SMA 
[30, 44].

CHIT1 x HFMSE: n = 63
x RULM: n = 65
x ALSFRS-R: n = 66

Friedman test
54 patients with complete longitudinal CHIT1 data

SMA type 1 n = 5
SMA type 2 n = 22
SMA type 3 n = 27

nusinersen-na ve baseline correlationï longitudinal analysis during nusinersen treatment

Wilcoxon signed-rank test
58 patients with CHIT1 data at baseline and 14 months

SMA type 1 n = 6
SMA type 2 n = 24
SMA type 3 n = 28

4 patients with incomplete CHIT1 datasets
due to missing measurement

21 patients without CHIT1 data at 14 months
due to shorter treatment period

Children n = 21
SMA type 1 n = 7
SMA type 2 n = 10
SMA type 3 n = 4

Adults n = 58
SMA type 1 n = 0
SMA type 2 n = 23
SMA type 3 n = 35

79 patients with SMA from 4 centers included

80 patients from 4 german MND centers
assessed for eligibility

with SMA

1 patient excluded
due to missing CSF sample at baseline

Fig. 1  Study profile
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The observed increase of CHIT1 levels during nusin-
ersen treatment was not associated with motor improve-
ment and did not depend on disease severity but on 
patients’ height. Neither intrathecal infections nor 

influence of CT-guided procedure or type of lumbar 
puncture needle (traumatic vs. atraumatic) were observed 
in the study group, which argues against an adminis-
tration-dependent influence on the increase of CHIT1 

Controls
n = 30

SMA
n = 79

SMA type 1
n = 7

SMA type 2
n = 33

SMA type 3
n = 39
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Fig. 2  a Baseline analysis of CSF CHIT1 levels comparing diseased individuals to controls. Horizontal line shows median, whiskers illustrate 
interquartile range (0.25–0.75), each icon represents an individual patient, grey area marks range below the lower limit of quantification (563 pg/
mL); ****p < 0.0001 calculated by Mann–Whitney U test. b Correlation between patients’ height and CSF CHIT1 levels before treatment initiation; 
each icon represents an individual patient; *p < 0.05 calculated by Spearman’s rank-order correlation. CSF, cerebrospinal fluid; CHIT1, Chitotriosidase 
1

Table 2  CSF CHIT1 levels in nusinersen-naïve SMA patients

CHIT1 Chitotriosidase 1 concentration, CSF cerebrospinal fluid, IQR interquartile range, LLOQ lower limit of quantification (< 563 pg/mL)

All SMA patients (n = 79) Adult SMA patients (n = 58) Pediatric SMA patients (n = 21) Controls (n = 30)

CSF CHIT1 (pg/mL), 
median (IQR)

1787 (959–2866) 1838 (1035–3133) 1294 (883–2657) 563 (563–971)

Range 563–9810 563–9810 563–8341 563–3058

Below LLOQ, n (%) 12 (15) 8 (14) 4 (19) 17 (57)
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level during nusinersen treatment course. Contrary to 
our observations, Ando et  al. [40] described a decrease 
of inflammatory and microglial activity in a SMA mouse 
model in response to treatment with a nusinersen-
equivalent antisense oligonucleotide (ASO), which was 
assumed to account for a favorable effect of the therapy.

Therefore, the increase of CHIT1 during treatment 
course might be associated with an inflammatory pro-
cess apart from the above discussed microglial activation 
in SMA disease. One could rather suspect the medica-
tion itself to contribute to the increasing CHIT1 levels. 
Nusinersen is administered intrathecally in periodic 
doses of 12 mg in 5 ml independently from patients’ age 
or height. Because height was shown to be related to spi-
nal CSF volume [45, 46], smaller individuals may attain 
higher drug levels relative to their CSF volume. In the 
course of treatment, we observed monocytic cells with 
indefinable, unspecified inclusions within the nusin-
ersen-treated cohort of Dresden. Consistent with that, 
recently published research [47, 48] of two independ-
ent research groups reported the emergence of unusual 
macrophages with specific inclusions, which could be 
detected beginning from the second lumbar puncture 
and notably were not present before initiation of nusin-
ersen treatment. These macrophages—labeled ’nusin-
ophages’—were present in all investigated patients for 
at least one time during 14 months of nusinersen treat-
ment and were not found in patients with repeated lum-
bar puncture without nusinersen administration, which 
leads to the assumption that the inclusions inside these 
macrophages may contain nusinersen or nusinersen 
metabolites. CHIT1 is not an exclusive marker of micro-
glial cells, instead it can be secreted by different cells of 

the MPS. We therefore hypothesize that CHIT1 dynam-
ics under nusinersen treatment may occur as a response 
of nusinersen-exposed circulating monocytes in the CSF. 
In addition, we found a mild increase of Qalb and total 
protein during therapy (fitting to [32, 33, 49]), which 
underline the occurrence of a low unspecific inflamma-
tory reaction following treatment initiation.

Communicating hydrocephalus with unknown inci-
dence and etiology following intrathecal administration 
of the ASO nusinersen in SMA patients [50] and after 
intrathecal ASO administration (tominersen) in Hun-
tington’s Disease have been reported [51]. Whether the 
inclusions in CSF monocytes contain nusinersen, and 
which effect and relevance the stimulated intrathecal 
monocytes have on the occurrence of hydrocephalus, 
needs further investigation.

This study has some limitations. Most of the control 
samples (57%) and 15% of the SMA samples showed lev-
els below the LLOQ of the measuring method, which 
results in a substantial floor effect. Furthermore, we did 
not test for genetic variants of the CHIT1 gene (24 base 
pair duplication), which causes a chitotriosidase defi-
ciency [11] and therefore could be partly responsible for 
the values below the LLOQ.

Conclusion
To the best of our knowledge, this is the first study show-
ing elevated CHIT1 concentrations in SMA patients. 
CHIT1 concentration is not useful to assess disease 
severity or to predict treatment response, but may indi-
cate a certain role of (neuro)inflammation in the patho-
genesis of SMA. During nusinersen treatment, increasing 
CHIT1 levels may indicate an immune response-like, 

Table 3  Dynamics in CSF CHIT1 levels during 14 months of nusinersen treatment

CHIT1 Chitotriosidase 1 concentration, CSF cerebrospinal fluid, IQR interquartile range, n.s. not significant

*p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001 calculated by Wilcoxon signed-rank test

 CSF CHIT1 (pg/mL) 14-month analysis

n Median (IQR) Difference versus baseline p value

Median (range) (%)

Overall 58 2963 (1726–4179) 775 (− 2713 to 11,103) + 43 < 0.0001****

Height < 131 cm 8 6370 (3328–9980) 4363 (826 to 11,103) + 309 0.011719*

Height > 131 cm 50 2759 (1699–4014) 545 (−  2713 to 3900) + 29 0.001747**

SMA type 1 6 2605 (1073–5731) 1675 (− 114 to 7086) + 180 n.s

SMA type 2 24 3026 (1744–4335) 897 (− 1154 to 11,103) + 51 0.000829***

SMA type 3 28 2847 (1710–4093) 543 (− 2713 to 3087) + 21 n.s

< 4 SMN2 copies 30 3087 (1992–4528) 1066 (− 1536 to 8220) + 58 0.000960***

≥ 4 SMN2 copies 13 2103 (1696–3789) 495 (− 2713 to 2303) + 22 n.s

Children 19 2909 (1860–5091) 984 (− 1536 to 8220) + 76 0.001592**

Adults 39 3016 (1702–4088) 495 (− 2713 to 11,103) + 24 0.007929**
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Fig. 3  a Nusinersen dosing regimen according to the prescribing information. Arrows display time points of intrathecal nusinersen administration 
within the observation period. b Changes of CSF CHIT1 levels from baseline to 14 months, with each bar representing the proportion of patients 
related to the extent of CSF CHIT1 change. Box and whisker plots show median (vertical line), mean (+), interquartile range (boxes); individual 
points illustrate values outside of 1.5 × interquartile range (whiskers) from the median; ****p < 0.0001 calculated by Wilcoxon signed-rank test. c 
Change of CSF CHIT1 levels from baseline to 14 months with each bar representing a single patient. d Correlation between patients’ height and CSF 
CHIT1 change after 14 months of nusinersen treatment; each icon represents an individual patient; *p < 0.05 calculated by Spearman’s rank-order 
correlation. ΔCHIT1, difference of Chitotriosidase 1 concentration (CHIT1) in cerebrospinal fluid (CSF) between baseline and 14-month follow-up

Table 4  Impact of possible influencing variables on the change of CSF CHIT1 levels during 14 months

ΔCHIT1, difference of Chitotriosidase 1 concentration in CSF between baseline and 14-month follow-up

*p < 0.05; **p < 0.01

ΔCHIT1 B (CI95%) SE B β R2 ΔR2

Model 0.255 0.197**

Constant 2.564** (1.046; 4.081) 0.750

Patients’ height (cm) − 0.014* (− 0.028; − 0.000) 0.007 − 0.449

SMN2 copy number − 0.222 (− 0.694; 0.250) 0.233 − 0.166

Age at start of therapy (year) 0.006 (− 0.015; 0.027) 0.010 0.110
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off-target reaction. Whether this observation is limited to 
nusinersen or represents a general reaction to intrathecal 
ASO administration, needs to be further evaluated, since 
it is an establishing approach in the treatment of neuro-
degenerative diseases [51–54].
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The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s13023-​021-​01961-8.
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range.

Additional file 2: Table S2. Correlation between CSF CHIT1 level and 
age/disease severity scores in nusinersen-naïve patients with SMA. CHIT1 
Chitotriosidase 1 concentration, CSF cerebrospinal fluid, HFMSE Ham‑
mersmith functional. Motor Scale Expanded; RULM Revised upper limb 
module, ALSFRS-R revised ALS functional. Rating Scale; n.s. not significant, 
ρ partial rank correlation coefficient corrected for patients’ height.

Additional file 3: Table S3. Changes in CHIT1 levels during the observa‑
tion period of 14 months regarding different subgroups. CHIT1 Chitotri‑
osidase 1 concentration, CSF cerebrospinal fluid, IQR interquartile range, 
n.s. not significant. *p < 0.05; **p < 0.01 calculated by Friedman test with 
post-hoc Dunn–Bonferroni adjustment after listwise exclusion of data.

Additional file 4: Fig. S1. (a–c) Intraindividual CHIT1 dynamics regarding 
3 time points within 14 months of nusinersen treatment referring to SMA 
subtype. Light grey box indicates normal range determined by upper 
level of confidence interval (95%) calculated from controls; darker grey 
area marks range below the lower limit of quantification. Dashed black 
line indicates the trajectory of CHIT1 median. For details see Additional 
file 3: Table S3. CSF, cerebrospinal fluid; CHIT1, Chitotriosidase 1; *p < 0.05 
calculated by Friedman test with post-hoc Bonferroni adjustment n = 
54 (d) Differences in height between different clinical subtypes. ****p < 
0.0001 calculated by Kruskal–Wallis-test including patients shown in (a–c, 
e, f). (e, f) Intraindividual CHIT1 dynamics regarding 3 time points within 
14 months of nusinersen treatment referring to patients’ height. Light 
grey box indicates normal range determined by upper level of confidence 
interval (95%) calculated from controls; darker grey area marks range 
below the lower limit of quantification. Dashed black line indicates the 
trajectory of CHIT1 median. For details see Additional file 3: Table S3 CSF, 
cerebrospinal fluid; CHIT1, Chitotriosidase 1 concentration; *p < 0.05; **p < 
0.01 calculated by Friedman test with post-hoc Dunn–Bonferroni adjust‑
ment n = 54.
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