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The computational neurology of movement
under active inference

Thomas Parr,’ ®Jakub Limanowski,? ®Vishal Rawji® and @Karl Friston®

We propose a computational neurology of movement based on the convergence of theoretical neurobiology and
clinical neurology. A significant development in the former is the idea that we can frame brain function as a pro-
cess of (active) inference, in which the nervous system makes predictions about its sensory data. These predic-
tions depend upon an implicit predictive (generative) model used by the brain. This means neural dynamics can
be framed as generating actions to ensure sensations are consistent with these predictions—and adjusting predic-
tions when they are not. We illustrate the significance of this formulation for clinical neurology by simulating a
clinical examination of the motor system using an upper limb coordination task. Specifically, we show how tendon
reflexes emerge naturally under the right kind of generative model. Through simulated perturbations, pertaining
to prior probabilities of this model’s variables, we illustrate the emergence of hyperreflexia and pendular reflexes,
reminiscent of neurological lesions in the corticospinal tract and cerebellum. We then turn to the computational
lesions causing hypokinesia and deficits of coordination. This in silico lesion-deficit analysis provides an opportun-
ity to revisit classic neurological dichotomies (e.g. pyramidal versus extrapyramidal systems) from the perspective
of modern approaches to theoretical neurobiology—and our understanding of the neurocomputational architec-
ture of movement control based on first principles.
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Introduction
ct supplement these observations with formal (computational) mod-

Much of our understanding of neurobiology rests upon observa- els and to establish their theoretical foundations. In what follows,

tions from clinical neurology. The classification of symptoms and
signs according to different sorts of lesion—and the implied dis-
tinctions between the systems these disrupt—underwrite a mod-
ern understanding of the function of the nervous system.'? One of
the outstanding challenges for modern neuroscience is to

we revisit some fundamental ideas in clinical neurology from the
perspective of a formal approach to neurobiology. Our aim was to
determine whether there is a clear analogy between the distinc-
tions that arise through purely theoretical considerations and
those that have been established through clinical observation.
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The utility of this approach has previously been unpacked in
the setting of functional neurological disorders.> The importance
of a computational understanding of ‘functional’ pathology is
underwritten by the difficulty in identifying gross structural abnor-
malities in these patients. Edwards et al.? illustrated—using a pre-
dictive coding formalism—that computational pathology
manifesting at a synaptic level affords a plausible explanation for
functional signs and symptoms. In addition to furthering our
understanding of these disorders, this identifies (broadly) the
kinds of therapy that could be developed to treat them. Crucially,
as this approach is based on a physiologically grounded theory,
these therapeutic approaches include those that act to pharmaco-
logically modulate synaptic transmission or involve behavioural
therapies designed to target the same synapses through their
associated computational role. Here, we argue that the benefits
outlined by Edwards et al.> may be usefully extended and unified
with other neurological subfields. In other words, a functional
understanding of neurological syndromes should not be restricted
to those patients for whom no structural lesion has been identi-
fied. As a starting point, it is important to find the points of con-
nection between classical neurological and computational
framings of brain function.

For this challenge to be met, we examined some of the import-
ant distinctions made between the types of clinical signs and ask
whether these map on to the distinctions that arise from theoretic-
al neurobiology. To ensure the relevance of this in clinical settings,
we focused on two sorts of behaviour commonly elicited in neuro-
logical examination that vary with different pathologies. The first
was an examination of tendon stretch reflexes. This is an import-
ant part of a neurological examination in which tapping on a ten-
don elicits a reflexive movement at that joint.* The amplitude,
speed and shape of the response is indicative of certain kinds of
pathology. Notably, damage to the corticospinal tract—which pro-
vides cortical modulation of spinal reflex circuits—leads to ‘brisk’
reflexes with large amplitude. Cerebellar lesions, on the other
hand, lead to oscillatory or ‘pendular’ reflexes.

The other domain we considered was the examination of co-
ordination, as assessed through the common ‘finger-nose’ test, in
which patients are asked to alternate between touching their nose
and then the finger of the examining clinician. The clinician
moves their finger to alternative locations as the patient contin-
ues. This is useful in identifying ataxias—often due to cerebellar
lesions.” While not the primary method of assessment, perform-
ance of this test may be difficult for those with parkinsonian phe-
notypes where movement initiation is impaired. Our focus on
these tests rested upon their established ability to disambiguate
between different kinds of clinical syndrome. In addition, they pro-
vide an important test of construct validity for a hypothetical com-
putational lesion, as their consequences must be consistent with
clinical pathology in different domains. A theoretically motivated
cerebellar lesion is clearly a poor hypothesis if it induces pendular
reflexes but no ataxia and vice versa. Finally, an appeal to clinical
signs that localize anatomical lesions offers a test of a computa-
tional architecture for motor control. The connectivity of lesioned
areas must be consistent with that established through neuro-
logical anatomy.

Broadly, the theoretical distinctions of interest here concern
the difference between spatial and temporal precision, continuous
and categorical inference and inference about states of the world
and planning as (active) inference. The relevant clinical distinc-
tions are between pyramidal and extrapyramidal, cerebellar and
subcortical and motor and executive syndromes. In setting out the
relationship between these, we asked whether modern theoretical
neurobiology endorses these clinical categories and, if so, whether
we could use the wealth of anatomical knowledge associated with
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neurological constructs to constrain accounts of brain function in
terms of inferential message passing. The purpose of this paper
was to find a mapping between the Bayesian message passing that
could be used to generate movements and the neuroanatomy of
motor control.

The challenge of unifying structural and functional accounts of
brain dysfunction calls for a model that not only predicts behav-
iour but is grounded in the structural anatomy of the brain. The
benefit of a forward model—that makes predictions at the level of
behaviour—is 3-fold. First, it is useful to have a common frame-
work in which to understand functional changes in the brain fol-
lowing a variety of pathological processes. We focused on the
framework afforded by Bayesian accounts of brain function—
which assume that the brain employs an internal model to draw
inferences about the causes of sensory data. The flexibility of an
inferential formulation of brain function is evident in accounts of
neurological phenomena as diverse as synucleinopathic visual
hallucinations,® alien limb syndrome in cortico-basal degener-
ation’ and tic disorders.?

Second, it is useful to know what is and is not a plausible ex-
planation for a given clinical sign. A computational model provides
a simple means of assessing this. By inducing a hypothetical lesion
and simulating the results, we see whether or not that hypothesis
could account for observed pathology. We provide an example of
this in the 'Synthetic behaviour’ section in relation to tremor in
Parkinson’s disease. In brief—consistent with previous argu-
ments’—we found that tremor is not explained by a lesion of the
computational homologue of the substantia nigra pars compacta.
Instead, this may be a downstream consequence of (pathological
or therapeutic) perturbations to one aspect of brain function for
distant parts of the network (cf. functional diaschisis'®*?).

Finally, forward models aid the non-invasive quantification of
pathology. Using standard model inversion schemes,'® it is pos-
sible to infer the parameter values that best explain observed be-
haviour. The advantages of doing so include the ability to track
disease progression and therapeutic responses quantitatively.
This is useful both in the therapeutic setting and in clinical trials,
where such measures could form useful outcome measures.
Alternatively, quantitative phenotyping is useful in identifying
candidates for trials or treatment options. The benefits of this sort
of approach are evident in quantitative (genomic) phenotyping in
cancer research.™

The key theoretical contributions we offer in this paper are as
follows. First, we set out a generative model whose motoric solu-
tions include the kinds of behaviours used to assess neurological
function in a clinical setting. Second, this generative model uses a
hierarchical form where each level prescribes short trajectories at
the level below—consistent with the idea of motor chunking, the
idea that the single motor elements of action sequences can be
grouped into units of behaviour, over multiple timescales. Third,
the synthetic lesion-deficit analysis provided here goes beyond
previous mixed models based upon active inference'® and pro-
vides a means to map message passing to known neurological
anatomy.

Active inference

We begin by outlining active inference; a ‘first principles’ account
of behaviour.” We do so to highlight the key dichotomies that are
implied. The central idea is that the brain’s dynamics can be
framed in terms of an implicit internal (generative) model as if it
were drawing inferences about the outside world.'® Under active
inference, perception and action are framed as processes that try
to reconcile discrepancies between predictions of the generative
model and the world," either by changing beliefs (perception) or
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changing the world (action). [It is worth acknowledging a tension
between some of the technical terms we use, and the lay meaning
of these words. When we refer to a ‘belief’, we mean this in the
Bayesian sense (i.e. Bayesian belief updating or propagation). Here,
a belief is simply a probability distribution. This may be repre-
sented by the activity of a neural population—not a propositional
belief in the folk psychology sense.] As such, the key to under-
standing healthy or pathological behaviour is in finding the gen-
erative model that the brain is implicitly using.?® In the context of
movement, there are two parts to this generative model.'® One
that deals with alternative movements that could be made (e.g.
‘Do I reach to the left or the right?’), and one that details the sen-
sory consequences anticipated during the execution of that move-
ment (e.g. ‘If I reach to the left, what does this mean for
proprioceptive input at my shoulder joint?’).

The role of a generative model is to predict sensory data (y).
The quality of predictions under a model, relative to observed
data, may be quantified in terms of ‘evidence’—the probability
that observed data would have been generated by this model. The
(log) evidence can be written in terms of the joint density of hidden
(unobserved) variables [v = (x, v, s, n)], data generated by the gen-
erative model and the posterior probability of these hidden varia-
bles having observed these data:

Inp(y) = Inp(y,v) — Inp(v]y)

= Ep(py [Inp(y,v) — Inp(v]y)] 0
> Eq) [Inp(y,v) — Inq(v)]

=Inp(y) — Dxe[q(v)|[p(v]y)]

The first line here illustrates the decomposition of the log evi-
dence into a joint probability and a posterior probability via Bayes’
rule. The second line (arbitrarily) introduces an expectation (i.e.
average) with respect to the posterior probability. Given that the
left-hand side is not explicitly a function of the hidden variables,
this expectation does nothing to this expression. However, it does
let us construct a lower bound on the evidence by relaxing the con-
straint that we use the exact posterior density.”?* This is useful,
as it is often difficult to compute the exact posterior. The third line
expresses this bound by substituting an arbitrary distribution (q)
for the posterior. The rearrangement in the final line (which rests
upon factorizing the joint distribution into the evidence and pos-
terior) shows that the Kullback-Leibler divergence (which quanti-
fies how different two distributions are from one another) between
our approximate posterior and the exact posterior density quanti-
fies the difference between the model evidence and its lower
bound (sometimes referred to as an ELBO or a negative free
energy).

The insight from Equation 1 is that, if we wish to act upon the
environment to obtain those data that maximize the evidence for
a model, it is sufficient to seek those data that maximize a lower
bound, as long as the divergence between our approximate poster-
ior and the exact posterior is small. This lets us summarize active
inference as follows:

a = argmax Ey, (Inp(y(a))
a(0) = argmax (B lnp(y(@))] ~ Dala) )]} @)
q(v

The first line says that we choose the actions (a) that lead to
the most probable data under current beliefs. These data are
expressed as a function of action [y(a)] to emphasize that action
changes the outside world in such a way that we receive new sen-
sory data. The second line revises beliefs, such that they render
the data more probable (while not moving too far from prior
beliefs). The reason the Kullback-Leibler divergence in the second
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line does not appear in the first is that this term does not depend
upon sensory data and so is not changed by action. An important
aspect of Equation 2 is that the optimal action given a sensory in-
put depends upon the prior beliefs that characterize a generative
model. The importance of this relates to a set of results known as
the complete class theorems.?®>?* These state that any behaviour
(or statistical decision function) is Bayes optimal under the right
set of priors. In one sense, this says that Equation 2 is trivial, in
that there are a set of prior beliefs that renders it true for any given
observed behaviour. In another sense, this provides a useful way
of articulating the challenge before us in characterizing healthy or
pathological behaviour. It says that the appropriate way to provide
this characterization is to find the set of priors under which that
behaviour—healthy or pathological—would be Bayes optimal. In
other words, we seek to identify the priors that would generate
specific sorts of behaviour when Equation 2 is solved for their
associated generative model. Ultimately, one might hope that this
will inform diagnosis and treatment of motor maladies. The opti-
mization scheme used to solve Equation 2 for the generative
model used here is detailed in the Supplementarymaterial.

To apply Equation 2 in a more concrete setting, we must specify
the generative model [p(y, v)] associated with that setting. We will
begin with the model that accounts for the generation of continu-
ous proprioceptive and visual data based upon arm movements,
which brings us to realm of (bicipital) tendon stretch reflexes.

Synthetic tendon reflexes

The first problem we face is how to generate a healthy tendon re-
flex. This means we write down the generative model that predicts
proprioceptive data from the relevant joints and solve Equation 2
for this model. How do we relate Equation 2 to the idea of a reflex?
This equation says we should take action to ensure incoming (pro-
prioceptive) data cohere with their most likely value. Another per-
spective is that an internal model provides a setpoint for these
sensory data, and that any deviations from this point must be cor-
rected by action (i.e. changes in firing of motor neurons). Framed
in terms of spinal reflexes, this means proprioceptive signals
resulting from changes in muscle length are propagated to the dor-
sal horn of the spinal cord (the afferent pathway) where they in-
duce changes in firing of motor neurons (the efferent pathway),
which restore the muscle length to their set-point.>® The set-point
may be modulated by corticospinal projections, which influence
the relationship between the afferent and efferent pathways. This
influence, under active inference, depends upon the form of the
implicit generative model. Figure 1 specifies the form of the model.
This takes the things we expect to influence sensory data coming
from an arm, including the angular positions and velocities of the
shoulder and elbow joints, and predicts the sensory input
expected under a given configuration. The velocity of the joints is
determined by a ‘target’ location, as if the hand is being pulled to-
wards a desired location. This may be seen as a formalization of
the ‘equilibrium point hypothesis’® and the more recent ‘passive
movement’ paradigms.?® The key idea behind these formulations
is that a movement may be generated simply by predicting its sen-
sory consequences—as if it were taking place—and using low level
reflexes to correct any discrepancies. In other words, if we were to
imagine our arm being pulled to a point in space, we can predict
the proprioceptive input we would experience and use this to real-
ize the movement. This kind of model is similar to those used in
modern robotics to generate movements®>*® and to established
approaches in engineering including proportional-integral-deriva-
tive control.>® Within the same framework, it follows that a dis-
crepancy between proprioceptive input and sensory predictions
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Figure 1 Continuous generative model of arm movement. This schematic shows the variables used to define a generative model of arm movements
in three dimensions, and the equations that mediate their interactions. The functions f and g are used to define the expected rate of change of x, and
the generation of y. The first three elements of x are the angular positions of the shoulder (rotation and flexion) and the elbow (flexion). The final
three are the angular velocities associated with these joints. We have designed this generative model to include the belief that there is a (fictitious)
force that is proportional to the distance between the position of some (imaginary) target (v, 3) and the current position of the hand (®) in a three di-
mensional Euclidean frame of reference. The ® function takes the angular positions of the joints and returns the coordinates of the hand. This
depends upon the lengths of the arm and forearm, and the position of the shoulder (). Sensory data are divided into proprioceptive and visual
modalities. The proprioceptive II-fibres report the angular position of the joints (i.e. the ‘stretch’ in the associated tendons), while Ia-fibres report the
rate of change of these positions. We have adopted the simplification here that the visual modalities report the position of the hand in Euclidean
coordinates. In addition, they specify the colour of each of the three targets (v45¢) in different spatial positions. This model is similar in spirit to that
used for (2-dimensional) simulations of handwriting.?®

would also result in impaired voluntary movement; as is seen in velocities (x456). The rate of change of the velocities depends upon
the case of severe deafferentation.®? the product of the moment of inertia (x) and a rotational force. In

The equations in Fig. 1 are obtained through application of the ‘real’ world, this force is given by the action (a) generated as a
Newtonian mechanics and trigonometry. The angular positions of consequence of Equation 2. From the perspective of the generative

the joints (x;,3) change at a rate specified by their angular model shown in Fig. 2, the rotational force is an imagined
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Figure 2 Synthetic biceps reflex under normal and abnormal precision
estimates. The top three plots show the consequence of briefly stimulating
the stretch receptors at the elbow, as if we had tapped on the tendon con-
necting the biceps muscle to the bones of the forearm. This induces a (pro-
prioceptive) prediction error that is corrected by spinal reflexes. The top plot
illustrates this for a ‘healthy’ generative model. The next two plots show
what happens if we perturb beliefs about the spatial and temporal compo-
nents of precision, respectively. Overestimating the former (I1) increases the
gain of the prediction error, increasing the speed and amplitude of the reflex.
Overestimating the smoothness of random fluctuations (%) instead induces a
smaller amplitude ‘pendular’ reflex where the arm continues to oscillate fol-
lowing the tendon tap. Note that the effects of the tendon tap are not seen
only in the elbow joint. There are additionally changes in the shoulder flex-
ion; changes in the rotation of the shoulder are limited, as this is orthogonal
to the elbow joint. The bottom plot illustrates the same perturbation for the
model of oculomotor behaviour described in Parr and Friston.* In this con-
text, overestimation of the smoothness leads to hypermetric saccades.
Compare this (red) to the simulated horizontal electro-oculogram (HEOG) in
blue, where the smoothness is correctly estimated. The graphics of the arms
are shown to provide some intuition for non-clinical readers as to the subtle-
ty of the signs that might be elicited during a neurological examination. For
clinical readers, they illustrate the type of patterns they might be familiar
with. While still images are limited in providing a sense of what is happening
here, we invite readers to run the demonstration code indicated in the soft-
ware note to produce an animated version of these graphics. In this setting, it
is much easier to appreciate the qualitative differences between each lesion.
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(fictitious) force that acts in a Euclidean frame of reference to
shorten the distance between the position of the hand (®) and a
target position (vq2 3). This distance is multiplied by the gradient of
©® with respect to the angular positions to bring this back into an-
gular coordinates. The function ®—which gives the Euclidean pos-
ition of the hand as a function of the angular positions of the
joints—follows from standard trigonometry. The function g maps
these variables to the expected data in each modality. In addition,
g reports the colour of the targets (whose positions are fixed) based
upon the vy 56 variables. This gives three numbers that represent
the intensity of the shading for each target.

Having set up the continuous part of the model, we are now in
a position to explore the influences of some simple perturbations.
To illustrate the effects of these, we use a ubiquitous neurological
test: eliciting the biceps tendon reflex. This involves using a ten-
don hammer to tap on the tendon connecting the biceps muscle to
the bones of the forearm.* We simulate this by transiently aug-
menting the input of the type Ia proprioceptive afferents at the
elbow, as if the tendon had been suddenly stretched. The first plot
in Fig. 2 illustrates the consequences of this in the absence of syn-
thetic lesions. As in vivo, this induces a fast, small amplitude flex-
ion of the elbow that then relaxes back to its initial position. The
reason for this is that the artificial proprioceptive input carries low
evidence under the generative model (that, a priori, does not enter-
tain perturbations of this sort); thus, action is induced to restore
these data to their most probable values.

To select the most appropriate candidates for synthetic lesions,
it is worth explaining in more detail about the notion of ‘preci-
sion’.>* This is the inverse variance associated with a probability
distribution. In engineering and motor control, precision can be
regarded as the gain applied to corrective prediction errors. In
terms of inference, precision may be thought of as the confidence
of a belief, as opposed to its content, and can have debilitating con-
sequences when it is not estimated accurately. For a dynamic
model, of the sort employed here, precision may be factorized into
two components (see the Supplementary material for details):

M=T®S3) 3)

Loosely speaking, these may be thought of as spatial (1) and
temporal [S(2)] components, in the sense that the former accounts
for the inverse covariance of the positions of the (x, y or v) varia-
bles, while the latter determines the smoothness of random fluc-
tuations (i.e. the correlations between position, velocity and
subsequent temporal derivatives). The point of this decomposition
is that, for a biological system, these fluctuations are not really
‘random’ but are generated by dynamical systems operating over a
faster timescale than that considered by the controllable dynamics
or kinetics of the generative model.>® This means that these fluctu-
ations have a structure over time (e.g. serial correlations or
smoothness) that cannot be neglected. The use of generalized
coordinates of motion and the definition of the generalized preci-
sion matrix of Equation 3 ensures we take account of this temporal
structure. The 1 parameter is a parameter of the autocorrelation
function, evaluated at zero lag, and can be thought of as a measure
of the ‘smoothness’ of the fluctuations.

Accurate estimation of precision is vital in the context of move-
ment in that descending predictions of the sensory consequences
of movement must predict not only the expected value of these
sensory signals but the dispersion anticipated around this expect-
ation.*® This underwrites the notion of sensory attenuation®’;
attending away from sensory data during self-generated move-
ment. On this view, descending predictions of IT should be attenu-
ated by descending corticospinal fibres.® To show what happens
in the absence of this attenuation, we simulated a tendon reflex
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with a generative model that attributes too much precision to sen-
sory data; i.e. as if we had induced a lesion somewhere between
the motor cortex and spinal motoneurons—to induce a failure of
sensory attenuation. Compare the top plot in Fig. 2, which shows
the ‘healthy’ response, with the middle plot showing the exagger-
ated ‘brisk’ reflex®**° following a failure to attenuate predictions
about the precision of these data.

The hypothesis that arises from this is that the corticospinal
tract normally attenuates the gain (i.e. precision) of the synapses
mediating spinal stretch reflexes and that this gain is abnormally
high in the absence of corticospinal attenuation. To assess the val-
idity of this hypothesis, one should consider other pathological
processes that lead to brisk reflexes with an intact corticospinal
tract. Our hypothesis implies that such processes should also pre-
clude attenuation of reflexive gain. This seems to be borne out by
an autoimmune condition known as stiff-person syndrome—
which causes hyperreflexia in the presence of a structurally intact
corticospinal tract.*>*? This is due to autoantibodies against an en-
zyme called glutamate decarboxylase (GAD). Physiological meas-
urements that hint at excessive synaptic gain include the normal
motor unit activity on electromyography during muscle spasms.*?
One interpretation of these responses is that normally subthres-
hold sensory inputs evoke what would be normal efferent aspects
of a reflex. In other words, the gain of the translation from the af-
ferent to efferent input is turned up.

GAD is an enzyme found (not exclusively) in the dorsal horn of
the spinal cord** and is involved in the synthesis of the inhibitory
neurotransmitter GABA. There is evidence of disruption of the
associated spinal circuits in stiff-person syndrome.**® This is
interesting in that the disruption leading to hyperreflexia involves
loss of inhibitory neurotransmitters in the region of the same syn-
apses whose gain is attenuated by the corticospinal system. The
implication here is that both corticospinal disconnection and anti-
GAD disease fail to suppress exuberant responses of efferent in re-
sponse to afferent arms of a reflex. Computationally speaking, this
is a failure to attenuate precision.

Interestingly, stiff-person syndrome is associated with startle
reflexes that can be evoked by sensory modalities other than pro-
prioception; including audition and somatosensation.*” This
implies the mechanisms behind a stretch reflex, normally
observed following anatomically localized lesions, may be more
broadly expressed. While vascular events that disrupt the pyram-
idal tract do not give rise to multimodal startle responses, auto-
immune processes do not need to respect these anatomical
boundaries.

The bottom plot in Fig. 2 shows the consequence of overesti-
mating the smoothness of fluctuations (i.e. the temporal compo-
nent of the precision of generalized motion). The consequence of
this is a pendular reflex, inducing oscillatory movements at the
elbow and shoulder. This sort of response is characteristic of cere-
bellar lesions,*”**® although normally demonstrated at the knee,
and implicates the cerebellum in estimation of these temporal
correlations. The inset below the bottom plot shows the result of
the same lesion applied to the oculomotor model described by
Parr and Friston®® illustrating the hypermetric saccades and oscil-
latory corrective movements that result from overestimation of
smoothness in this domain. Similar effects are seen in cerebellar
lesions.*>' The idea that the cerebellum may be engaged in
optimizing beliefs about the temporal component of precision
harmonizes with ideas about the role of this structure in the pre-
cise timing of responses.”*** Specifically, the higher temporal
embedding order allows for more precise beliefs about the local
trajectory of continuous variables due to the non-zero autocorre-
lations that come along with this. This facilitates local predictions
about ‘when’ something is likely to change. Notably, it is this
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temporal embedding order that has previously been exploited
to account for sensorimotor delays within a predictive coding
(motor) scheme.>*

At this point, it is worth reflecting on where this approach is
situated compared to other perspectives on motor control.
Specifically, it is important to acknowledge that some argue in fa-
vour of separable, but interacting, processes that mediate state es-
timation and motor control. This implies that, in addition to a
forward model of the kind employed here, there is an ‘inverse’
model that specifically deals with computing a motor command
that would fulfil a desired goal.>>*® The approach we pursue here
is more aligned with pure forward modelling approaches that gen-
erate predicted proprioceptive data and use spinal reflex arcs to re-
solve discrepancies between predicted and observed sensory
inputs,”” which renders inverse modelling redundant. A feature
common to both perspectives is the notion of optimization.>® Each
relies upon a function (or functional, under active inference) that
must be minimized or maximized. While a full deconstruction of
these two approaches requires a paper of its own, some of the sali-
ent points are highlighted in the Supplementary material. This is
not intended as a refutation of previous accounts of reflexes but as
a formalization in terms of the same sort of message passing used
in more ‘cognitive’ operations.

In this section, we have highlighted the first dichotomy that
emerges from specifying the kind of generative model required for
arm movements. This is the distinction between spatial and tem-
poral contributions to the precision of fluctuations. Interestingly,
at least in the context of tendon reflexes, these appear to mirror
the distinction between cerebellar and corticospinal syndromes.
Our aim in the next section is 2-fold. First, by moving on to the
next (coordination) stage of a neurological examination, we have
an opportunity to assess whether the synthetic cerebellar and cor-
ticospinal homologues introduced here generalize beyond the do-
main of reflexes. Second, we introduce our next dichotomy:
inference about continuous or categorical variables, capturing the
distinction between execution and planning.

Hierarchy and planning

Following from an assessment of reflexes, we now move to an as-
sessment of coordination. Typically, in a clinical setting, this is
done by asking a patient to reach out and touch two different
objects (typically their nose and the clinician’s finger) and to alter-
nate between the two while the clinician moves one of the targets
so that it changes position each time. Based upon this idea, we
constructed the generative model in Fig. 3. This comprises three
levels, the lowest of which is the model in Fig. 1. The upper two
levels (shown in Fig. 3) represent the processes that generate the v
variables in Fig. 1. The arrows in this figure indicate the non-zero
terms in the matrices that comprise the parameters of the genera-
tive model. The highest level of this model comprises two sorts
(i.e. factors) of categorical hidden states. The first is the combined
position and direction of movement of the hand (Fig. 3, top left).
Consistent with dynamics described at higher levels of the cor-
tex,>> this is a relatively coarse-grained representation spatially
and temporally. The position is defined in terms of which of three
spatial locations (shown as red dots) the arm starts from and the
direction of movement in terms of which it is moving towards.
The second factor at the highest level is where the current target is
(darker sphere). This may change from moment-to-moment from
the perspective of the highest level.

The lower (discrete) level of this generative model involves
much more temporal and spatial detail than the higher level but
covers shorter periods of time.®* This means that the target loca-
tion is now static, as it only changes over the slower scale
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Figure 3 Discrete generative model for movement planning. This sche-
matic illustrates the hierarchical discrete state-space generative model
that sits above the continuous model shown in Fig. 1. This model gen-
erates the hidden causes (v) that are the (imaginary) attracting points
and the target locations from the perspective of the continuous model,
which effectively induce movement. The discrete (categorical) causes
that generate these come in two forms: the alternative attracting points
(red spheres) that act as equilibrium points, and which of the three pos-
sible target locations is currently specified. These causes are them-
selves generated by states at a higher level. At the highest level (upper
left) we have a set of alternative combinations of trajectories. Each of
these is defined in terms of which vertex of a triangle (i.e. target loca-
tion) is at the start and end of that trajectory. There are three configura-
tions not shown that represent a single vertex of the triangle being the
start and end of a trajectory (i.e. a static ‘trajectory’). In addition, the
higher level includes a replica of the three possible target states (upper
right). However, while these are considered static at the timescale of
the lower level, the slower dynamics of the higher level allow this to
change over time. The key distinction here is the absence of arrows be-
tween alternative target configurations at the first level. The C-vector
represents the statistics of a prior belief that policies will lead to correct
outcomes (i.e. hand and target location match). This ensures sequences
of actions that lead to the realization of this goal are more plausible
than those that do not. The arrows within a level indicate the allowed
transitions (encoded by B) between these configurations. The arrows
between levels show the generation of lower level variables by higher
level variables. This rests upon generation of a discrete outcome via
A®, which is then used to generate policies [via EV] or initial states [via
D). The role of D@is to provide a prior belief about the initial states at
the higher level. Note that, if we were to extend this model to include
further levels, this would also become an empirical prior, recapitulating
the role of DY. However, given that Level 2 is the highest level consid-
ered here, D@is simply a vector of prior probabilities. This says that the
target states may be in any initial configuration with equal probability
and that the initial state probability is equally distributed among any of
the trajectories that start at the lower-right target.

prescribed by the higher (discrete) level. The increased spatial
resolution at the lower level affords the opportunity to represent
spatial locations that are intermediate to those of the three target
locations. These are shown as small red spheres. For each short
trajectory at this level, the higher level specifies a starting location
(via D) and a direction of travel (E) that influences the transitions
(B). For visual clarity, we have not shown all the possible transi-
tions between the (red) attracting points. In brief, one policy leads
to a clockwise transition, one to an anticlockwise transition and
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one to a static transition (i.e. attracting point stays in the same lo-
cation). Each of the locations at the lower level, indicated by the
red spheres, maps to an attracting point (vq3) in the continuous
model in Fig. 1. Similarly, the shading of each of the target spheres
maps to the continuous representation of target colours (Vssg).
There is one other outcome of the categorical levels of the model
that never reaches the continuous model (i.e. is conditionally inde-
pendent of it). This is whether the hand position and the target
position match or whether the hand has not yet reached the tar-
get. By setting a prior belief (C) that the correct hand position will
be achieved, the course of action most likely to fulfil this attains a
higher plausibility. Note that this is not used as a prior over out-
comes at the level of inference about outcomes but as a prior belief
about the consequences (on average) of policies. In other words, it
is used as if it were a parameter of the prior over policies. The prior
over policies includes both E and G, where G is a function of C. The
C-vector may be thought of as a parameter of the prior belief over
policies. However, it is an interesting quantity, as it could be
thought of as a prior itself. The key idea here is that we specify a
prior (C) over observations, that is the Bayesian model average
under all policies (weighted by their respective probabilities). In
place of specifying the probability of each policy and then finding
this average, we specify this average and use this to express a prior
over policies that would realize this (when an information theoret-
ic bound is minimized). This is almost the opposite approach to
the use of a free energy bound to approximate a marginal distribu-
tion over outcomes, as it starts from the distribution over out-
comes and finds an expected free energy that defines a
distribution over policies.

At this point, it is worth summarizing the way in which con-
tinuous and categorical inferences talk to one another.'® The key
idea here is that each categorical outcome is assigned to a point in
continuous space. By averaging these points based upon the rela-
tive probability of each outcome, we generate an empirical prior
belief about the location of the current target in continuous space.
To update beliefs about these outcomes, we can treat each out-
come as an alternative hypothesis for the continuous dynamics at
the low level and compute the evidence for each hypothesis.
Practically, we can do this efficiently by appealing to Bayesian
model reduction.®>®® This is a statistical technique that allows us
to use the inversion of a ‘full’ model to calculate the evidence we
would have achieved had we used alternative priors. The full
model in this context is the continuous model where the prior ex-
pectation for the v variables is given by a weighted sum of all pos-
sible expectations. Each alternative (reduced) model is given by
choosing an expectation associated with a specific outcome, as
opposed to taking the expectation based upon all of these.
Equation 4 expresses the form this takes. We use L(t) to indicate
the (log) evidence as a function of time (t) during a categorical
epoch (7). This depends upon the probability of continuous data (y)
given categorical outcomes (o,). This is accumulated (or integrated)
and combined with the prior (o,) for that epoch to give a posterior
belief (r.).

r = :r(lnog1> + [ LT(t)dt>

L. (t); = Inp(y ()|o{!) = i) — Inp(y (1) |Eqy o [01V]) @

Like the negative free energies used as approximate (log) evi-
dences elsewhere in this paper, L approximates a log evidence
based upon an approximate posterior. The second line of Equation
4 calls upon the mappings between the discrete and continuous
parts of the model that depend upon precisions formulated in
terms of generalized coordinates of motion (Equation 3). This is
useful to know, as it constrains the connectivity implied by the
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inversion (i.e. solution) of this generative model. The degree to
which higher orders of motion influence the expected position of
the hidden causes, and the reciprocal influence of the empirical
prior precision for these higher orders, implies brain regions com-
puting these smoothness parameters should exert an influence
over those that mediate the interaction between continuous and
categorical variables. In addition, note the predicted outcomes (o,)
that appear in this equation are themselves computed by weight-
ing the predicted outcomes under each policy by the relative prob-
abilities of each policy (r). This implies both smoothness
estimation and beliefs about policies should influence those
regions translating between continuous and categorical inference.
We will return to this crucial issue in the discussion.

Figure 4 shows what happens when we simulate inference in
the model of Figs 1 and 3 by numerically integrating (i.e. solving)
the equations in the Supplementary material (which solve
Equation 2). This provides an example of healthy behaviour in the
coordination task outlined above. The target location changes
three times and, each time, the three controllable joints of the arm
flex, extend or rotate such that the hand reaches the target. A ser-
ies of selected frames are shown on the left of Fig. 4, which show
the movement of the arm and the (imaginary) red spheres to
which the arm is drawn. By predicting the proprioceptive input
that would be present if there were a spring pulling the hand to
these fictive targets—and by inferring a sequence of intermediate
targets from the current location to the final target—spinal
reflexes are engaged that resolve the discrepancy between pre-
dicted and observed proprioceptive data such that the arm reaches
its target. The trajectory of the hand and the sequence of imagin-
ary spheres to which it is drawn are shown in the top right plot in
Fig. 4. The corresponding joint angles are shown in the plots
below. Note that this formulation of co-ordinated motor activity
dissolves Bernstein’s problem,®* because there is one unique tra-
jectory under the priors implicit in the generative or forward
model. In other words, there are no ad hoc objective functions® ne-
cessary to constrain the plurality of trajectories and degrees of
freedom associated with any goal-directed behaviour—the only
objective is to realize the movement that maximizes model evi-
dence (or free energy). All that is required to specify this free en-
ergy functional is the set of priors that detail the structure of the
task (i.e. how we as experimenters or the physical world generate
the data presented to the model). Crucially, these all participate in
the same objective function. Another way of putting this is that
the only thing that needs specification under this approach is the
problem to be solved. This includes the physics of the problem in
addition to the decisions to be made and the final answer that we
expect to settle upon. Once this is specified, the problem entails
the objective function, which can be solved automatically and
generically.

In referring to a ‘goal’, we mean there is a prior preference or
expectation built into the generative model that the hand location
will be congruent with the currently highlighted target (i.e. the
darker sphere). To get a sense of the ‘goal’ of the arm movement, it
is worth translating the generative model into the kind of instruc-
tions we might ask a participant to follow during an experiment.
The highest level effectively says, ‘During this task, there are three
targets that will be present throughout. One of these will be dark,
and the other two light. Periodically, and randomly, we will change
which of the three targets is darkened’. The lower Markov decision
process level says, ‘The task here is to touch whichever is the dark
target at any one time’. This is expressed by the correct and incor-
rect outcome that predicts ‘correct’ when the location of the hand
and the dark target align and ‘incorrect’ otherwise. The C vector
specifies that the former is preferred in this experiment.

T. Parr et al.

This simulation shows how the presence of a deep temporal
model naturally extends the ‘equilibrium point hypothesis’ to an
‘equilibrium trajectory hypothesis’. Importantly, this means that
there are two sorts of computational syndrome we might expect
when lesioning this model. The first is a failure to infer the series
of attracting points leading to the goal. The second is a failure to
implement the movements that lead to the realization of the kine-
matics implied by these attracting points. This speaks to a division
into pathologies of discrete and continuous inference or, equiva-
lently, between those affecting the planning and execution of
movements. Interestingly, the same theoretical distinction be-
tween continuous and discrete processes was proposed based
upon clinical observations at the end of the 19th century: ‘the cere-
bellum is the centre for continuous movements and the cerebrum
for changing movements’.®®

Figure 5 illustrates the consequences of a set of model ‘lesions’
for the arm movement trajectory, where the targets follow the
same sequence as in Fig. 4. Note that manipulations of the preci-
sion (IT) of sensory input do not impair the performance of this co-
ordination task. If we interpret this lesion as in Fig. 2—interruption
of descending signals from the pyramidal system—the unaffected
performance is consistent with the relative preservation of coord-
ination in patients with corticospinal lesions.®® More complex
motor tasks, including grasping, can be associated with deficits
following these lesions,®® but the task shown here is not sufficient-
ly sensitive to demonstrate these. Overestimation of smoothness
(1) does not impair the planning of movement, in the sense that
the same sequence of planned targets is inferred as in Fig. 4.
However, there is a marked hypermetria (i.e. movement beyond
the intended goal) at each target location with an oscillatory path
between these locations.”® Recalling that no such oscillations were
present at rest, before the tendon tap, in the simulations in Fig. 2,
we can interpret this trajectory as expressing an intention tremor.
This is characteristic of cerebellar disease and of Purkinje cell de-
generation.”* This provides an example of disorder of movement
execution, as opposed to movement planning. It also endorses the
idea that the cerebellum estimates this smoothness, as we
find the same lesion that induced cerebellar-like reflexes also
induces the coordination deficits associated with a cerebellar
syndrome.”>”?

It is important to highlight at this point that there are many dif-
ferent causes of a cerebellar ataxia.” These range from inherited
disorders, such as the spinocerebellar ataxias,”* to acquired vascu-
lar,”®> demyelinating’® or systemic insults.”” The simulations pre-
sented here speak to the common pathological end point of these
processes. As such, it is worth briefly addressing theories of cere-
bellar pathophysiology’® and what this end point could be. This
serves to illustrate the more general point that clinical neurology
is only made possible through the fact that the number of ways in
which the nervous system reacts to perturbation is much smaller
than the number of pathological processes that could cause this
perturbation. Understanding the mechanism of a common end
point—for instance, through a computational approach as out-
lined here—might point to targeted therapeutics that address this
mechanism, despite being agnostic to the specific aetiology.
Returning to the example of cerebellar dysfunction, the parameter
/. we deal with here directly modulates cerebellar targets, as
Equation 3 suggests it contributes to the same spinal circuits tar-
geted by the corticospinal tract. This places 4 in the cerebellar out-
put nuclei or red nucleus and implies any upstream damage to the
cerebellum will influence this.

Physiologically, the outputs of the cerebellum are under inhibi-
tory control from the Purkinje neurons.”® This makes sense of the
idea that cerebellar lesions lead to overestimation of /, as the neur-
al populations encoding this variable are disinhibited. Purkinje
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Figure 4 Hierarchical movement planning and execution. This shows healthy performance of the coordination task in Fig. 3. The upper right plot
illustrates the series of attracting points inferred during the course of the movement as red spheres. These are shown as progressively darker over
time (the apical sphere is darker simply because it was inferred as the target for multiple time-steps). The black line illustrates the trajectory of the
hand. The blue arrow indicates the direction of travel, and the segment of the movement shown in the frames on the left. The lower right plot shows
the angular coordinates for the shoulder and elbow over time. The vertical grey lines indicate the transitions at the highest level of the model, which
coincide with the points at which the dark (target) sphere changes location. Note the change in shoulder flexion as the first target is reached. At the
start of the trajectory, the shoulder flexes slightly. As the elbow flexes, continued shoulder flexion would bring the hand above the target. This is
anticipated, and the shoulder begins to extend to prevent this from happening. Crucially, this means that the distance between the hand and the tar-
get is decreasing throughout the entire trajectory and there is no overshoot (or hypermetria). We provide an example where this fails later (Fig. 5).
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Figure 5 Pyramidal and extrapyramidal. These plots show the consequences of four specific synthetic lesions to the performance of the task shown
in Fig. 4 and highlight the difference between pyramidal (i.e. corticospinal) and extrapyramidal lesions. These include the same lesions as in Fig. 2,
but additionally include two perturbations to the discrete parts of the model. The first plot illustrates the preservation of coordination following over-
estimation of sensory precision (I1, compare with the trajectory of Fig. 4). The second illustrates a decrease in the precision of the contribution of the
expected free energy to beliefs about ‘how I am going to act’ (y). The lack of confidence in selecting a sequence of fixed points leads to their estimation
as being somewhere in the middle. Note that there is no impairment in reaching these fixed points. The initialization of movement via a series of

(continued)
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neuron activity depends upon patterns of activity in parallel fibres
that run along the surface of the cerebellar cortex and upon climb-
ing fibres that arise from the olivocerebellar tract.?2° Prominent the-
ories of cerebellar function argue that climbing fibres aid in
learning which patterns of parallel fibre input should prompt dis-
inhibition of Purkinje cell targets.®" While there remains contro-
versy over the synapses in which this learning takes place,®#® it
follows that disruption of the Purkinje cell influence over the out-
put nuclei will also disrupt learned contextualization of this
output.

These clinical and physiological observations help localize the
message passing that underwrites cerebellar function and also
highlight an incompleteness of the generative model. The implica-
tion is that we require explicit priors over 1 that enable learning of
this variable. As Bayesian message passing is necessarily recipro-
cal (if A tells us something about B, then B tells us something about
A), this implies messages to the cerebellar output nuclei must be
constructed from those areas influenced by i—consistent with the
contribution of the spinocerebellar tract to the parallel fibres.®*

The hypothesis that the cerebellum deals in temporally corre-
lated fluctuations makes predictions for clinical research. For ex-
ample, while very important in motor control, temporal
correlations are also important in other sensory systems. This
implies patients with cerebellar lesions should be impaired at per-
ceptual tasks involving motion discrimination. Motion is import-
ant here, as . relates to autocorrelations over time. Evidence in
favour of this includes the increased perceptual threshold required
in visual dot-motion tasks in cerebellar patients compared to
controls.®®

In addition, Fig. 5 introduces two new lesions that target the
discrete parts of the generative model; i.e. categorical inference or
planning. The first of these is disruption of the precision associ-
ated with the contribution of expected free energy to policy selec-
tion.®® To understand the contribution of this, we briefly review
the way in which policies are inferred under active inference.
Equation 5 sets this out explicitly (in this expression, free energy
and expected free energy decrease with log evidence. In statistics
and machine learning, authors prefer to use the negative version
of these functionals):

20 = o<1nE<1>o<2) ~FW _y. Ga))

Gl = -0
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This says that posterior beliefs about policies [z] comprise three
parts. These are the prior plausibility of each policy [EV)] taking ac-
count of higher level (slowly changing) contexts [0?] and two sorts
of free energy functional [F¥and G™]. These functionals score the
evidence and expected evidence for a policy. The key difference
between the two is that the expected log evidence (i.e. negative

Figure 5 Continued
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expected free energy) involves an expectation with respect to fu-
ture (unobserved) outcomes [0")] as indicated by the dot product in
the second line. The final line sets out the key elements of the
expected free energy. The first two terms quantify the difference
between predicted and preferred [CY] outcomes, while the third
expresses the ambiguity (or conditional entropy) of state-outcome
mappings expected under a policy. Technically, this corresponds
to the Kullback-Leibler divergence between predicted and pre-
ferred outcomes and its minimization is known as risk sensitive or
Kullback-Leibler control in optimal motor control.#”

Together, these balance exploratory (ambiguity-averse) and ex-
ploitative (preference-driven) behaviours. Note that the contribu-
tion of the expected free energy in the first line is weighted by a
precision parameter (y). This quantifies the prior confidence that
policies will minimize expected free energy. This precision has
been repeatedly associated with dopamine signalling in both the-
oretical®®*®® and empirical®*°’ domains. It is interesting to note
that this effectively weights the contribution of two opposing
influences over policy selection, much as dopamine regulates the
balance between the direct and indirect pathways through basal
ganglia circuitry.®>%?

Figure 5 shows that attenuating the precision parameter y leads
to a qualitatively different sort of behaviour than the manipula-
tions outlined above. Here, the lack of confidence in policy selec-
tion favours a set of attracting points that are either near the start
location or are in the centre of all of the other possible points. This
failure to confidently predict where the hand will move to next
induces either a reliance on prior beliefs about the start location,
or the averaging all predictions to reach the centre. Heuristically,
we can think of the first quarter of the trial as failing to accumulate
enough evidence in favour of a move to a new location. The slight-
ly larger movements in the second quarter are not enough to reach
a new location but provide more substantial evidence of displace-
ment from the start location. This facilitates a movement (in the
third quarter) away from the start but to a location in the centre of
all others. Finally, the drift back to the initial location could reflect
the presence of the hand between the start and the centre, provid-
ing evidence in favour of a trajectory between this location and all
others. In the absence of clear evidence towards another specific
location, this leads to a return to the initial location. Note that
there is no problem in motor execution, as the hand is drawn reli-
ably to the red spheres. The problem is in the selection of the loca-
tion of these imaginary attracting points. The difficulty in
initiating large amplitude movements—and the fact that move-
ments are slow, once initiated, are compatible with the kinds of
disorders associated with subcortical lesions.”* These disorders in-
clude conditions like Parkinson’s disease,”>® in which dopamin-
ergic neurons of the substantia nigra pars compacta are depleted.

The final lesion shown in Fig. 5 targets the deep hierarchical
structure of the discrete part of the generative model. As shown in
Fig. 3, the two discrete levels are linked by the A®@-factor. This fac-
tor is used to generate predicted outcomes, which are then
mapped to prior beliefs about policies (see Equation 5) and prior
beliefs about the initial state at the lower level. The reciprocal

small amplitude movements resembles the ‘festinant’ gait sometimes observed in Parkinson’s disease (although this is typically observed in the
lower limbs). Note the series of superimposed red spheres following this, indicating a decrease in movement amplitude following the initial move-
ment. The third plot shows the overestimation of smoothness we saw earlier, with hypermetric overshoots at the end of each segment of the move-
ment. The changes following overestimation of . are strikingly similar to those plotted in Holmes®® for patients with cerebellar injuries. More
modern studies also show the same kind of overshoot in limb trajectories.®” The final line shows what happens when the strength of the connections
between the highest and middle levels of the hierarchy are attenuated (attenuating the precision associated with A). This shows successful comple-
tion of the task, but an apparent confusion each time the target changes position (often leading to a move towards the centre). While rapidly compen-
sated for, this implies a discontinuous sequence of movements that fail to be synthesized into a coherent motor narrative.
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message back to the higher level then depends upon which policy
and initial state were inferred by the end of the trajectory at the
lower level. This is shown in Equation 6:

12 = (Ino@+ InEY .z +1nD® . sV (6)

~—~ ——
posterior prior

policy likelihood  state likelihood

The reciprocal message passing between these fast and slow
levels facilitates the seamless composition of a series of trajecto-
ries into a motor narrative.

Our final lesion disrupts this message passing by attenuating
the precision®” associated with A®. This effectively disconnects
those neuronal populations representing where the arm is coming
from and going to, from those that represent the initial position
and policy at the lower level. This precludes the use of inferences
about one trajectory from influencing the next. As Fig. 5 shows,
this disrupts the sequence of attracting points inferred. However,
it does so in a quite different way to the lesions of y, which pro-
vides us with a final dichotomy: inferences about states and
policies.

Functionally, this dichotomy maps onto the distinction be-
tween executive®® and planning”® functions; anatomically, it may
be equivalent to the distinction between cortical and subcortical
syndromes.’® One terminological conflict worth addressing is the
traditional view of executive function as comprising planning,
working memory and inhibition and the formal realizations of
these processes. The conflict here is that all these processes
(defined formally) occur over a range of timescales, while it is typ-
ically only the slower timescales that are thought of in terms of ex-
ecutive function. This precludes (for example) the working
memory processes that mediate visual scene construction, which
ensures we perceive more than the limited foveal field of vision
available to us at any one time. It also means that very fast plan-
ning processes that determine the shape of a short motor trajec-
tory are not treated as ‘executive’. Instead, executive function
typically comprises working memory over the timescale of delay-
period tasks'® and planning of the sort required to solve (for ex-
ample) a Tower of Hanoi problem.’®? Here, we use the term ‘execu-
tive’ to refer to those inferences with long temporal horizons.
Operationally, in relation to this task, this means inferences about
sequences of trajectories (intended to reach a certain goal state
each; i.e. Twill first move my hand to the upper target, followed by
the lower left, and then the upper target again’) qualify, but infer-
ences about sequences of movements within a goal-directed ac-
tion (i.e. ‘On my way to the upper target, I will move through these
intermediate spatial locations’) do not; ¢f. motor chunking.®

Note that, following the synthetic lesion of A, each shorter tra-
jectory (between the vertical lines) ends at the same place as in the
healthy model. The points at which the trajectory deviates occur
immediately after the target location changes (i.e. at each transi-
tion at the higher level of the model). This suggests a failure to
change to a new sort of policy when the context changes. Despite
this, the information available over a faster scale is sufficient for
the appropriate trajectory to be inferred, if a little later than it
would have been with an intact model.

One perspective on this—consistent with the role of the frontal
cortices in coordinating working memory'®>—is that this is due to
a failure of ‘immediate recall’’°*?%* of the previous part of the tra-
jectory (before the change in target location), preventing synthesis
of movement plans across changes in task context. Another per-
spective is that this provides an interesting connection to another
well-recognized sign associated with these disorders. This is the
phenomenon of perseveration—where patients who have started
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to engage in a given behavioural protocol struggle to abort or
change this behaviour at the appropriate time.’°®'” This lesion
could underlie the perseverative or task-switching difficulties
associated with frontal lobe executive syndromes’®® with conse-
quences in the motor domain.*®

There is a (loose) sense in which this is the opposite of the
Parkinsonian type symptoms following lesions of y described
above, which lead to excessive reliance on inferences about slowly
changing variables at the higher level.'™ In contrast, a disconnec-
tion or lesion to the mapping associated with A leads to over-reli-
ance on inferences about fast-changing variables and a failure to
deal with contextual change. The dichotomy here is one of shifting
the balance to behavioural imperatives arising from slower or
faster timescales. However, reducing the precision of either of
these imperatives ultimately reduces the confidence in any plan of
action. This means we should expect attenuated basal ganglia out-
put and impaired task switching in both Parkinsonian and frontal
syndromes—as is seen in these conditions.'®®**! This idea lends it-
self to experimental evaluation, as it implies a common attenu-
ation of basal ganglia signals in (for example) functional MRI in
patients with frontal and parkinsonian syndromes compared to
controls while engaging in task-switching behaviour.

Discussion

In the above, we set out a generative model whose inversion or so-
lution—based upon a form of inferential message passing with a
well-defined computational anatomy—enables performance of
simple motor tasks of the kind used to assess neurological func-
tion in a clinical setting. We found that synthetic lesions to the
generative model resulted in motor behaviour consistent with syn-
drome categories observed in clinical populations (see Table 1 for a
non-exhaustive summary). The mutual constraints offered by the
anatomy of message passing and the consequences of lesions in
relation to empirical data imply specific hypotheses about the real-
ization of these computations in brain anatomy. Figure 6 outlines
an anatomical scheme that satisfies these constraints and impli-
cates many of the same anatomical regions as in existing
schemes.'? At the level of the spinal cord, this shows the a-moto-
neurons as using the discrepancy between the proprioceptive
inputs and descending predictions about these data to drive
muscle contraction. Any residual error is communicated to the
ventral posterior lateral thalamus via the nucleus cuneatus. This
thalamic nucleus may (polysynaptically) project to the motor cor-
tex. However, this is not strictly necessary under active inference,
as the prediction error is largely suppressed through motor
reflexes (Fig. 6). This idea has been used to explain the poverty of
projections to cortical layer IV—the layer typically in receipt of
ascending projections'*>'*—in ‘agranular’ primary motor cor-
tex.?11> This is endorsed by the increasing recognition of the cen-
tral role of spinal reflexes in implementing complex coordinated
behaviour.'*®

The predictions sent from the primary motor cortex to the spi-
nal cord themselves depend on input from other cortical regions;
the most likely candidates in the context of goal-directed upper
limb movement being the frontal and parietal cortices.''’ 22
Figure 6 illustrates this in terms of inferences about continuous
variables passed from the premotor cortex. Interactions between
the premotor cortex and motor thalamus—comprising ventral lat-
eral and ventral anterior nuclei—are shown as translating between
discrete and continuous inference. Note that this translation
depends upon cerebellar inputs to the ventral lateral thalamus, as
this modulates the gain of its projections to the cortex, and on
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Table 1 Clinical and theoretical homologues
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Neurological syndrome Clinical sign Synthetic lesion Functional role

Cerebellar Pendular reflexes A Smoothness of random fluctuations
Dysmetria A

Corticospinal Brisk reflexes I Precision (inverse variance) of likelihood
Preserved coordination 1 distributions

Parkinsonian Slow movements b Precision (inverse temperature) of policy priors
Small amplitude movements Y
Delay in movement initiation b

Executive Impaired ‘immediate recall’ A Precision (inverse temperature) of empirical

(hierarchical) priors

basal ganglia inputs to both ventral lateral and ventral anterior
thalamic nuclei to take account of Bayesian model averaging over
policies."” This is based on the idea that the basal ganglia are
engaged in evaluating alternative policies."®* This view of the basal
ganglia is highly consistent with the view that, while alternative
sequences of actions are likely represented in cortical regions, the
evaluation of these alternative plans appears to take place within
basal ganglia circuits.®*'*® As we saw above, this evaluation
depends upon the (expected) evidence for each policy, and hier-
archically derived prior beliefs. Figure 6 depicts these influences as
arising from the direct and indirect pathways from the striatum to
the globus pallidus internus. Note the internal consistency of this
with the role of dopamine in weighting the relative contributions
of these. In addition, the direct pathway has a net inhibitory influ-
ence over the basal ganglia outputs, in virtue of the suppression of
policies with high expected free energy, while the net influence of
the indirect pathway is excitatory, specifying the range of plausible
policies for a given context. These influences over the (GABAergic)
output nuclei and their behavioural consequences are consistent
with those found through optogenetic manipulation of the striatal
medium spiny neurons at the origin of these basal ganglia
pathways.'?61%”

Notably absent from the phenomenology of the synthetic dopa-
mine lesions is the classic parkinsonian resting tremor.’?® This
raises an important point that should contextualize the account
on offer here. Syndromes like Parkinson’s disease are not conse-
quences of focal lesions but depend upon pathogenic processes
with specific anatomical distributions. This is seen in studies in
which the dopaminergic midbrain is lesioned in monkeys.?
These also fail to induce a resting tremor (unless additional lesions
are made elsewhere). In addition, aspects of the parkinsonian syn-
drome have been associated with dynamic dysfunction in reticular
thalamocortical networks.”® Observations of this sort have led
some to argue that a tremor is not an integral part of the syndrome
induced by degeneration of the substantia nigra pars compacta.’
Another perspective on this is that the tremor results from a func-
tional diaschisis,'®™*? with other components of the motor net-
work™! compromised as a consequence of the primary insult.

It is interesting to note the similarities between the synthetic
trajectories under ‘cerebellar’ lesions presented here and the ‘be-
fore learning’ trajectories shown in neural network models of
reaching behaviour.*®? This raises the possibility of some mathem-
atical equivalence between the quantities being learned in the
neural network model and the optimization of precision in gener-
alized coordinates of motion. Causal evidence in favour of extinc-
tion of learning in motor behaviour following cerebellar lesions is
evident in animal research, where lesions to the subcortical nu-

clei™® or cortex'®* both abolish previously learned motor

responses and preclude their reacquisition. In addition, human
studies in clinical populations have illustrated similar oscillatory
motor trajectories—in a task very similar to that used here—for
those with cerebellar lesions'* and the interaction of this with
learning. In future work, we hope to unpack the optimal estima-
tion of this precision under active inference, to see whether the
implied update rules have the same form as the updates used dur-
ing learning in models that seek to directly emulate cerebellar
architectures. This is an important step in showing the conver-
gence between emergent dynamics under first principles and
more physiologically motivated update schemes.

While our focus has been on movement in humans, the same
principles have been employed to develop synthetic and robotic
systems.?*'%61%” The reason for mentioning this is that if there are
homologies between the functioning of artificial and human motor
systems, both may fail in the same way. The implication is that
the wealth of neurological research accumulated over the last few
centuries may be vital in understanding pathologies of artificial in-
telligence (and vice versa).

A key theoretical advance of our paper is the use of empirical pri-
ors about policies, as contextualized by the higher levels of a cor-
tical hierarchy. This allows for a range of plausible action plans to
be specified based upon the (slowly changing) context.”®® This is
important for three reasons. The first of these relates to the anat-
omy of the basal ganglia. The presence of a cortical input providing
a temporally coarse influence over policy selection is highly con-
sistent with the distribution of cortical inputs™*® to the D2-express-
ing medium spiny neurons (the origin of the indirect pathway),
and with their increased time-constants* relative to D1-express-
ing neurons (of the direct pathway). It is also consistent with
observations of ‘bracketing’ in the striatum,*** in which neural ac-
tivity signals the start and end of each component (behavioural
unit) of a task.’? Over time, repeated sequences are grouped,
meaning neural activity becomes less frequent. This chunking into
progressively longer action sequences is highly consistent with
the idea of a hierarchy of policies (or plans) and with the idea that
these are evaluated in the striatum. The second reason relates to
an interesting phenomenon that arises in Parkinson’s disease.
This is called kinesia paradoxa,’*® and describes when patients
who are otherwise akinetic perform fluent (often visually-guided)
movements.’** The anatomy of Fig. 6 provides a clear hypothesis
as to how this could happen. Although the direct pathway is un-
able to drive precise policy selection in the absence of dopamine,
the indirect pathway could continue to do so, based on inferences
about a slowly changing context (e.g. being on a moving bicycle) in
which a particular behaviour (e.g. pedalling) is confidently pre-
dicted.' The third reason for emphasizing hierarchical control of
policy selection is that this provides a link between cortical and
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Figure 6 A computational anatomy of movement. This schematic illustrates an interpretation of the inferential message passing that underwrites
the simulated movements in terms of the known anatomy of movement. (A) The relationship between the two levels of the discrete model. This
treats estimation of hidden states as occurring in cortical columns in the frontal (slow) and parietal (fast) cortices. Each of these has an influence over
planning in the basal ganglia, with the expected free energy at the lower level used to inhibit the basal ganglia output (as in the direct pathway), while
the empirical priors derived from the higher level have a net excitatory effect on the output nuclei (as in the indirect pathway). Biologically, the latter
is a disynaptic pathway including synapses in the globus pallidus externus and the subthalamic nuclei. The message passing shown in this

(continued)
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subcortical contributions to disorders in which the policies exe-
cuted are incongruent with the context at hand. This is important
in tic disorders (see below).

Hierarchical motor control provides an interesting connection
with models that incorporate the notion of ‘effort’ in disambiguat-
ing between alternative movements.’*®*” The key idea is that
movements requiring more effort are penalized relative to less ef-
fortful choices. From an active inference perspective, effort may be
equated with the implausibility of a trajectory under prior beliefs.
This is sometimes phrased as a ‘complexity’ penalty, quantified by
the (Kullback-Leibler) divergence between prior and posterior
beliefs about how to act, or as a Bayesian Occam’s razor**® that
tells us the simplest hypothetical action sequence tends to be the
best. This suggests that the analogue of the effort penalty pro-
posed by some is given by the prior beliefs passed from higher to
lower levels via the E-matrix employed here. Note that, in our par-
kinsonian simulations, the reduced precision associated with the
expected free energy means that E dominates inference about how
to act, implying goal-directed movements driven by G become
much more effortful. This also provides an interesting connection
between neuroanatomical theories of effort'*® which propose rep-
resentation by the indirect pathway through the basal ganglia, just
as with E in the anatomical scheme presented here.

Some authors have argued that the forward modelling approach
that underwrites the results presented here is limited in the con-
text of faster movements.'*° This rests partly upon the delays pre-
sent in certain reflex loops, and the relationship between these
and physical properties of the limbs. In contrast, others have dem-
onstrated™® that this sort of modelling can be highly successful
when physical parameters are closely informed by physiology.
When thinking about the potential challenge fast movements
might pose, it is also worth highlighting an important distinction
between traditional equilibrium point theories and the implemen-
tation presented here. This is the use of generalized coordinates of
motion. The advantage of representing not only the position—but
also the velocity, acceleration, and subsequent orders of motion—
is that higher orders of motion act as the coefficients of a local
Taylor series approximation to the current trajectory. This is use-
ful in the sense that it allows for predictions about the proximal
future and past. The advantage of this is that the delays that might
otherwise be difficult to deal with during fast movements can be
compensated for. In addition, they provide a means of dealing
with non-zero autocorrelations in fluctuations, of the sort that
have been shown to have an influence over motor trajectories.™?
For detailed numerical demonstrations of how generalized coordi-
nates of motion can overcome the issue of neural delays during
fast movements, see Perrinet et al.>*

The relevance of the distinction between inverse and forward
modelling for understanding disease is exemplified by the simpli-
city of the simulations of reflexes described above. This rests upon
the idea that precision must be attenuated (by descending neurons
from the cortex) under an equilibrium-point model to allow

Figure 6 Continued
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movement to take place. The hyperreflexia in Fig. 1 results from a
failure of this attenuation. Inverse modelling approaches do not
require this attenuation, so there is no reason to expect exagger-
ated reflexes following loss of descending control. More broadly,
the clinical benefit of adopting the Bayesian message passing for-
malism advocated here is the common language it affords to ad-
dress multiple interacting neurological systems. In part, this is due
to the use of a single generative model to account for discrete
sequences of events (i.e. planning and decision making) and con-
tinuous trajectories—which may be proprioceptive, but could also
include light and sound intensity, somatosensation, or other
modalities. As no brain system operates in isolation, it is import-
ant to understand the distant consequences of a focal lesion (e.g.
the changes to low level motor trajectories as a consequence of
prefrontal lesions shown in Fig. 4). This necessitates a common
generative model of the sort on offer here.

Several computational accounts have been proposed to address
specific behaviours, to provide neuroanatomical theories, or to
simulate specific lesions.’ For example, Schweighofer et al.’*?
provide a model that reproduces similar cerebellar lesions to those
shown here, Rigoux and Guigon,**® and Shadmehr et al.*’ focus
upon ways in which goal-directed reaching under effort con-
straints may be realized, and Buhrmann and Di Paolo®” highlight
the ways in which spinal reflexes may underwrite complex motor
behaviours. In this paper, we offer a single generative model
whose inversion is consistent with known anatomy and qualita-
tively reproduces a range of clinical syndromes by lesioning the
appropriate priors. This provides constraints on the functional
anatomy at several different sites—and offers a way to frame mul-
tiple different sorts of lesion within the same inferential network.

It is important to note that other proposals tend to address
slightly different problems to that we focus upon here. We offer a
characterization of the anatomy of motor control in terms of
Bayesian message passing. While there are many other computa-
tional models that could be (and have been) constructed, to our
knowledge, none offer an inferential characterization of this sort.
As such, these are different perspectives as opposed to competing
models, per se. One point in common between this approach and
those based upon inverse models is that both acknowledge the im-
portance of an internal model of dynamics in order to engage in
planning.>**>® The distinction is that the dynamical model and al-
ternative plans in our approach are part of the forward model.

One way in which we hope to exploit this formalism in future
work is in understanding impulse-control disorders, such as
Tourette syndrome, where there appears to be a failure to deter-
mine which policies are implausible in a given context® leading to
a failure to suppress involuntary movements or ‘tics’.'*® Notably,
the functional neuroanatomy of this syndrome implicates mul-
tiple regions in the cortico-subcortical loops shown in Fig. 6.1%7:1°8
Under the view that frontal regions normally provide the indirect
pathway with contextual input, damage to either frontal or indir-
ect pathway regions could result in the enaction of implausible

schematic only deals with the net influence of this pathway. (B) Panel shows how the message passing of the lower level of the discrete model inter-
acts with the continuous model. Note that the output of the basal ganglia nuclei influence the translation between hierarchical levels bi-directionally
through Bayesian model averaging over policies, and in computing posterior beliefs to be passed upwards. Both the anterior and lateral parts of the
ventral thalamic nuclei receive this input. The latter additionally receives cerebellar input which suggests this is the best candidate for the computa-
tion of the error at the continuous level, as this must be weighted by its associated precision, which depends upon the smoothness. We have associ-
ated the expected joint positions with the layer V Betz cells of the motor cortex. These are used to make descending predictions about proprioceptive
input that are then compared to sensory afferents, leading to correction of any errors through motor neuron activation. For simplicity, we have omit-

ted the predictions of visual data from this schematic.
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(context-inappropriate) movements, through a relative facilitation
of the direct pathway. This is another way of phrasing the view
that the frontal cortex is engaged in contextual behavioural inhib-
ition, of the sort investigated through ‘go no-go’ paradigms.**® The
model provided here provides the machinery upon which such
tasks could be simulated, while considering the motoric con-
straints on task performance. Specifically, an important issue in
tic disorders is that the mechanisms generating tics and those
involved in their inhibition are often difficult to disentangle.’®°
Our hope is that this form of modelling, which treats these as
occurring at different temporal hierarchical levels, may be used to
identify which aspects of neuronal message passing to probe em-
pirically to disambiguate the two. The anatomical process theory
associated with this message passing facilitates the expression of
hypotheses answerable to, for example, neuroimaging studies.
This also makes a more general point about the use of theoretical
models in motivating new hypotheses to address as yet poorly
understood motor pathology.

It is worth highlighting a simplification we have made in the
induction of synthetic lesions. We have not distinguished between
the precision afforded to different sensory modalities. In future
work, we hope to exploit this to try to understand how vision and
proprioception may compensate for one another. In the context of
limb or hand movements, this may be useful in providing a
computational characterization of dyspraxic syndromes, where
lesions of the dorsal visual stream impair visually guided motor
tasks.'®171%3 By selectively attenuating modality-specific precision
parameters®® during more complex tasks (and sensory perturba-
tions), we hope to reproduce the sorts of disconnection syn-
dromes®®*'®> found following lesions to different parts of the
brain. This affords an additional opportunity to test the construct
validity of the proposed functional anatomy in relation to neuro-
psychological data. Furthermore, this approach could be used to
model the sorts of paradigms used in healthy people to investigate
multisensory integration; for example, through experimentally
inducing inconsistencies between proprioceptive and visual
data.'®®"%® Through an appeal to the process theories associated
with active inference,” synthetic neural responses may be simu-
lated alongside behaviour, and may be used as regressors in ana-
lysis of neuroimaging data in these tasks.”® The hypothetical
computational anatomy of Fig. 6 makes clear predictions about
where each sort of neural response could be detected in different
anatomical locations, and ensures the ideas presented here are an-
swerable to empirical data.

In this paper, we have illustrated the points at which modern
theoretical neurobiology has converged upon the same sorts of
distinctions that are well-documented in clinical neurology. This
offers a mutual validation of these approaches and takes us a step
further towards a functional interpretation of anatomical systems
in the brain. However, this is more than simply an intellectual ex-
ercise. Recently, we have illustrated how we can conceptualize
and simulate therapeutic interventions through appealing to the
same framework®® and illustrated how these computational
parameters may be measured in vivo.’*®*’° Placing the consequen-
ces of pathology and therapeutic intervention in the same domain
offers the potential for a functionally grounded approach to treat-
ment development and personalized therapeutics. Ultimately, our
hope is that we could estimate the parameters of these models for
individual patients,’”* based on non-invasive behavioural meas-
urements, and simulate alternative therapeutic interventions.’
This would allow for highly personalized predictions about treat-
ment responses, side-stepping a ‘trial-and-error’ approach to find-
ing the best treatment for an individual patient.

T. Parr et al.

Conclusion

This paper has attempted to find a point of contact between mod-
ern approaches to theoretical biology and classical neurological
attempts to understand the function of the nervous system. The
key connection between these is evident in William Gowers’ asser-
tion that ‘there is a region in which we must recognise hypothesis
as absolute ... Here we must either accept indirect perception, or
we must be content with no perception of the causes of that which
we observe. Where we have no certainty we must be content with
probability’.’”* This statement, while originally intended from the
perspective of a neurologist, is equally applicable from the per-
spective of a nervous system, and emphasizes the importance of a
generative model of the causes of sensory input (observations). We
have illustrated how specifying a minimal generative model for
movement entails an inferential architecture that is highly con-
sistent with known neuroanatomy. The sorts of pathology this
lends itself to are consistent with the classification of syndromes
in clinical practice, which constitutes an important step in bridg-
ing clinical and theoretical approaches to neurobiology.

Data sharing not applicable to this article as no datasets were gen-
erated or analysed during the current study.

Although the generative model changes from application to appli-
cation, the belief updates described in this paper are generic
and can be implemented using standard routines (here
spm_MDP_VB_X.m). These routines are available as MATLAB code
in the SPM academic software: http://www.fil.ion.ucl.ac.uk/spm/.
The simulations reported above can be reproduced (and custom-
ized) via a graphical user interface by inputting > DEM’ and
selecting the ‘Movement planning’ demo.
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