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Abstract

Transcutaneous determination of a bone’s Raman spectrum is challenging because the type I 

collagen in the overlying soft tissue is spectroscopically identical to that in bone. In a previous 

transcutaneous study of murine tibiae, we developed a library-based model called SOLD to unmix 

spatially-offset Raman measurements into three spectra: a bone estimate, a soft tissue estimate, 

and a residual. Here, we demonstrate the value of combining the bone estimate and the residual to 

produce a “top layer subtracted” (tls) spectrum. We report superior prediction of two standard 

bone metrics (volumetric bone mineralization density and maximum torque) using partial least 

squares regression models based upon tls spectra rather than SOLD bone estimates, implying that 

the spectral residuals contain useful information. Simulations reinforce experimental in vivo 
findings. This chemometric approach, which we denote as SOLD/TLS, could have broad 

applicability in situations where comprehensive spectral libraries are difficult to acquire.

Graphical Abstract

[We adapt a library-based model called SOLD to unmix spatially-offset Raman measurements of 

murine tibiae in vivo to produce a "top layer subtracted" (tls) spectrum. Superior prediction of 

volumetric bone mineralization density and maximum torque using partial least squares regression 

on tls spectra rather than the SOLD spectra is reported. Simulations indicate this chemometric 

approach could have broad applicability when comprehensive spectral libraries are difficult to 

acquire.]
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1 ∣ INTRODUCTION

By 2025, osteoporosis will cause more than 3 million bone fractures per year[1]. A key to 

preventing these fractures is accurately diagnosing osteoporosis in an early stage. Bone 

properties such as areal bone mineral density (aBMD) or volumetric bone mineralization 

density (vBMD) measured by dual-energy X-ray absorptiometry (DXA) and X-ray 

computed tomography (CT) respectively can be used to estimate bone fragility and the risk 

of fracture. However, DXA has been shown to be less sensitive for diagnosing low bone 

quality in osteoporotic and obese subjects[2]. Alternatively, vBMD is a more accurate 

predictor for low bone quality[3], but the accuracy of CT is dependent on the amount of 

radiation used. Large and repeated doses of radiation have been shown to have a negative 

effect on subjects[4,5]. Magnetic resonance imaging can measure bone mineral density by 

imaging the whole musculoskeletal system[6]. However, it is not widely used clinically due 

to the high cost. A recently developed technique, reference point indentation (RPI), can 

assess bone toughness in a minimally invasive manner[7] and yet its theoretical potential to 

be applied in vivo is still to be determined[8]. Ex vivo whole-bone mechanical tests, such as 

torsion testing and three-point bending, apply loads to create fractures and assess the bone 

strength[9] which are not viable as clinical diagnostics.
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On the other hand, bone quality is related to the chemical composition[10]. Raman 

spectroscopy is a non-invasive tool that can assess the bone’s chemical structure. It has been 

used to measure the mineral and organic matrix components of bones and further assess 

phosphate mineralization and bone health ex vivo[11-13]. In addition, by using spatially offset 

Raman spectroscopy (SORS), transcutaneous measurements can be obtained with increased 

specificity to bone in vivo[14-19]. Our group has shown that transcutaneous Raman signals 

from SORS are significantly correlated to aBMD, vBMD, and bone strength measured by 

torsion testing defined as maximum torque (MT), using partial least squares regression 

(PLSR)[20].

Although SORS increases specificity to deeper regions of a sample, the spectra still contain 

signal from the upper region. In the case of transcutaneous measurements of bone, both the 

soft tissue and the bone contain a prominent contribution from type I collagen. Estimating 

the target component’s intrinsic Raman spectrum in the presence of such a contaminant is a 

challenge to which several multivariate techniques have been applied, including band-target 

entropy minimization (BTEM)[21-23], multivariate curve resolution[24], and parallel factor 

analysis (PARAFAC)[25]. In particular to bone, these three methods were applied to SORS 

data and their performance showed the capability of reconstructing phosphate-to -carbonate 

and mineral-to-matrix ratios[16].

Our group recently developed a method called simultaneous overconstrained library-based 

decomposition (SOLD) to convert transcutaneous measurements into basis spectra of bone 

and soft tissue for the measured region[26]. Using this method, spectra of mouse tibiae 

estimated from intact-limb measurements were significantly correlated with the 

corresponding spectra of the same bones measured ex vivo. In that study, SOLD produced 

its estimates using two experimentally-obtained spectral libraries, one of bone specimens 

and one of soft tissue specimens. Spectral fits to transcutaneous spectra exhibited 

insignificant residuals other than shot noise.

Here, we generalize to cases where the bone library fails to span the full range of bones that 

are encountered transcutaneously, and is thus unable to fit all spectral features. Using 

simulated and experimental datasets, we demonstrate that the new method is more robust 

than SOLD both in preserving spectral peak ratios and in correlating to chemical and 

mechanical reference measurements.

2 ∣ METHODS

2.1 ∣ Theory

2.1.1 ∣ SOLD—The SOLD algorithm[26] assumes that each specimen contains two “pure” 

materials (the target and the contaminant) with different Raman spectral lineshapes (basis 

spectra). Throughout the optically explored volume, the materials’ lineshapes are invariant, 

but the relative concentration of the two materials is spatially heterogeneous. For narrative 

purposes we will refer to two separate homogeneous layers (contaminant on top, target 

below), but the method works for other types of heterogeneity. We denote the target’s 

normalized basis spectrum as bb (subscript meaning “bottom”), and the contaminant’s 

equivalent as bt (“top”). We emphasize that different specimens will in general have 
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different bb and bt spectra. SOLD’s goal is to produce estimated basis spectra bb and bt for 

each specimen that are as close as possible to the true bb and bt.

Multiple epi-detected measurements are obtained with different source-detector offsets, as 

shown in Figure 1. The banana shapes, conceptually representing the most-explored region 

for each source-detector pair, emphasize that the relative sampling of the target and 

contaminant regions changes with separation. SOLD assumes that the total Raman spectrum 

for each separation is a weighted sum of bb and bt, with different offset measurements 

having different relative weights. To analyze a two-material sample, at least two different 

source-detector separations are needed.

SOLD builds the estimates bb and bt using two previously-acquired spectral libraries, one of 

targets and one of contaminants. Each transcutaneous spectrum t can then be modeled as

ti = αibt + βibb + ei, (1)

where i is the index for different offsets, α and β are weight coefficients, and ei is the 

spectral residual of the fit. SOLD requires at least as many offsets as the number of pure 

materials. The iterative fitting process imposes a physical constraint on the use of the 

libraries: the weight coefficients for building bb and bt must all be nonnegative.

2.1.2 ∣ SOLD/TLS—As previously noted, the two spectral libraries in the initial test of 

SOLD were able to model the SORS data to within the shot noise. Such performance cannot 

always be ensured, for numerous reasons. For example, access to suitable specimens in the 

library-building phase may be limited; novel sample types may be encountered after library-

building is completed; or calibration transfer between spectrographs may introduce biases.

If libraries cannot model the data to within the shot noise, then spectral features from the 

samples will appear in the spectral residuals ei of Equation 1. In this scenario, it is unclear 

what spectrum is most valuable to regress against bone reference values. Should one still use 

the SOLD estimate bb? Or should one include the features in the residual as well, on the 

premise that bone information might be added? The answer will vary depending upon the 

main cause of the modeling imperfection. In the particular application to bone analysis, if 

the bone library were lacking in scope, the bone estimate from SOLD would be imperfect, 

and at least some of the sample’s true bone spectrum would likely wind up in the residual, e.

Adding the bottom-layer estimate and the residual spectrum is equivalent to subtracting the 

top-layer estimate from the original SORS spectrum. We therefore name this quantity the 

SOLD/TLS spectrum, or tls (“top layer subtracted”) for short, and define it mathematically 

as

tls ≡ tmax − αmaxbt = βmaxbb + e, (2)

where tmax is the SORS measurement with the largest source-detector offset. This 

measurement is chosen because it has largest specificity to the bottom (target) layer.
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We emphasize that the SOLD/TLS approach still uses the bone library but no longer 

assumes that it produces a faithful estimate of the true bb. Instead, it only assumes that the 

estimate of the contaminant’s spectral contribution is reasonably accurate, enough to provide 

an advantage by subtracting it. The remaining signal is a combination of bb – guided only by 

the information in the target library – and any distinctive properties of the sample itself, 

guided by the experimental measurement.

2.2 ∣ Experimental Data and Analysis

The experimental data presented here were acquired in a previous study[20]. Briefly, 

C57BL/6J and B6(Cg)-Tyrc-2J/J mice between the ages of 4 and 23 weeks, 40 mice in total 

were anaesthetized for in vivo Raman measurements. 150 mW of 830 nm laser light was 

focused to a spot of 230 μm in diameter on skin overlying the medial midshaft of the right 

tibia for 300 s. The overlying soft tissue was 1 mm thick on average. Raman scattering was 

gathered from three annular regions centered upon the excitation spot location, with mean 

diameters (i.e. source-detector separations) increasing from 0.2 to 0.5 mm. After the in vivo 
Raman measurements were performed, the mice were sacrificed and the right tibiae were 

excised and harvested for ex vivo μCT, DXA, and torsion testing. Details for the spectral 

pre-processing protocol have also been discussed previously[20]. Briefly, spectral pre-

processing included cosmic ray removal, detector readout and dark current subtraction, and 

image aberration correction. For the updated analysis presented here, spectra from seven 

mice were removed due to an unexplained and strong fluorescence feature in the 1480-1630 

cm−1 range. For the remaining 33 samples, the broad spectral background was suppressed 

using a fifth-order polynomial linear least-squares fit. Unlike in our previous analysis, the 

spectral baseline was not flattened by a continuous wavelet transform; this resulted in some 

negative pixel values but minimized alterations to the Raman spectral bands. All 

fluorescence-corrected spectra Iv  were normalized to set the mean absolute deviation 

(MAD) to unity, i.e.

1
n ∑

i = 1

n
∣ Si − S̄ ∣ = 1 . (3)

Separately, Raman spectra were acquired to develop spectral libraries for the SOLD/TLS 

process, to be described below. 108 ex vivo murine bones, both tibiae and femurs from 

various genotypes at various ages, were scanned to develop the bone library. Measurements 

were performed along the medial side of the mid-diaphysis spaced 1 mm apart and averaged. 

165 soft tissue samples (including many examples of leg muscle, cartilage, skin, and fat) 

were acquired ex vivo to develop the soft tissue library.

2.2.1 ∣ Bone property predictions—PLSR[27] was used to predict bone properties 

from the transcutaneous Raman spectra (as well as from the simulations described in the 

next section). There were three bone properties measured by reference methods (aBMD, 

vBMD, and MT) and four matrices of 33 Raman spectra produced (transcutaneous offset 3, 

SOLD bone estimates, SOLD/TLS spectra, and for completeness the SOLD soft tissue 

estimates). Each spectral matrix was regressed against each bone property separately, for a 

Chen et al. Page 5

J Biophotonics. Author manuscript; available in PMC 2021 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



total of twelve leave-one-out cross-validations. In each cross-validation step, the PLSR 

model rank was set objectively, using the F-statistic to choose the lowest rank without under-

calibrating (as described in[27]) and in all cases going no higher than 1/3 the total sample 

size to avoid overfitting[28].

2.3 ∣ Simulations

To enable comparison of SOLD/TLS to standard SOLD under controlled conditions, 

simulated bb and bt spectra were conjured from the spectral libraries. Two sets of six 

randomly-selected spectra from the bone and soft tissue libraries were randomly weighted to 

create 33 different [bb, bt] pairs, matching the number of samples in the experiment. These 

basis spectra enabled simulation of SORS data from 33 samples, as will be described further 

below. Multiple spectral datasets were simulated by repeating the entire process. The 

remaining 102 bone spectra and 159 soft-tissue spectra in each iteration served as 

independent libraries to fit the simulated SORS data.

The differences between SOLD and SOLD/TLS spectra produced from these simulated 

datasets were quantified in two ways. To measure purely spectroscopic effects, the ratio of 

two spectral peaks were calculated. To measure the effect upon chemometric predictions, a 

simulated chemical constituent of bone (henceforth “chemical X”) was added to bones and 

its concentration was predicted using PLSR. These two studies are described below.

2.3.1 ∣ Spectral fidelity test—We chose to investigate the preservation of phosphate 

mineral (924-986 cm−1) to amide I matrix (1596-1730 cm−1) ratio (MTMR), a common ex 
vivo metric related to the relative degree of bone mineralization. As noted earlier, the 

intrinsic MTMR of the bone is heavily altered in a transcutaneous measurement by the 

collagen in the overlying soft tissue.

To perform this study, 33 pairs of basis spectra [bb, bt] for bottom and top layers were 

simulated as described above. As illustrated in the lefthand flowchart of Figure 2, SORS 

data were then simulated for source-detector offsets i = 1, 2, 3 by adding different multiples 

Ai of bt to one unit of bb and then normalizing each sum by its MAD. The simulated 

transcutaneous (t3) datasets were designed to have the same mean and standard deviation as 

the experimental one, corresponding to a “A” range of 0.5-2.5.

The bone library’s size was systematically decreased to explore its effect upon the estimate 

of MTMR using SOLD and SOLD/TLS. Starting from the maximum of all 102 available 

bones, the library was replaced by random selections of 50, 40, 30, and 1 spectra. The soft 

tissue library, by constrast, was held constant at the full 159 spectra. For each of these 

simulation runs the MTMR was calculated four ways, using the simulated bone basis 

spectrum bb (the true value), the transcutaneous spectrum t3, the SOLD estimate bb and the 

SOLD/TLS estimate tls. The simulation was run 10 times for each SOLD bone library size.

2.3.2 ∣ PLSR regression test—In our experimental work, the spectral variation 

between different bone spectra is a small fraction of the total signal strength, yet valuable 

correlations with vBMD and MT have been obtained[20]. To replicate this in simulation, we 

imagined a target species, “chemical X”, whose fictional spectrum xc, shown in Figure 2 , 
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was added at low relative amplitudes C to the bone basis spectrum bb as SORS data were 

simulated. This process is depicted in the righthand flowchart of Figure 2. SORS spectra 

were again normalized to their MAD. C values were set at a low level such that the 

normalization was minimally influenced by chemical X’s presence. Bone spectra in the 

SOLD fitting library similarly were given small random amounts of chemical X. SOLD was 

then conducted, and the concentrations were predicted three times, using PLSR against 

datasets of t3, bb and tls.

We investigated the two limits of the bone library size: the full size of N = 102, and the 

extreme of a single-bone library. In the latter case, the SOLD bone estimate would be 

identical for all samples and would therefore have zero predictive power.

Additionally, we simulated an increase in the variability and maximum amplitude of the soft 

tissue contribution to SORS spectra. This was explored because such amplitudes would 

occur if the upper layer were thicker, for example for many transcutaneous access points on 

humans.

2.4 ∣ Statistical Analysis

2.4.1 ∣ Simulation—To measure the ability to preserve Raman peak ratios, the Pearson 

correlation coefficient r was calculated to compare the MTMR calculated from t3, bb or tls 

to the MTMR from bb. The Fisher Z-Transform[29] was used to make the correlation 

coefficients normally distributed and then the Tukey-Kramer honestly significant difference 

(HSD) multiple comparison test was used to determine significant differences in Fisher Z 

values[29]. Calculations were performed using JMP (Version 15, SAS Institute, Cary, North 

Carolina).

To compare the accuracy of linear regression against a reference measurement, the root 

mean squared error of cross validation (RMSECV) and the correlation coefficient were 

calculated. The raw RMSECVwas divided by the standard deviation of the reference values 

themselves to give a normalized RMSECV, which we define here as

v = RMSECV
∑n = 1

N (ȳ − yi)2

N

.
(4)

A ν value of 1 conveys that the predictions give essentially no advantage over guessing the 

mean for all samples. Again, the Tukey-Kramer HSD multiple comparsion test was used to 

determine significant differences in the ν values.

2.4.2 ∣ Experiment—To check whether experimental bone properties vBMD and MT 

were predicted better using tls instead of t3 spectra, we used a bootstrapping approach to 

offset the small number of samples. 22 of the 33 samples were selected at random and 

analyzed via cross-validation in the same manner as the full dataset; this random-sampling 

process was repeated a total of seven times. Significance in the difference in RMSECV 

Chen et al. Page 7

J Biophotonics. Author manuscript; available in PMC 2021 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



values resulting from tls and t3 spectral input was calculated using a Wilcoxon rank sum 

test.

3 ∣ RESULTS

3.1 ∣ SOLD/TLS spectra

Figure 3 depicts a representative SOLD/TLS spectrum calculation from the transcutaneous, 

in vivo measurements on mice. First, the SOLD algorithm operated upon a matrix of three 

SORS spectra from a mouse leg to derive bb and bt from spectral libraries of each tissue 

type. The figure depicts how the largest-offset spectrum, t3, was decomposed into a 

weighted sum of bb and bt, along with a residual. The sum of the bone estimate and the 

residual then produced the spectrum tls, as given by Equation 2.

The tls spectrum contains major peaks from minerals such as phosphate (960 cm−1) and 

carbonate (1070 cm−1), and from organic matrix vibrations, notably amide III (1250 cm−1), 

CH2 (1450 cm−1), and amide I (1665 cm−1). The tls spectrum resembles the independently-

measured exposed bone spectrum shown above it, while the transcutaneous t3 is distorted by 

the higher organic contribution from the overlying soft tissue.

3.2 ∣ Simulation

3.2.1 ∣ Spectral fidelity test—Figure 4 shows the Pearson correlation coefficients 

between the estimated MTMR (calculated from t3, bb or tls) and the true MTMR (calculated 

from the bone basis spectrum bb) as the size of the bone library was varied. When the full 

library (N = 102) was used, both SOLD and SOLD/TLS far outperformed the t3 results (p 
< .0001), and SOLD/TLS significantly outperformed SOLD (p < 0.05). As the bone library 

size was reduced, however, the standard SOLD advantage over t3 decreased, losing 

significance for N = 30 and lower. The SOLD/TLS approach, however, retained its 

advantage over both methods all the way down to N = 1, i.e. a bone library consisting of a 

single spectrum.

3.2.2 ∣ PLSR regression test—Figures 5 and 6 show the PLSR estimates of chemical 

X’s concentration using matrices of t3, bb, or tls spectra and two extreme limits for the bone 

library’s size: either the full library (N = 102) or a single bone spectrum. In Figure 5 , the 

spectra were given soft-tissue amplitudes and variation comparable to the levels seen in our 

experimental data on mouse legs. As Figure 5 A shows, the 33 simulated t3 spectra all 

overlap closely, with the most visible variation seen at the phosphate peak. The t3 PLSR 

predictions (Figure 5 B), which involved no library, produced a ν of 0.32, i.e. 3X better than 

guessing the mean of the training concentrations. Using the full library, the SOLD approach 

produced no better result (Figure 5 C); using the N = 1 library, the SOLD results were 

useless as expected, essentially guessing the average (Figure 5 D). The SOLD/TLS 

performance was dramatically better than either other method. Using just the N = 1 library 

approach, SOLD/TLS produced a ν of 0.04 (Figure 5 F), statistically outperforming both t3 

and full-library SOLD (p < .0001). In this simulation, in fact, SOLD/TLS did not even gain 

any greater advantage when using the full library (Figure 5 E).

Chen et al. Page 8

J Biophotonics. Author manuscript; available in PMC 2021 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6 shows the analogous predictions of chemical X when the soft-tissue contribution is 

varied over a greater range; as noted in section 2.2, the largest amplitude was 8X greater 

than ever observed in our experimental mouse data. The spectral contribution from 

phosphate is now much smaller relative to the collagen-related peaks (Figure 6 A, compared 

to Figure 5 A). Under these more challenging conditions, the predictions using t3 and full-

library SOLD both produced correlation coefficients close to zero (Figure 6 B and C). In 

contrast, the full-library TLS approach yielded r2 = 0.97 (Figure 6 D).

3.3 ∣ Experimental results: bone property predictions

The scatter plots in Figure 7 compare the predictions of vBMD and MT derived from PLSR 

against either t3 or tls spectra of 33 mice obtained in vivo. The SOLD/TLS approach 

produced a lower RMSECV in both cases than t3 (vBMD errors: 17 vs. 23 mg HA/ccm; MT: 

2.0 vs. 2.6 N-mm). The Wilcoxon rank sum test showed that the reductions in RMSECV for 

both vBMD and MT were significant t3 (p < 0.05). PLSR predictions of vBMD and MT 

using either bb or bt produced regressions that were inferior to either of the above cases, 

producing RMSECV values of 39.8 and 65.9 mg HA/ccm for vBMD, and 2.88 and 3.09 for 

MT, respectively.

For aBMD, the t3 and tls models yielded the same RMSECV of 0.006 g/cm2 and similar r2 

values of 0.66 and 0.67 respectively (plots not shown). These inferior correlations relative to 

vBMD (r2 of 0.91 and 0.96) will be addressed in the Discussion section.

4 ∣ DISCUSSION

SOLD/TLS combines SOLD’s library-based estimates of the target and interferent 

materials’ spectral contributions with a sample-specific correction stemming from spectral 

features that the libraries are unable to model. Subsequent regression models can benefit 

both from the reduction of superfluous background signal and from the retention of sample-

specific information.

In the bone-sensing application used as a test case here, the estimated basis spectra bb and bt
were modeled empirically using more than 100 bone measurements and 150 soft tissue 

measurements. As noted previously, a nonnegative weight coefficient constraint was applied 

to prevent unphysical fits. Despite having more than 100 spectra in each library, we found 

that many of our transcutaneous spectra could not be modeled to within the shot noise. One 

possible source of error could be spectral calibration drift between the library-gathering and 

transcutaneous measurement session. Although the methods used were standard and 

rigorously applied, calibration transfer in Raman-based regression is a known challenge[30]. 

There could also be more fundamental issues pertaining to the samples themselves. The 

library might not be comprehensive enough to model a particular new bone or soft tissue 

specimen. In addition, real sample volumes can of course include more than two 

heterogeneously distributed materials, making it impossible to model three SORS spectra 

using only two basis spectra, as SOLD assumes. , the intrinsic spectra of Raman scattering 

and fluorescence are altered by wavelength-dependent absorption variation in the tissue 

through which they propagate. For the range of wavelengths of interest here, a 5 mm 
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pathlength would impart a variation of less than 10 percent, varying slowly over the width of 

any individual Raman band. This effect can be mitigated with additional measurements, 
[31,32] but was not corrected here and was not considered in the simulations. All of the above 

are reasons to anticipate nontrivial spectral residuals when using SOLD.

In our experimental study, we found that the SOLD/TLS method produced the best 

predictions of two bone properties, volumetric bone mineral density (vBMD) and maximum 

torque (MT). A priori there was no guarantee that adding the SOLD residual to bb would 

improve the predictions. Certainly in general a model’s residual does not have to contain 

useful information about the reference properties of interest. Had incompleteness in the soft 

tissue library been the main shortcoming, the SOLD/TLS approach would likely not have 

improved the bone property predictions. In this particular case, however, the residual did 

improve the regressions significantly, suggesting that the bone library was limited in its 

ability to fit some of the transcutaneous bones’ Raman spectra.

The simulation results reinforce this finding that SOLD/TLS provides an advantage when 

the target library is limited. When the number of samples in the target spectral library was 

systematically reduced, SOLD/TLS produced higher-fidelity estimates of the target 

component’s spectrum and more accurate predictions of a trace chemical’s concentration, 

relative to the t3 and SOLD approaches.

The conceptual advantage of SOLD/TLS over SOLD becomes clearest in the examples 

where the target library contained a single spectrum. In this extreme, there was no variation 

in the calculation of bb between samples and thus no predictive power for a multivariate 

regression based upon bb alone (c.f. Figures 4 and 5 D). Since the unmodeled sample-

specific variations wound up in the spectral residual e (c.f. Equation 1), the SOLD/TLS 

spectra (which incorporate e) were able to produce useful predictions.

In the N = 1 limit, it is not immediately obvious why SOLD/TLS spectra would produce 

better bone predictions than the transcutaneous spectra t3, which contain the same sample-

specific spectral information. The answer is that the N = 1 libraries, while useless for bone 

spectrum estimation, did support effective SOLD modeling of the interferent’s spectral 

contribution. Simply removing the bulk of the soft-tissue signal improved the subsequent 

predictions, as evidenced in Figures 4 and 5 F. One interpretation is that the soft tissue’s type 

I collagen contribution confounds the regression process and should thus be subtracted as 

accurately as possible in postprocessing. As noted in the Introduction, the presence of type I 

collagen in both soft tissue and bone is known to be a major challenge in transcutaneous 

Raman-based analysis of bone.

In the regressions performed in this study, all spectra submitted to PLSR were first 

normalized by their MAD, a measure of the total signal strength. Absolute signal strength 

from the target material was therefore not retained. This choice was inspired by the 

particular application to transcutaneous in vivo bone spectroscopy, in which the thickness 

and optical properties of the overlying soft tissue (varying from sample to sample) 

significantly perturb the amplitude of the Raman signal detected from bone. Such 

normalization to total signal strength is relevant to the PLSR reported here. As noted above, 
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variations in bone spectral lineshapes between samples are typically a small percentage of 

the total bone signal. Because chemical X’s simulated spectral contributions were made 

similarly small, their variations barely perturbed the MAD normalization. The relationship 

between X’s concentration and spectral amplitude was therefore nearly linear, with PLSR to 

predict X’s concentration correspondingly robust. We conjecture that this simulation mimics 

the experimental conditions under which vBMD is predicted from normalized Raman 

spectra, although we do not yet have a chemical interpretation of the small-percent 

variations that correlate with vBMD. We note, however, that were the spectral contributions 

of chemical X larger, they would more greatly influence the normalization, perturb the linear 

relationship with concentration, and presumably degrade the predictions. This might be the 

case in other situations in which SOLD/TLS might be used, and should be taken into 

consideration.

In addition to demonstrating the general use of SOLD/TLS, this work provides insights 

about the particular predictions of bone mineral density and maximum torque via Raman 

spectroscopy. vBMD is derived by analyzing voxels in 3D X-ray images of bone, while 

aBMD is a 2D measurement that integrates along a line of sight[33]. The Raman 

spectroscopy in this study interrogated a fixed volume, and the maximum source-detector 

separation was only 0.5 mm, less than the typical thickness of the soft tissue layer above the 

bone. As such, it is likely that the Raman measurement of the bone was at most weakly 

sensitive to the total tibial thickness, and more closely proportional to the volumetric density. 

This is borne out in the PLSR predictions, in which higher correlations were found for 

vBMD than aBMD. Fortunately, vBMD has also been mentioned as a better predictor for 

bone strength than aBMD[34].

The MT predictions in this study had lower correlation coefficients than vBMD. vBMD, like 

Raman spectroscopy, is a direct measurement of the abundance of a chemical within a 

region. MT, on the other hand, is a mechanical measurement whose relationship to chemical 

composition is not obviously linear, and which depends upon independent structural 

properties (e.g. bone cross-sectional area and cortical thickness) that Raman spectroscopy 

does not probe. As such, a linear regression to predict MT from Raman spectra may well not 

be the optimal model. In addition, MT measurements are more prone to inconsistencies in 

setup and handling, leading to greater uncertainty in the reference values. For all of these 

reasons, the performance of vBMD better exemplifies the key advantages of SOLD/TLS. 

Nevertheless, improvements were seen for MT as well.

5 ∣ CONCLUSION

We have introduced and tested a new spectral unmixing method based upon SOLD to 

process in vivo transcutaneous measurements obtained using SORS. By retaining spectral 

features that are not modeled by SOLD’s fitting library, the SOLD/TLS approach has an 

advantage when the library fails to model the targeted component’s spectrum completely. In 

direct comparisons, SOLD/TLS preserved spectral features more faithfully and produced 

better regressions against reference properties than when unprocessed SORS spectra or 

traditionally-processed SOLD spectra were used. The experimental application to bone 

analysis raises the potential of monitoring bone changes in vivo and aiding in the detection 
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of osteoporosis. The SOLD/TLS unmixing approach generalizes to any situation where the 

SOLD assumptions apply, namely any spatially heterogeneous mixture of N materials in 

which spatially-offset measurements capture M ≥ N linearly independent superpositions of 

the materials’ spectral lineshapes.
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FIGURE 1. 
Geometry of spatially-offset Raman spectroscopy measurements (aspect ratio not rendered 

to scale). Each detected signal is a weighted sum of the top (contaminant) and bottom 

(target) layers’ basis spectra (bt and bb, respectively), with the weight coefficients α and β 
varying differently with source-detector separation.
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FIGURE 2. 
Simulation flow chart showing how transcutaneous spectra and SOLD libraries were 

determined.

*: indicates normalization to MAD.

Chen et al. Page 15

J Biophotonics. Author manuscript; available in PMC 2021 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIGURE 3. 
Depiction of SOLD/TLS implementation. Three measured SORS spectra are fed into SOLD, 

which computes estimated basis spectra bb and bt. SORS spectrum t3 is decomposed into 

contributions from these two basis spectra and a residual, e. Spectrum tls is obtained by 

subtracting from t3 the estimated soft tissue contribution. When the residual has structure 

above the shot-noise limit, tls retains this structure, but bb does not.
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FIGURE 4. 
Comparison of how accurately various estimation methods predicted mineral-to-matrix ratio 

(MTMR) in multiple sets of 33 simulated samples each. Pearson correlation coefficients are 

plotted for the t3, SOLD, and SOLD/TLS approaches, with the latter two’s increasing along 

with the bone library size. Error bars represent standard error of the mean.

*(p<0.05),**(p<.0001): indicates significance compared to t3 determined by Tukey-Kramer 

HSD multiple comparisons performed on Fisher z-transformation values

~ (p<0.05): indicates significance compared to bb determined by Tukey-Kramer HSD 

multiple comparisons performed on Fisher z-transformation values
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FIGURE 5. 
PLSR prediction of simulated trace chemical X concentration, using spectra with soft tissue 

amplitudes that mimic experimental data. (A) Mean (black line) and standard deviation (blue 

region) of 33 simulated t3 spectra. (B–F) PLSR predictions of chemical X concentration 

using either t3 spectra (B), bb spectra (C,D), or tls spectra (E,F). Panels C and E compare 

results using the full bone library; panels D and F, a library of N = 1. ν and r2 are reported as 

mean +/− standard deviation.

*(p<0.05),**(p<.0001): indicates significance compared to t3 determined by Tukey-Kramer 

HSD multiple comparisons

~ (p<0.05), ~ ~ (p<.0001): indicates significance compared to bb determined by Tukey-

Kramer HSD multiple comparisons
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FIGURE 6. 
PLSR prediction of simulated trace chemical X concentration using a higher level of soft 

tissue amplitude variation. (A): Representative set of 33 spectra, showing a less pronounced 

phosphate peak due to the larger relative amount of soft tissue. (B–D) PLSR predictions 

using (B) t3, (C) bb, and (D) tls spectra. ν and r2 are represented as mean +/− standard 

deviation.

*(p<0.05),**(p<.0001): indicates significance compared to t3 determined by Tukey-Kramer 

HSD multiple comparisons

~ (p<0.05),~ ~ (p<.0001): indicates significance compared to bb determined by Tukey-

Kramer HSD multiple comparisons
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FIGURE 7. 
Cross-validation results of vBMD (A) measured by μCT using t3 (marked in blue triangles) 

(RMSECV = 23.4 mg HA/ccm, r2 = 0.91), and tls spectra (marked in red circles) (RMSECV 

= 17.0 mg HA/ccm, r2 = 0.95). Cross validation results of MT (B) measured by torsion 

testing using t3(RMSECV = 2.64 N·mm, r2 = 0.44), tls spectra (RMSECV = 1.97 N·mm, r2 

= 0.68). The line of perfect prediction is provided as a guide to the eye; it is not a fit.
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