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Background: Understanding spatial variation of air pollution is critical for public health 

assessments. Land Use Regression (LUR) models have been used increasingly for modeling small-

scale spatial variation in air pollution concentrations. However, they have limited application in 

China due to the lack of spatially resolved data.

Objective: Based on purpose-designed monitoring networks, this study developed LUR models 

to predict fine particulate matter (PM2.5), black carbon (BC) and nitrogen dioxide (NO2) exposure 

and to identify their potential outdoor-origin sources within an urban/rural region, using Taizhou, 

China as a case study.

Method: Two one-week integrated samples were collected at 30 PM2.5 (BC) sites and 45 NO2 

sites in each two distinct seasons. Samples of 1/3 of the sites were collected simultaneously. 

Annual adjusted average was calculated and regressed against pre-selected GIS-derived predictor 

variables in a multivariate regression model.

Results: LUR explained 65% of the spatial variability in PM2.5, 78% in BC and 73% in NO2. 

Mean (±Standard Deviation) of predicted PM2.5, BC and NO2 exposure levels were 48.3 (±6.3) 

μg/m3, 7.5 (±1.4) μg/m3 and 27.3 (±8.2) μg/m3, respectively. Weak spatial corrections (Pearson r = 

0.05–0.25) among three pollutants were observed, indicating the presence of different sources. 

Regression results showed that PM2.5, BC and NO2 levels were positively associated with traffic 

variables. The former two also increased with farm land use; and higher NO2 levels were 

associated with larger industrial land use. The three pollutants were correlated with sources at a 

scale of ≤5 km and even smaller scales (100–700m) were found for BC and NO2.

Conclusion: We concluded that based on a purpose-designed monitoring network, LUR model 

can be applied to predict PM2.5, NO2 and BC concentrations in urban/rural settings of China. Our 

findings highlighted important contributors to within-city heterogeneity in outdoor-generated 

exposure, and indicated traffic, industry and agriculture may significantly contribute to PM2.5, 

NO2 and BC concentrations.
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1. Introduction

Exposure to air pollution, including ambient fine particulate matter (PM2.5) and nitrogen 

dioxide (NO2), has been associated with increasing morbidity and mortality (Chen et al., 

2017). Research has further shown black carbon (BC), an important component of PM2.5, 

typically comprising 5–20% of the PM2.5 mass, has been linked to various health end points 

(Bell et al., 2009; Cowell et al., 2015; Spira-Cohen et al., 2011).
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Exposure estimation of air pollution is a critical component of health effects studies (Pope et 

al., 2002; Zhao et al., 2019). Given that it is not feasible to assess individual-level exposure, 

exposure estimation for population-based studies can be a large challenge. Early studies 

mostly used data from fixed monitoring sites as surrogates, but monitoring sites typically 

have limited geographic coverage and difficulty to capture the intra-urban variability. To 

address such challenges, recent studies used more sophisticated methods such as land use 

regression (LUR) model (Eeftens et al., 2012a), kriging and inverse distance weighing 

(IDW) interpolation (Ramos et al., 2016), dispersion models, chemical transport models (Liu 

et al., 2010) and satellite-derived data (e.g., aerosol optical depth) (van Donkelaar et al., 

2010; Zou et al., 2016; Di et al., 2016). Of these methods, LUR model combines the ability 

to effectively capture small-scale variability with a relatively low demand for data input 

(Hoek et al., 2008; Briggs et al., 1997). Also, it has been applied to identify potential sources 

of air pollution (Niu et al., 2018). Predictor variables included in LUR model provide 

causative information reflecting pollutant sources.

Given the aforementioned advantages, LUR method has been used to estimate various air 

pollutants exposure worldwide (Eeftens et al., 2012a; Beelen et al., 2013; Moore et al., 2007; 

Ross et al., 2007; Sangrador et al., 2008; Lee et al., 2015, 2017). However, the application of 

LUR model in China is limited to just a few cities where relatively dense routine networks 

exist (Huang et al., 2017; Liu et al., 2016; Chen et al., 2010). A representative monitoring 

network is crucial for developing and calibrating LUR models. Monitoring data used for 

LUR model development were often collected from routine or purpose-designed networks 

(Eeftens et al., 2012a; Moore et al., 2007; Lee et al., 2017; Tang et al., 2013). Purpose-

designed monitoring allows investigators to determine the number and types of monitoring 

sites (e.g. street level, traffic, background), while routine monitoring is designed for 

regulatory purpose rather than measuring human exposure (Hoek et al., 2008). In China, the 

development of LUR model for PM is compromised by the lack of high spatial resolution 

monitoring data in different time periods, regions and pollutants: until the end of 2012, there 

were no monitoring data on PM2.5 at a national level, and many regions of China still lack 

monitoring data to enable meaningful modelling of small-scale variability of outdoor air 

pollution. Additionally, routine monitoring networks in most Chinese cities do not measure 

components of interest (e. g., soot, metals). Therefore, due to the lack of spatially resolved 

data on particle component concentrations, long-term effects of PM component have not yet 

been studied in China.

The Taizhou Air cohort, which was nested in the Taizhou Longitudinal study (Wang et al., 

2009), aimed to estimate cardiovascular effects of air pollution. In this study, we developed 

LUR model using a purpose-designed monitoring network to predict PM2.5, BC and NO2 for 

the Taizhou Air cohort study. We further discussed out regression results on suggesting 

potential sources, model performance on explaining the spatial variance and cross-

validation, as well as issues in sampling campaign and the applicability of LUR model in 

epidemiological studies of air pollution in China.
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2. Materials and methods

2.1. Study area

The greater Taizhou region is located in the north bank of Yangtze River in eastern China, 

and has three municipal districts (Hailing, Gaogang and Jiangyan) and three satellite cities 

(Taixing, Xinghua, Jingjiang). This region covers a total area of 5787 km2, most of which is 

plains with altitudes ranging from 0 to 8 m. The Taizhou region serves as a prototype of 

urban-rural mixed area of China as it not only has several high-density downtowns but 

nearly 69% of the land (3993 km2/5787 km2) is used for agriculture and 0.32% is for 

industry, indicating various potential emission sources of air pollution.

The Taizhou Longitudinal Study recruited over 0.1 million residents, and 99.7% of them 

resided in areas of Hailing, Gaogang, Jiangyan, and Taixing (Fig. 1). Correspondingly, we 

selected these four districts/satellite cities (a total area of 2621 km2) as our study area for 

purpose-designed monitoring and LUR model development.

2.2. Air pollution measurements

2.2.1. Monitoring site selection—By the end of 2016, there were only four national-

standard air quality monitoring stations for PM2.5 and NO2 in the study area and no station 

measured BC. To compensate for the lack of monitoring data, we performed study-specific 

sampling in additional sites, including 30 PM2.5 (BC) sites and 45 NO2 sites across the study 

area. These sampling sites were divided into regional background sites (located in villages 

near the city), urban background sites (located at the city-center) and local-source sites (e.g. 

traffic and agricultural emission). The number (proportion) of these 3 types of sites was 

determined based on the following principles: 1) sampling sites should be broadly 

distributed proportional to the distribution of cohort participants; 2) these sites should be 

sufficient to capture the anticipated spatial variation of air pollutants in this area; 3) the 

selection of local-source sites should reflect the diversity of air pollution potential sources in 

the study area (ESCAPE Study manual, http://www.escapeproject.eu/manuals/). Due to the 

different types of land use, the local-source sites were categorized into traffic, residential, 

agriculture and industrial sites. A reference site was chosen at an urban background location 

where measurements were recorded over an entire year to reflect temporal variability of 

concentrations.

2.2.2. Monitoring and analysis—The Taizhou region has distinct summer and winter 

but very short spring and autumn. Therefore, our sampling campaign was conducted in 

summer (July–September) and winter (November–January). In each season, we collected 2 

integrated air pollutant samples, each for 7 consecutive days, in each sampling site. Seven-

day integrated measurements obtained at the reference site was operated year-round from 

July 2015 to August 2016.

Ambient PM2.5 samples were collected using 37-mm Teflon filters (225–8303, SKC Inc., 

PA, USA) with Harvard Impactor (Air Diagnostics and Engineering, Inc., Harrison, ME, 

USA) and sampling pump (Legacy, SKC Inc., PA, USA). To avoid overloading, we used an 

intermittent sampling strategy with 15 min of active sampling (flow rate: 10L/min) in every 
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2 h. All filters were pre-conditioned at a constant air temperature of 20 °C ± 1 °C and 

constant relative humidity (RH) of 50% (±5%) for 48 h prior to weighing. PM2.5 filters were 

weighed before and after sampling, and the mass of PM2.5 in each sample was calculated as 

the difference in filter weights. BC mass were then measured from the Teflon filter using the 

multi-wavelength optical measurements via optical equipment including a balanced 

deuterium tungsten halogen light source (DH-2000-BAL), an integrating sphere (ISP-50–8-

R), a labmade filter holder, and an Ocean Optics USB4000-VIS-NIR fiber optic 

spectrometer (Yan et al., 2011).

NO2 samples were collected using the Ogawa passive sampler (Ogawa & Co. USA Inc., 

Pompano Beach, FL). Nitrite content in the exposed filters was then extracted and quantified 

in spectrometer under 545 nm using the Saltzman method. All sample collection and 

processing were conducted according to the manufacturer’s instructions (Ogawa., 1998).

Due to a limited number of samplers, 10 PM2.5 (BC) sampling sites and 15 NO2 sites were 

measured simultaneously each time. Given that air pollutants have a substantial temporal 

variation, adjustment for this variability is essential (Eeftens et al., 2012b). For each site a 

seasonal average concentration was calculated by averaging two 7-day measurements and 

then correcting for temporal variation using measurements obtained from the reference site 

(Cyrys et al., 2012). The difference between the concentration for a specific two-week 

sampling period and the annual average at the reference site was subtracted from each 

measurement. The adjusted annual average concentration of each sampling site was then 

calculated by averaging two seasonal average concentrations.

2.2.3. Quality control—Field blanks and duplicate samples for PM2.5 (BC) and NO2 

were collected in each 7-day sampling period with the same procedure of corresponding 

normal sample collection, except that field blank samples were collected without an active 

pump for PM and were not exposed to the air for NO2 when in the field. The limit of 

detection (LOD) was calculated as 3 times the standard deviation (SD) of measured field 

blanks. The precision of our measurements was estimated by the coefficient of variation 

(CV) from the duplicate samples. For data quality control during the sample collection, we 

excluded PM2.5 (BC) samples if (1) the sampling pump achieved less than 75% of the 

programmed schedule; or (2) the flow rate failed to maintain at 10.0 L/min (±0.5 L/min) 

from the start to the end of sampling. Additional QC measures were implemented 

throughout our BC analysis. We ran calibration filters and field blank samples for every 10 

samples and one sample was measured twice to ensure the consistency.

2.2.4. Air pollution data from air quality monitoring stations—We also collected 

hourly concentrations data (between July 2015 and August 2016) of PM2.5 and NO2 from 

four national-standard air quality monitoring stations which were operated by Taizhou 

Environmental Monitoring Center (TEMC). PM2.5 concentrations were measured using the 

Tapered Element Oscillating Microbalance (TEOM) and NO2 using the chemiluminescence 

method. All ambient measurements were operated under the China National Quality Control 

((HJ/T 193–2005) and (GB3095–2012)).
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To compare modeling prediction with routine monitoring data, we calculated daily average 

of TEMC PM2.5 and NO2 derived from hourly data, and calculated annual averages derived 

from daily data to match with model prediction. Following the criteria of the Ambient Air 

Quality Standards of China, daily and annual average calculation require at least 75% valid 

data coverage (e.g. at least 18 valid hourly data points available for daily average 

calculation).

2.3. GIS predictor variables

As presented in Table 1, we included variables of local land use, road networks, population 

counts, emission inventory and distance to the Yangtze River for each sampling site in our 

geographic predictor data-base. Circular buffers around the sampling sites were generated 

with varying radii. The GIS layers were then intersected with the circular buffers and the 

corresponding values of each layer within buffers at each site was calculated. Calculations 

were performed using ArcGIS 10.3 (ESRI, Redlands, CA).

Population counts, land use and emission inventory were area-integrated variables. Ambient 

population density (persons/km2) was calculated according to the sixth census data of 

Taizhou. Land use data were obtained from the Landsat TM5 dataset of 2015 with a 

resolution of 30 m. Six categories of land use in the study area were included, namely urban 

area, industrial area, rural area, farm land area, green space and water area. Annual (2012) 

NOx and PM2.5 gridded emission data (1 km × 1 km resolution) of major sources (including 

agriculture, industry, resident, power plants, and traffic) were derived from Multi-resolution 

Emission Inventory for China (MEIC) (http://www.meicmodel.org/dataset-meic.html).

Road networks and distance to the Yangtze River were distance-based variables. Given that 

traffic density data was not available, we obtained the digital road network data with a 

resolution of 1:50,000 from National Geomatics Center of China (http://ngcc.sbsm.gov.cn). 

We divided road networks into four classes according to the roughly estimated traffic density 

and permission of heavy trucks. Highways and arterial roads were classified as the first-class 

roads. County-standard roads, village-standard roads and other types of roads were, 

respectively, ranked as the second-, the third-and the forth-class roads. The length of the four 

types of roads within each buffer and distance to the nearest road of each class were 

calculated for each sampling site. Additionally, the distance to the nearest road of each type 

was calculated. We also measured the straight-line distance between a sampling site to the 

nearest coastline of the Yangtze River in the land use map of Taizhou.

2.4. Model construction and diagnosis

Stepwise-multiple linear regression method was applied to construct LUR models for PM2.5, 

BC and NO2. Detailed information has been described elsewhere (Eeftens et al., 2012a). In 

brief, all predictor variables were included as candidate independent variables. The adjusted 

annual average of PM2.5, BC and NO2 were used as dependent variables. Thereafter, model 

construction started by including predictor variables with the highest adjusted explained 

variance (adjusted R2) in univariate regressions. The remaining candidate variables were 

selected into the model if they met the following criteria:1) the adjusted R2 of the model 

increased by at least 1% to that of the previous model; 2) the coefficient of the variables in 
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the model were significant (with two-sided p value <0.05), and were in the right direction of 

their expected effect.

For model diagnosis, the Cook’s Distance was calculated to detect the influential data points 

for model validity. Observations with Cook’s Distance greater than 1 would be excluded and 

then the model would be re-evaluated. Variance Inflation Factor (VIF) was used to further 

identify the multi-collinearity between predictor variables. Variables with VIFs larger than 3 

would be removed and the model would be re-evaluated. Leave-one-out-cross-validation 

(LOOCV) was then employed to evaluate the overall model performance. R2 and root mean 

squared error (RMSE) between model prediction and observations for all sampling sites 

were calculated to assess the model fit. We also inspected the residual distribution of model 

fit. All data analysis was performed using R software (Version 2.15.3).

2.5. Mapping

The predicted annual average concentration surfaces of pollutants were created according to 

the final LUR models. We then divided the study area into 10708 500 m × 500 m grids and 

applied the LUR models to derive predicted pollutants concentration at the centroid of each 

grid as the average level of each grid. Where the regression equations produced negative 

estimates (≤2% for all 3 parameters), grid cell values were set to zero; where estimates 

exceeded a quantification limit (QL) defined as 150% of the maximum observed 

concentrations (≤1.5% for all 3 parameters), grid cell values were set to QL (Henderson et 

al., 2007; Amini et al., 2014). At last, Kriging interpolation pollution maps were drawn 

based on the predicted values.

3. Results

3.1. Measurements and predictors

We finally selected 2 regional background sites, 2 urban background sites, 11 traffic sites, 11 

urban residential sites, 14 rural residential sites, 3 agricultural sites, 1 industrial site and 1 

background reference site. Except for 1 rural residential site that had to be taken down due 

to an unexpected construction occurred during the sampling period, we successfully 

collected samples from 29 PM2.5 (BC) sites and 44 NO2 sites. As shown in Fig. 1, the 

distribution of sampling sites effectively covered the residential area of cohort participants. 

We eventually collected 175 qualified samples for PM2.5 (BC) and 234 for NO2. LODs were 

9.0 μg for PM2.5 and 36.2 μg for NO2. No BC was detected in the field blank samples, so we 

used an LOD of 1.4 ng/mm2 according to a previous study (Yan et al., 2011). The average 

CV in duplicate samples were 7.0% for PM2.5, 6.5% for BC and 6.9% for NO2, indicating 

good reproducibility.

Table 2 presents the statistic description of averaged annual concentrations after adjusting 

for temporal variability. The mean (±SD) concentrations of PM2.5 were 52.9 (±6.1) μg/m3, 

which was 5 times above the annual average in the World Health Organization (WHO) air 

quality guideline (10 μg/m3), while the annual mean NO2 level [mean (±SD) = 25.9 (±5.6) 

μg/m3] was below the WHO guideline (40 μg/m3). The mean (±SD) of BC was 8.3 (±1.2) 

μg/m3 and accounted for 15.6% of PM2.5 in average. There were no significant differences 
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between urbanized area and rural areas (p»0.1) for PM2.5, BC and NO2 levels. Comparable 

annual levels during the study period were observed at four air quality monitoring stations, 

the range of which was 51–59 μg/m3 for PM2.5 and 28–34 μg/m3 for NO2.

Table 2 also shows that our sampling sites dispersed in the study area with significant 

diversity in the land use area, traffic and population density. For example, population counts 

within the 500m buffers in our sampling sites ranged from 284 to 21,018. The average 

length (±SD) of the first-class road and the third-class road within 3000m were 35,459 

(±30,254) m and 102,592 (±87,390) m, respectively. Agricultural land use within 3000m 

buffer varied from 548,199 m2 to 2,506,809 m2.

3.2. Land use regression models

Table 3 presents the predictor variables that were finally included into the LUR models for 

PM2.5, BC and NO2, respectively. Overall, the VIF values differed between variables but 

were all less than 3, which suggested a relatively low collinearity between predictor 

variables. Analysis of Cook’s distance identified measurements from 1 PM+NO2 site as 

influential data points for their corresponding model construction. Measurements from this 

site were extremely high which could be affected by point source and this site was thus 

eventually discarded. The final models were constructed based on 27 and 42 sites for PM2.5 

(BC) and NO2, respectively.

For PM2.5, a substantial fraction (65%) of the measured spatial variability was explained by 

4 GIS predictor variables: length of the first-class road (3000m buffer), agricultural land area 

(2000m buffer), water area (5000m buffer), and distance to the nearest forth-class road. We 

found an association between the larger length of the first-class road and agricultural land 

area with higher PM2.5 concentrations; while the associations between water area and 

distance to the nearest forth-class road with PM2.5 concentrations were negative. 

Contribution values (regression coefficient β ×IQR) of these 4 variables suggest that traffic 

and agricultural emission contributed most to PM2.5 concentrations in our study area. For 

example, annual PM2.5 increased by 3.7 μg/m3 for each IQR (34,186m) increase in length of 

the first-class road (3000m buffer).

Model adjusted R2 was higher for BC (78%) than for PM2.5. Five predictors entered the BC 

model, including length of the first-class road (500m buffer), length of the third-class road 

(100m buffer), water area (4000m buffer), industrial area (4000m buffer), and agricultural 

land area (2000m buffer). Except the water area, all other predictors were positively 

associated with BC values. Similar to PM2.5, traffic and agricultural emission were two 

primary influencing factors on BC. For example, each IQR increase in length of the first-

class road within 500 m buffer (1596.22m) and agricultural land area within 2000 m buffer 

(5.69 km2) corresponded to 0.52 μg/m3 and 0.90 μg/m3 increase in BC concentrations, 

respectively.

For NO2, the local traffic variables coupled with variables related to industrial emission with 

5000 m buffer yielded 73% of explained variability in NO2 concentrations, including length 

of the first-class road (700 m buffer), length of the third-class road (100 m buffer), distance 

to the nearest first-class road and emission of NOx from traffic (5 km buffer). The result that 
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80% (4/5) of the selected variables were traffic-related, suggests substantial contribution of 

traffic emission to ambient NO2 concentrations. Specifically, each IQR increase (2772 m) in 

length of the first-class road within a 700-m buffer was associated with 2.46 μg/m3 increase 

in NO2.

3.3. Model evaluations

Residual distribution of the final LUR models showed no apparent bias in model fitting. 

LOOCV R2 were 0.56, 0.70 and 0.66 for PM2.5, BC and NO2, respectively (Table 3). The 

differences between the model R2 and LOOCV R2 less than 10% indicated good robustness 

of our models (Beelen et al., 2013). Cross-validation RMSE were 3.12 μg/m3 for PM2.5, 

0.51 μg/m3 for BC and 3.02 μg/m3 for NO2, suggesting the predicted values coincided well 

with the measured values. The even distribution of the predicted value and measured value 

along the 1:1 line in Fig. 2 further supported a considerable agreement between the 

measurements and prediction.

3.4. Mapping

Fig. 3a, b and c show maps predicting annual concentrations of PM2.5, BC and NO2, 

respectively. The predicted mean (±SD) was 48.3 (±6.3) μg/m3 for PM2.5, 7.5 (±1.4) μg/m3 

for BC and 27.3 (±8.2) μg/m3 for NO2. There were several high concentration hotspots 

across the city, suggesting large within-city gradients found in these three pollutants. For 

PM2.5, the middle-western area with more intensive traffic networks and larger coverage of 

agriculture land use had higher concentrations than the eastern and northern areas. Mapping 

also revealed clearly elevated NO2 and BC concentrations along the main road and fell 

sharply as distance to the road network increased, indicating traffic is an influential source 

for BC and NO2 in the study area. In addition, BC and NO2 increased in areas corresponding 

to the agriculture land use, and the three peak spots along the Yangtze River reflected 

emissions from three local industrial zones. Note that considering the limited number of 

sampling sites, our monitoring network mainly covered the areas where cohort distributed 

only. Therefore, it should be in caution when interpreting the prediction where spatial 

variation of air pollution may not be captured by our sampling network, because bias might 

occur.

Of note, as shown in Fig. 3, distinct spatial distribution among three air pollutants were 

observed. All three pollutants were across 10708 500 m×500 m grids positively correlated; 

however, their spatial correlations were weak. The Pearson r was 0.25 (p < 0.001) between 

PM2.5 and BC, 0.05 (p < 0.001) between PM2.5 and NO2, and 0.15 (p < 0.001) between BC 

and NO2.

4. Discussion

Although LUR models have been used widely for air pollution exposure assessment 

worldwide (Eeftens et al., 2012a; Beelen et al., 2013; Moore et al., 2007; Lee et al., 2017; 

Tang et al., 2013; Amini et al., 2014; Wu et al., 2015a; Meng et al., 2015; Clougherty et al., 

2013), this modeling approach still has had limited application in China due to the lack of 

spatially resolved data on air pollution. Based on a purpose-designed monitoring network, 
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we developed land use regression models in Taizhou area where an air pollution cohort study 

was located. Our models could explain 65%, 78% and 73% of the variability in PM2.5, BC 

and NO2 in the study area. The concentration surface retrieved from the models 

demonstrated large within-city heterogeneity in PM2.5, BC and NO2 exposure, highlighting 

that ignoring the spatial variation in these air pollutants may result in great exposure 

misclassification. Our study also suggested traffic, industry and agriculture as the major 

sources of PM2.5, NO2 and BC concentrations, which may have implications for developing 

air pollution abatement strategies to protect public health.

Many prior epidemiological studies used data from routine monitoring stations as surrogates 

of exposure, which often ignored the intra-urban variability of air pollutants due to the lack 

of enough geographic coverage (Ryan and LeMasters, 2007). In Taizhou, the spatial variable 

coefficient (CV) across four TEMC air quality monitoring stations (6% for PM2.5 and 7% 

for NO2), were much lower than prediction of LUR models (11% for PM2.5 and 35% for 

NO2). This finding confirmed that compared to limited number of monitoring stations, LUR 

model has stronger capacity to capture the spatial variability of air pollutants. In addition, 

our LUR models developed explained substantial spatial variation of air pollution for 

Taizhou areas. The percentage explained variation (R2) of our LUR models were comparable 

to the models in previous studies (Eeftens et al., 2012a; Beelen et al., 2013; Lee et al., 2015; 

Clougherty et al., 2013). The adjusted explained variance of BC (78%) and NO2 (73%) 

models in this study was higher than that of New York, USA (65% for BC and 67% for 

NO2) (Clougherty et al., 2013) and comparable to that of Catalunya, Spain (75% for BC and 

71% for NO2), but lower than that of Munich/Augsburg, Germany (91% for BC and 86% for 

NO2) (Eeftens et al., 2012a; Beelen et al., 2013). Such differences could be explained by the 

original variability in the measured concentrations, quality of the predictor variables, and the 

geographic and socioeconomic characteristics of the study area (Hoek et al., 2008).

Interestingly, our mapping results showed weak spatial correlations among three air 

pollutants (Pearson r = 0.09–0.23); while high spatial correlations were reported in some 

previous studies (Clougherty et al., 2013; Li et al., 2018). For example, Clougherty et al. 

(2013) constructed LUR models to predict wintertime street-level air pollution 

concentrations of New York City and found strong correlations among three pollutants 

(Pearson r > 0.70) (Clougherty et al., 2013). The inconsistence may be due to that these 

studies mainly focused on urban settings with relatively single sources (traffic and/or 

heating). Consistent with our findings, poor spatial correlations also have been observed in 

some other Chinese cities, such as Shanghai (Liu et al., 2016) and Nanjing (Huang et al., 

2017), indicating these pollutants may have significantly different sources.

Our model predictors provided further explanation for the observed weak spatial 

correlations. Consistent with previous studies, traffic-related variables were the most 

common predictors for three pollutants, suggesting traffic may be an importance local source 

of air pollution. Relatively high ratio of BC over PM2.5 (16%) confirmed the significant 

contribution of traffic. Prior LUR models mainly included road length, traffic intensity and 

traffic load (Eeftens et al., 2012a; Beelen et al., 2013; Moore et al., 2007; Clougherty et al., 

2013). However, we used length of roads and the distance to the nearest road as proxies due 

to unavailability of traffic flow/density data in our study. These variables have also been 
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applied in other studies to reflect traffic density and generated successful prediction (Liu et 

al., 2016; Meng et al., 2015; Lee et al., 2014). Besides traffic, water and agricultural land use 

remained in our PM2.5 and BC models and industrial land use remained in BC and NO2 

models. Similar results found in Taipei and Shanghai studies, which reflects dilution effect 

of rivers/water on PM2.5 and BC pollution. Farm land use, however, was seldom selected as 

a significant predictor (Wu et al., 2015a). One possible explanation is that most previous 

studies were conducted in urban areas with little agriculture; while our study area is mixed 

with urban and rural areas covering almost 70% of farm land use. The positive effect of farm 

land use suggested that agricultural activities, such as straw burning (Wu et al., 2015a, 

2018), may contribute greatly to ambient PM2.5 and BC. In general, the predicting variables 

in our models indicate necessity in controlling traffic, industrial and agricultural emissions, 

and protecting local water spaces so as to reduce air pollution in our study area.

In our final LUR models, more variables with lager buffer (especially for >1 km) were found 

in PM2.5 and NO2 models, whereas BC model was relatively more sensitive to variables with 

smaller buffers. Similar conclusions were also drawn by Henderson et al. (2007) and Wu et 

al. (2015) as BC and NO maps showed more pronounced small scale spatial contrast 

compared to PM2.5 and NO2 maps (Henderson et al., 2007; Wu et al., 2015a). This is most 

likely due to the difference of spatial heterogeneity between pollutants. NO2 is a typical 

secondary pollutant; while both primary and secondary emission can significantly contribute 

to PM2.5 concentrations (Dai et al., 2018; Lonati et al., 2008). NO2 and PM2.5 showed 

gradual decay and less ability to reflect small scale variability of traffic emissions as much 

as primary pollutants (Karner et al., 2010). In contrast, BC as a well-known primary 

pollutant was characterized by an important decreasing trend with increasing distance to 

sources. Karner et al. (2010) reported a rapid drop of BC concentration within 150 m to 

traffic emissions. Variables with larger buffer size for PM2.5 and NO2 models may suggest 

the significant contribution from secondary sources in this region.

Our site selection followed many of the best practices from Europe and North America 

outlined for LUR modelling (ESCAPE Study manual, http://www.escapeproject.eu/

manuals/). However, we also found that site selection and sampling in locations such as 

Taizhou was likely to be more challenging. Firstly, the Taizhou area has more diversified 

emission sources. In addition to common urban sources (such as traffic), industry and 

agricultural activities were also important contributors in our study area. Specifically, straw 

burning prevailed in Taizhou, where 69.7% of the land use were farm land and 67.5% of the 

population lived in rural area. Wu et al. (2015, 2018) confirmed straw burning accounted for 

8.0% of pollutant sources of PM2.5 (Wu et al., 2015b, 2018). For rural-urban mixed areas, 

agricultural sites should be included in the monitoring network. Secondly, our PM2.5 mean 

concentrations were 1.8–29.3 times higher than levels in European cities (Eeftens et al., 

2012a). The ESCAPE protocol proposed a sampling period of 2 continuous weeks in each 

season, but such a sampling period may cause overloading under high background pollution 

levels, especially for our winter sampling campaign. Consequently, we adjusted our 

sampling period to two one-week intervals, although it resulted in a higher workload for 

fieldwork. Alternatively, a lower duty cycle on the pump could help to fix this issue. Overall, 

European and North American cities are likely to have lower pollution and population 

densities, as well as fewer small-scale dispersed pollution sources than Chinese cities. 
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Therefore, their strategy of site selection and sampling may not be fully transferable to other 

study areas. Additionally, it is important to notice that self-designed sampling campaigns 

could be money- and time-consuming and it often can only afford short-term measurements 

(e.g. days to weeks) (Eeftens et al., 2012a; Beelen et al., 2013). Like many other studies, 

non-contemporaneous measurements of sites were conducted may cause that temporal 

variability of air pollution could hardly be addressed. To overcome this limitation, recent 

studies found combining LUR models with satellite-derived data (e.g., aerosol optical depth) 

has becoming an effective method (van Donkelaar et al., 2010; Di et al., 2016).

A few previous studies have attempted to apply LUR models in Chinese cities with limited 

number of routine monitoring sites (Liu et al., 2016; Wu et al., 2015a). However, it has been 

documented that compared to the purpose-designed monitoring network, the routine 

monitoring network was likely to be of low reliability due to its biased estimate of exposure 

(Hoek et al., 2008). We are one of the few that developed LUR models for exposure 

assessment of air pollution based on specific-monitoring networks in China. Additionally, 

one significant benefit from the purpose-designed monitoring network is that it allowed us to 

measure black carbon, which was not monitored in the routine monitoring network, with 

finer spatial resolution. Lastly, our models explained a major portion of annual average of 

PM2.5, NO2 and BC variability, and the LOOCV analysis implied stable performance. 

Hence, this study may add experience on LUR model development for air pollution studies 

in China.

However, our study has limitations. Firstly, 22%–35% of the variability remains unexplained 

by our models, and there are some other influential factors to be explored in future studies. 

For example, we had no traffic data for trucks or cars. Secondly, the number of sampling 

sites reported in previous studies with comparable model performance ranged from 14 to 

155 (Eeftens et al., 2012a; Lee et al., 2015; Clougherty et al., 2013). Although there are no 

strict rules for a minimum required number of sites, 40–80 monitoring sites for LUR models 

were recommended by Hoek et al. (2008) (Hoek et al., 2008). However, due to limited 

budgets and sampling devices, we only have 27/42 valid monitoring sites for PM/NO2 model 

development. Finally, like many earlier studies (Beelen et al., 2013; Liu et al., 2016; Meng et 

al., 2015), our LUR models treat relationships between air pollutants and predictor variables 

linear, which may not be adequate for all variables. That may be partly the reason why the 

validation R2 of PM2.5, BC and NO2 were only 0.56, 0.70 and 0.66 in this study. Besides, 

LUR model can only predict ambient concentrations, while personal activities and 

microenvironment characteristics can introduce additional variations in exposure. For 

example, people may spend most of their time indoors during winter, thus exposure 

misclassification can still occur. Further studies may be needed to improve these issues.

5. Conclusions

This study applied LUR models in a greater metropolitan area of China based on a purpose-

designed monitoring network. The LUR models developed from this study captured 

substantial spatial variation of PM2.5, BC and NO2 in the great Taizhou area, and suggested 

that traffic, industrial and agricultural activities were the main sources for local air pollution 
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in that area. Our results may provide evidence for air pollution regulation, and help improve 

air pollution exposure assessment for the Taizhou Air Cohort.
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BC black carbon

CV coefficient of variation

ESCAPE Study The European Study of Cohorts for Air Pollution Effects study

IDW inverse distance weighing

IQR interquartile range

LOD limit of detection

LOOCV Leave-one-out-cross-validation

LUR land use regression

MEIC Multi-resolution Emission Inventory for China

NO nitrogen monoxide

NO2 nitrogen dioxide

NOx nitrogen oxide

PM2.5 fine particulate matter, particulate matter less than 2.5 μm in diameter

QL quantification limit

RMSE root mean squared error

VIF Variance Inflation Factor
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HIGHLIGHTS

• Lack of spatially resolved air pollution data limits LUR model application in 

China.

• We are one of the few building LUR models upon specific-monitoring 

network in China.

• PM2.5, BC and NO2 models explain a large fraction of concentration 

variability.

• We add experience on air pollution exposure assessment for population-based 

studies.
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Fig. 1. Locations of the study area.
The left side map shows the location of Taizhou and the right side map shows the 

distribution of monitoring sites and Taizhou Cohort.

Abbreviations: PM 2.5, particulate matter with aerodynamic diameter ≤2.5 μm (fine 

particulate matter); NO2, nitrogen dioxide.
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Fig. 2. Results of leave-one-out cross validation for PM2.5, BC and NO2 LUR models:
predicted concentrations (x-axis) against measured concentrations (y-axis) for PM2.5, BC 

and NO2 models.

Abbreviations: PM2.5, particulate matter with aerodynamic diameter ≤2.5 μm (fine 

particulate matter); BC, black carbon; NO2, nitrogen dioxide.
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Fig. 3. LUR model prediction surfaces:
Estimated annual PM2.5 (A), BC (B) and NO2 (C) concentration from the final land use 

regression models.

Abbreviations: PM2.5, particulate matter with aerodynamic diameter ≤2.5 μm (fine 

particulate matter); BC, black carbon; NO2, nitrogen dioxide
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Table 1

Potential variables with units, defined buffer sizes and priori defined directions of the effect.

GIS dataset Predictor variable Unit Buffer size (radius in meters) Prior direction

Population Population count Person 100, 300, 500, 700, 1000, 2000, 3000, 4000, 5000 +

Traffic
a Length of the first-class roads in a buffer m 100, 300, 500, 700, 1000, 2000, 3000, 4000, 5000 +

Length of the second-class roads in a buffer m 100, 300, 500, 700, 1000, 2000, 3000, 4000, 5000 +

Length of the third-class roads in a buffer m 100, 300, 500, 700, 1000, 2000, 3000, 4000, 5000 +

Length of the forth-class roads in a buffer m 100, 300, 500, 700, 1000, 2000, 3000, 4000, 5000 +

Distance to the nearest first-class roads m NA −

Distance to the nearest second-class roads m NA −

Distance to the nearest third-class roads m NA −

Distance to the nearest forth-class roads m NA −

Land use Urban area m2 100, 300, 500, 700, 1000, 2000, 3000, 4000, 5000 +

Industrial area m2 100, 300, 500, 700, 1000, 2000, 3000, 4000, 5000 +

Farmland area m2 100, 300, 500, 700, 1000, 2000, 3000, 4000, 5000 +

Rural residential area m2 100, 300, 500, 700, 1000, 2000, 3000, 4000, 5000 +

Green space area m2 100, 300, 500, 700, 1000, 2000, 3000, 4000, 5000 −

Water area m2 100, 300, 500, 700, 1000, 2000, 3000, 4000, 5000 −

Coastline Distance to the nearest coastline m NA −

Emissions Emissions from agriculture t 1000, 5000, 10000 +

Emissions from industry t 1000, 5000, 10000 +

Emissions from resident t 1000, 5000, 10000 +

Emissions from power plants t 1000, 5000, 10000 +

Emissions from transportation t 1000, 5000, 10000 +

a
The first-class roads consist of highways, national roads and provincial roads. The second-class roads are county roads and the third-class roads 

are village roads. The forth-class roads include other lower-class roads.
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