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Summary

Automatic quantification of cardinal histologic features of nonalcoholic fatty liver disease 

(NAFLD) may reduce human variability and allow continuous rather than semiquantitative 

assessment of injury. We recently developed an automated classifier that can detect and quantify 

macrosteatosis with greater than or equal to 95% precision and recall (sensitivity). Here, we report 

our early results on the classifier’s performance in detecting lobular inflammation and 

hepatocellular ballooning. Automatic quantification of lobular inflammation and ballooning was 

performed on digital images of hematoxylin and eosin–stained slides of liver biopsy samples from 

59 individuals with normal liver histology and varying severity of NAFLD. Two expert 

hepatopathologists scored liver biopsies according the nonalcoholic steatohepatitis clinical 

research network scoring system and provided annotations of lobular inflammation and hepatocyte 

ballooning on the digital images. The classifier had precision and recall of 70% and 49% for 

lobular inflammation, and 91% and 54% for hepatocyte ballooning. In addition, the classifier had 

an area under the curve of 95% for lobular inflammation and 98% for hepatocyte ballooning. The 

Spearman rank correlation coefficient for comparison with pathologist grades was 45.2% for 

lobular inflammation and 46% for hepatocyte ballooning. Our novel observations demonstrate that 

automatic quantification of cardinal NAFLD histologic lesions is feasible and offer promise for 

further development of automatic quantification as a potential aid to pathologists evaluating 

NAFLD biopsies in clinical practice and clinical trials.
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1. Introduction

Nonalcoholic fatty liver disease (NAFLD) is the most common liver disease in the United 

States affecting 1 in 3 adults and 1 in 8 children [1,2]. The most severe phenotype of the 

disease, nonalcoholic steatohepatitis (NASH), is estimated to affect 3% to 5% of the US 

population [3,4]. The spectrum of NAFLD begins with a mild phenotype, simple steatosis, 

where only steatosis is present in the liver and extends to NASH, where steatosis is present 

with hepatic necroinflammation and fibrosis [5]. Liver biopsy is the current “gold standard” 

diagnostic test for phenotyping NAFLD [5]. Accurate phenotyping of NAFLD is critical 

because simple steatosis rarely progresses, whereas NASH can progress to cirrhosis, liver 

failure, and hepatocellular carcinoma [6–9].

The NAFLD activity score (NAS), the state-of-the-art scoring system for liver biopsies, is 

based on the sum of 3 numerical grades determined by manual pathologist assessment and 

semiquantification of steatosis, lobular inflammation, and hepatocyte ballooning [10]. These 

3 lesions were selected for inclusion in the NAS based on a multiple logistic regression 

analysis that showed these lesions were independently associated with diagnosis of NASH 

[10]. Because these lesions are potentially reversible in the short term, unlike fibrosis, they 

were chosen as end points for therapeutic trials for NASH. A recent expert panel report 

recommended the use of liver biopsy to define histologic outcomes in phase 2 and 3 clinical 

trials in NASH and also recommended the use of NAS to define and quantify NAFLD 

activity [11].

Semiquantitative assessment of steatosis, lobular inflammation, and hepatocyte ballooning 

has a couple important limitations stemming from the very nature of semiquantitative 

grading that forces continuous measures to be threshold into discrete grading bins. The first 

limitation is that semiquantitative grades may fail to accurately show improvements. For 

example, a steatosis grade 0 implies 0% to 4% steatosis, whereas grade 1 implies 5% to 33% 

steatosis. Consider patient A, who enters a study with 7% steatosis and improves by 3%. 

With this, patient A improves from steatosis grade 1 to 0. Now consider patient B who enters 

a study with 30% steatosis and improves 24%. Patient B is a steatosis grade 1 before and at 

the end of the study. Looking at study results, one may be led to believe patient A’s 3% 

improvement was more significant than patient B’s 24% improvement. The second 

limitation is that semiquantitative grading scale inevitably leads to interrater and intrarater 

variability [10,12–17]. Rater variability will be amplified for cases that lie near a grading 

cutoff (threshold) and may worsen based on the skills and/or training of the rater.

We hypothesize that automated decision support tools for pathologists, by offering a 

continuous rather than semiquantitative method for grading the histologic lesions of 

NAFLD, could increase the precision and accuracy of grading histologic activity. The aim of 

this initial study is to determine if an automated tool using supervised machine learning 

could be trained by pathologists to detect lobular inflammation and hepatocyte ballooning. 

Our group has previously published research demonstrating the feasibility of the accurate 

categorization of the white regions in liver biopsy images including macrosteatosis, central 

veins, portal veins, portal arteries, sinusoids, and bile ducts [18]. To date, no previous work 

has set out to automatically quantify lobular inflammation and hepatocyte ballooning.
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2. Materials and methods

The analysis discussed herein is based on a data set of 59 unique liver biopsy scans. Of the 

59 patients in the study, pathologist semiquantitative grading was available for 47 patients 

with the remaining image scans being used solely for annotations and machine learning. 

Two study pathologists (D.K. and R.K.) provided semiquantitative grades for each of the key 

histologic lesions comprising the NAS (steatosis, lobular inflammation, and hepatocyte 

ballooning). The patients in the study represented the full range of phenotypes from patients 

not having NAFLD, to those with various stages of NAFLD.

High-resolution digital images of the hematoxylin and eosin–stained slides of liver biopsy 

images in the study were generated using the NanoZoomer scanner manufactured by 

Hamamatsu (Hamamatsu City, Shizuoka, Japan) and housed in the Medical College of 

Wisconsin pathology department. The images were scanned at ×20 magnification and saved 

as RGB images in the lossless tiff file format. To create files small enough to efficiently 

work with given available hardware and computing resources, the files were reduced to 50% 

their original size. The smaller files are saved as red, green, blue JPEG images with an 80% 

compression factor. The size reduction was performed with bicubic interpolation and 

antialiasing to preserve as much of the original image detail as possible. This resulted in a 

resolution of 0.92 μm per pixel with respect to actual tissue size. The research protocol was 

reviewed and approved by the Internal Review Board of the Medical College of Wisconsin.

2.1. Quantification of lobular inflammation and hepatocyte ballooning in biopsy sections

Biopsy images are tiled into individual 25 pixel square sections. Tile size was selected by 

trial and error and by visual inspection of tile size appropriate with respect to lesion size. 

Although there may be a more optimal tile size, our intent here is to show feasibility rather 

than develop a model intended for any specific use. Once an image is tiled, each tile is then 

assigned a probability of containing lobular inflammation and then automatically classified 

using a probability threshold as either containing lobular inflammation or not. The area of 

tiles classified as lobular inflammation versus the total area of the biopsy section is then 

computed to approximate the overall percentage of lobular inflammation. An identical 

process is also performed for quantifying the incidence of hepatocyte ballooning. Fig. 1 

pictorially demonstrates the process of classifying tiles for hepatocyte ballooning.

Our study pathologists used a custom built Web-based Java (Oracle Corporation, Redwood 

City, CA) applet to manually annotate 138 areas of lobular inflammation and 48 areas of 

hepatocyte ballooning on biopsy images. In addition, study pathologists annotated 291 

regions of fibrosis, 128 regions of portal inflammation, and 1969 types of white regions 

inclusive of macrosteatosis, central veins, portal veins, portal arteries, sinusoids, and bile 

ducts. Lobular inflammation and hepatocyte ballooning annotations are available as bounded 

polygons. These regions serve as the positive class for learning data in each of their 

respective learning tasks. It was also necessary to establish a negative class for learning. To 

accomplish this, 2 different types of negative regions were developed:

1. Regions, excluding the positive class of interest (ie, lobular inflammation or 

hepatocyte ballooning depending on the task). This includes macrosteatosis, 
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central veins, portal veins, portal arteries, sinusoids and bile ducts, portal 

inflammation, fibrosis, and a generic “other” class.

2. Ten randomly selected tiles from each image. Although there is no guarantee that 

a randomly selected tile does not contain lobular inflammation (or hepatocyte 

ballooning), even in cases with high incidence of these lesions, there is a high 

probability that a randomly selected tile does not contain the lesion.

Because lobular inflammation and hepatocyte ballooning were annotated as bounded 

polygons, it was necessary to convert the polygon to a tile similar to what is used to quantify 

total incidence of lobular inflammation or hepatocyte ballooning. Fig. 2 shows the feature 

process with shaded areas representing that the tile image features are extracted for. The first 

is a tile centered on the polygon’s centroid (Fig. 2B). The second is a tile randomly offset 

from the polygon centroid (Fig. 2C). The motivation behind splitting polygon annotations 

into 2 different unique tiles is to first capture what a tile looks like should it fall directly on 

the lesion and second to capture what it looks like if only part of the feature falls within a 

tile.

For each positively and negatively labeled region, the types of features used by the classifier 

for learning are as follows:

• Texture — Texture and histogram statistics are computed for the gray scale 

region at each Σ level [19].

• Gray level co-occurrence matrix (GLCM) — The co-occurrence matrix is 

computed for pixels in each region [20].

• GLCM statistics — Statistical measures related to the GLCM, such as contrast 

and correlation.

• N-jet — For each Σ level in our scale representation, we compute the 2 jet of the 

region and extract related statistics [21].

• Nuclear density — For each region, the mean, min, max, and SD of nuclear 

density are used as features (see Discussion below).

Accuracy of the classifier is measured in 2 ways. First, a data set consisting of positive and 

negative learning tiles is analyzed using a 10-fold cross validation to gauge overall accuracy 

of the classifier [22]. Cross-fold validation entails taking our data set of positive and 

negative tiles and splitting the data set into 10 subsets and then running experiments, where a 

model is learned from data in 9 of the subsets and tested against data in the tenth. To reduce 

variability, the experiment is repeated 10 times with each subset serving as the “tenth” test 

subset exactly once. Results are then aggregated across all 10 experiments. Second, entire 

images are tiled into individual sections, and the total area of tiles classified as lobular 

inflammation or hepatocyte ballooning versus the total area of the biopsy section is 

computed and correlated with pathologists’ semiquantitative grades.

2.2. Nuclear density

Lobular inflammation is most visible by the presence of the nuclei of inflammatory cells. As 

inflammatory cells are smaller than other nearby cells, the number of nuclei in inflamed 
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areas is higher. To quantify this, a measure was established called nuclear density. The 

nuclear density metric for a given pixel P is measured as the number of pixels within a fixed 

radius of P that is also part of a nucleus. We hypothesized this metric would serve as a good 

proxy for quantifying inflammation, as a higher concentration of inflammatory cells should 

yield a higher number of nuclei in a region and consequently a higher nuclear density.

The first step toward calculating nuclear density was to develop a process for isolating cell 

nuclei. Based on the hemotoxyphilic staining characteristics of nuclei, steps are taken to 

threshold nuclei from the biopsy images [23]. Once the nuclei are extracted, it is possible to 

compute nuclear density. Nuclear density for a pixel (x,y) and a surrounding radius r is 

defined as the following:

NuclearDensity x, y, r = ∑
i, r ∈ R

f i, j

where R represents the set of pixels within radius r of (x, y) and f (i, j) = 1 if a pixel is 

identified as nuclar and 0 otherwise.

Using this equation for nuclear density, it is possible to calculate the nuclear density metric 

for all pixels in an image. Fig. 3 shows a pictorial representation of the nuclear density 

calculations for an image. The nuclear density image clearly shows a high concentration of 

nuclei in this case caused by portal inflammation, stromal cells, and other portal structures. 

Although nuclear density statistics for an entire tissue section correlates with pathologist 

lobular inflammation grades, better concordance is obtained using the nuclear density 

measure as a feature for supervised learning experiments.

2.3. Precision and recall

The model’s performance for detecting lobular inflammation and hepatocyte ballooning is 

measured by calculating the precision and recall (specificity) rates. Precision (also known as 

positive prediction rate) is a measure of the model’s positive predictive ability. Specifically, 

we are measuring what percentage of tiles classified as containing a given lesion type are 

correct. For both lobular inflammation and hepatocyte ballooning, precision is measured as 

the following:

Precision= True‐PositiveTileClassifications
True‐Positive+False‐PositiveTileClassifications

Recall is the fraction of all positive tiles that are detected for each lesion type. For lobular 

inflammation, recall is the percentage of all tiles that actually contain lobular inflammation 

that is correctly identified. Mathematically, recall is measured as the following:

Recall= True‐PositiveTileClassifications
True‐Positive+False‐NegativeTileClassifications
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3. Results

3.1. Histologic characteristics of subjects

Pathologist scored hematoxylin and eosin liver biopsy slides from 47 (20 with normal liver 

histology and 27 with NAFLD of varying severity) of the 59 total patients in our data set 

according to the NAS scoring system [10]. The remaining 12 image scans were used only 

for annotations and machine learning. In the NAFLD group, 19 subjects had simple 

steatosis, and 8 had NASH. Fig. 4 shows the pathologist grading distribution of lobular 

inflammation and hepatocyte ballooning among the 47 patients. Across our data set, a total 

138 areas of lobular inflammation and 48 areas of hepatocyte ballooning were annotated on 

biopsy images.

As shown in Fig. 4, our data set is skewed toward cases with minimal findings of lobular 

inflammation and hepatocyte ballooning. This does not present an immediate problem for 

our analysis, as our focus is on the precision and recall (sensitivity) of our model to correctly 

classify individual image tiles. Additional data would, however, be needed across the full 

spectrum of lobular inflammation and hepatocyte ballooning grades to draw more 

meaningful conclusions about the impact of false-positives and false-negatives on 

quantifying an entire tissue sample.

3.2. Automatic quantification of lobular inflammation

Evaluation of lobular inflammation classification was carried out using a 10-fold cross 

validation experiment.

It is important to point out that our data set of tiles is heavily skewed toward negative 

examples (tiles without lobular inflammation). Experiments were intentionally designed 

with a large skew toward tiles without lobular inflammation, as even in patients with high 

incidence of lobular inflammation, the number of tiles without lobular inflammation would 

significantly outnumber those with lobular inflammation. The model classifies lobular 

inflammation with a 0.70 precision and 0.49 recall (sensitivity).

In the cross validation experiment, 95.6% of tiles were classified correctly. This represents a 

statistically significant improvement over the baseline accuracy of 94.0% (P < .001) 

obtainable by always predicting not lobular inflammation. Although the accuracy metric is 

not a clinically meaningful, it demonstrates the improvements over naive baseline methods 

based on the predictive power of the model.

The recall-precision curve is shown in Fig. 5 along with the receiver operating characteristic 

(ROC) curve for the experiment. Examination of both of these curves to evaluate classifier 

performance is important, as our data set is largely skewed toward negative nonlobular 

inflammation examples [24]. Namely, with an ROC curve, the goal is to be toward the 

“upper left” of the curve, whereas with precision-recall curves, the goal is to be near the 

“upper right.” The ROC curve has a large area under the curve of 0.946 indicating the model 

has a strong ability to discriminate between tiles with lobular inflammation and those 

without.
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Although the immediate focus of our research was the accurate identification of individual 

tiles of lobular inflammation, we also sought to gauge model performance by measuring 

how it compared with pathologist grades. For each patient, the overall percentage of tissue 

with lobular inflammation was calculated by taking the total area of tiles classified as having 

lobular inflammation and dividing by total tissue area. The motivation for this metric in our 

analysis is that tiles containing lobular inflammation would approximately represent 1 focus 

of lobular inflammation, and the metric would therefore be proportional to the number of 

lobular inflammation foci per unit area of tissue. To obtain percentage lobular inflammation, 

a different model was created for each patient using only training data from other patients, 

otherwise known as a leave-one-sample-out approach.

There is a general concordance between the modeled percent lobular inflammation and 

pathologist grade. The 4 patients who received the highest pathologist grades all rank near 

the top of the model. Conversely, those with the lowest grade score near the bottom (Fig. 6). 

Case FLE038 stands out as an outlier in the analysis. Examination of the case revealed that 

this tissue sample is considerably smaller by surface area compared with the other samples 

in our study. In fact, the FLE038 sample was approximately 75% smaller than the mean size 

of all samples. As evident in this case, a smaller tissue section would be far more susceptible 

to the impact of false-positive tiles. The overall Spearman rank correlation for the 

comparison between the model and average of the pathologists score is 0.452 with a P of 

0.002.

3.3. Automatic quantification of hepatocyte ballooning

Similar to lobular inflammation, evaluation of the hepatocyte ballooning classifier was 

carried out using a 10-fold cross-validation experiment. The model classified hepatocyte 

ballooning with 0.91 precision and 0.54 recall. As with lobular inflammation, the data set is 

skewed heavily toward examples without hepatocyte ballooning. Based on this, a baseline 

accuracy of 97.9% would be obtainable simply by always predicting not hepatocyte 

ballooning for every tile. In our model, 98.9% of regions were correctly classified. This is a 

statistically significant (P < .001) improvement over the baseline method. As with lobular 

inflammation, the high level of accuracy has no clinical meaning, but it does demonstrate the 

predictive ability of the model and show a gain over a naive baseline method.

With the data set skewed heavily toward examples without hepatocyte ballooning, classifier 

performance must be evaluated through examination of both the recall-precision curve and 

the ROC curve (Fig. 7). The ROC curve shows that the model has a strong ability (area 

under the curve of 0.983) to discriminate between tiles as having or not having a ballooned 

hepatocytes. Similarly, the precision-recall curve shows a very high precision rate of 90% is 

obtainable while still recalling more than 50% of all tiles containing ballooned cells. This 

confirms that the model performs well despite the skew toward negative instances.

The next step in the analysis was to examine the concordance of a continuous metric derived 

from model predictions of hepatocyte ballooning with scores provided by our expert 

pathologists. For each patient, we took the surface area of tiles classified as containing 

hepatocyte ballooning and divided by total tissue area. This metric should be approximately 

equal to the percentage of tissue area containing hepatocyte ballooning if all tiles are 
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correctly classified. The model obtained a Spearman rank correlation of 0.460 and a P 
= .001 with our pathologist grades.

Fig. 8 shows the results of each individual case. The chart shows a good relationship 

between the average pathologist grade and the computed percentage of ballooning with 

cases that received a higher pathologist grade typically receiving a higher computed 

percentage ballooning. This is particularly prevalent on the 2 cases that received the highest 

grades from study pathologists. FLE008 received a score of 2 from both R.K. and D.K., and 

FLE029 received a score of 0 and 2 from R.K. and D.K., respectively. These 2 patients 

received the second and third highest overall percentage ballooning from the model. Case 

FLE021 presents as an obvious outlier. Examination of the case more closely revealed the 

model was misclassifying glycogenosis as hepatocyte ballooning. There are several cases 

that received a grade 0 from both study pathologists but where the model detected some 

hepatocyte ballooning. These cases are all the result of 1 to 3 tiles in the entire image being 

false-positives. As the model had a far higher precision (positive predictive rate) than recall 

(sensitivity) of tiles, the impact of just a few false-positives is seen in these cases.

4. Discussion

The results of this study demonstrate that it is feasible to develop a system using supervised 

machine learning to automatically quantify 2 of the cardinal features needed to phenotype 

NAFLD, lobular inflammation, and hepatocyte ballooning. These findings are significant, as 

more accurate continuous measurements are more desirable than semiquantitative scores to 

measure NAFLD activity and quantify patient’s response to therapeutics used in trials or 

patient care.

Although the overall test statistics for correlation with pathologist grade is not as high as 

those our research group has shown for steatosis grading [12,18], it shows a general 

concordance between the model scores and pathologist grades and demonstrates the 

feasibility of such an approach. Although our ultimate goals are to replace discrete grades 

with continuous measures of lesions, we thought it important to show the general 

relationship between continuous measures and pathologist grade. It is important to note that 

the continuous metrics we used in our analysis are different than the metrics used by 

pathologists for semiquantitative grading. Both our continuous metric and pathologist grade 

should, however, increase with lesion prevalence. Correlation coefficients may also be of 

limited meaning, as we are correlating 47 continuous values to 4 discrete bins of average 

pathologist grade. Furthermore, our data set is skewed toward patients with minimal 

incidence of lobular inflammation and hepatocyte ballooning, so additional research is 

needed to examine model performance on more severe cases.

Because of the large skew in the data set of tiles without lobular inflammation or hepatocyte 

ballooning, a large increase in the number of false-positives (ie, incorrect predictions of 

lobular inflammation or hepatocyte ballooning) would have a minimal impact on the false-

positive rate. This is because the metric is calculated as (false-positives)/(false-positives + 

true-negatives), and the true-negatives (correct predictions of not lobular inflammation or 

hepatocyte ballooning) in the denominator will dominate the metric. Based on this, one must 
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also look at the recall-precision curve to evaluate the classifier. Specifically, the precision 

rate is not susceptible to the large skew of negative examples in the data set. Examination of 

the recall-precision curve shows predictions of lobular inflammation may be made with 

approximately 65% precision while still recalling 50%+ of all lobular inflammation. A 

decrease in recall rate should be an acceptable tradeoff for increased precision in this 

experiment, provided recall is consistent across patients from different laboratories, cutting 

and staining procedures, etc. In other words, if patient A has more lobular inflammation than 

patient B, identifying 50% of patients A’s lobular inflammation will still quantify to a higher 

score than recalling 50% of patient B’s.

Examination of the classifier results showed areas with glycogen and/or many fat droplets 

confusing the detection of hepatocyte ballooning. Example 2 of Fig. 1 shows such a case. In 

example 2, a ballooned cell adjacent to small fat droplets (upper left of Fig. 1, example 2) is 

correctly identified. However, another ballooned cell located in between the 3 steatotic cells 

with large fat droplets at the bottom right of the example is missed. The model assigned this 

tile a 23% chance of containing hepatocyte ballooning demonstrating that the model 

detected some ballooning activity; however, this fails to meet the threshold for being 

considered a positive detection of hepatocyte ballooning. Examination of the tile 

probabilities of example 2 also shows an overall increase in the probability of ballooning 

activity in tiles, where no ballooning exists presumably do to the appearance of the 

cytoplasm. Future models should include more training examples of both the positive and 

negative ballooning class in areas of glycogen or high steatotic cells incidence to afford the 

classifier a richer training set to make correct predictions in these areas. In practice, a tool 

could be developed that presorts tiles by probability allowing an interactive step, whereby a 

pathologist makes the final determination.

The continuous measures used herein are based on surface area of tiles with lesions divided 

by the total surface area of tissue. This metric can likely be improved by modifying the 

denominator. Specifically, rather than total surface area of tissue, it may be desirable to use 

total surface area of tissue excluding portal regions. This may more accurately reflect 

disease activity in the regions of primary interest for a given lesion.

No previous efforts have been published attempting to automatically quantify lobular 

inflammation and hepatocyte ballooning in images of scanned NAFLD liver biopsy sections. 

Automatic quantification of lobular inflammation and hepatocyte ballooning may provide a 

means for reducing the inherent human variability in semiquantitative assessment of 

NAFLD histology and provide pathologists a reliable tool for measuring NAFLD lesions on 

a continuum. Furthermore, continuous accurate measurement of NAFLD cardinal histologic 

features, such as steatosis, lobular inflammation, hepatocyte ballooning, and portal 

inflammation, is highly desirable in assessing NAFLD disease activity and monitoring 

response to therapeutic interventions in clinical trials.

In summary, this is the first study showing that automatic quantification of lobular 

inflammation and hepatocyte ballooning is feasible in digital images of liver biopsies from 

patients with NAFLD. We are currently conducting studies to optimize and validate the 

performance of our automated classifier and are also developing algorithms for automated 
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quantification of hepatic fibrosis. These studies will include exhaustive annotation of unseen 

test cases, so the performance of our model may be reported on the ability to identify all 

lesions on a given tissue sample, rather than proxy metrics based on a subset of annotated 

tiles. These early findings offer promise for further development of automatic quantification 

as a potential aid to pathologists evaluating NAFLD biopsies in clinical practice and clinical 

trials.
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Fig. 1. 
The process of identifying hepatocyte ballooning. Actual results and tiles are shown for 2 

different biopsy sections. Original scanned images are first divided into tiles. Each tile is 

assigned a probability of containing hepatocyte ballooning (black is a probability of 0, 

middle gray is 50%, and white is 100%). Last, a threshold is determined for what probability 

is required for a tile to be automatically classified as hepatocyte ballooning.
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Fig. 2. 
Features extracted for machine learning experiments to simulate the effects of image tiling 

for classification. A, A polygon annotation. B, Features are extracted for a tile centered on 

the polygon’s centroid. C, Features are extracted for a tile randomly offset from the 

polygon’s centroid.
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Fig. 3. 
Creation of a heat map representing the nuclear density.

Vanderbeck et al. Page 14

Hum Pathol. Author manuscript; available in PMC 2021 July 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4. 
Distribution of pathologist grades for lobular inflammation and hepatocyte ballooning.
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Fig. 5. 
Precision versus recall (A) and ROC (B) curves for lobular inflammation.
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Fig. 6. 
Comparison of average pathologist grade with model percentage for lobular inflammation.
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Fig. 7. 
Precision versus recall (A) and ROC (B) curves for hepatocyte ballooning.
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Fig. 8. 
Comparison of average pathologist grade to model percentage for hepatocyte ballooning. 

Patient in FLE021 has glycogenosis, a condition similar in appearance to hepatocyte 

ballooning.
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